1
|
Xu S, Zheng Z, Pathak JL, Cheng H, Zhou Z, Chen Y, Wu Q, Wang L, Zeng M, Wu L. The Emerging Role of the Serine Incorporator Protein Family in Regulating Viral Infection. Front Cell Dev Biol 2022; 10:856468. [PMID: 35433679 PMCID: PMC9010877 DOI: 10.3389/fcell.2022.856468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
Serine incorporator (SERINC) proteins 1–5 (SERINC1-5) are involved in the progression of several diseases. SERINC2-4 are carrier proteins that incorporate the polar amino acid serine into membranes to facilitate the synthesis of phosphatidylserine and sphingolipids. SERINC genes are also differentially expressed in tumors. Abnormal expression of SERINC proteins occurs in human cancers of the breast, lung, colon, liver, and various glands, as well as in mouse testes. SERINC proteins also affect cleft lip and palate and nerve-related diseases, such as seizure Parkinsonism and borderline personality. Moreover, SERINC proteins have garnered significant interest as retroviral restriction factors, spurring efforts to define their function and elucidate the mechanisms through which they operate when associated with viruses. Human SERINC proteins possess antiviral potential against human immunodeficiency virus (HIV), SARS-COV-2, murine leukemia virus (MLV), equine infectious anemia virus (EIAV), and hepatitis B virus (HBV). Furthermore, the crystal structure is known, and the critical residues of SERINC5 that act against HIV have been identified. In this review, we discuss the most prevalent mechanisms by which SERINC3 and SERINC5 antagonize viruses and focus on the potential therapeutic applications of SERINC5/3 against HIV.
Collapse
Affiliation(s)
- Shaofen Xu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zheng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Oral Medicine, Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| | - Janak L. Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haoyu Cheng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziliang Zhou
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanping Chen
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Qiuyu Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
- *Correspondence: Lihong Wu, ; Mingtao Zeng, ; Lijing Wang,
| | - Mingtao Zeng
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- *Correspondence: Lihong Wu, ; Mingtao Zeng, ; Lijing Wang,
| | - Lihong Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Oral Medicine, Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
- *Correspondence: Lihong Wu, ; Mingtao Zeng, ; Lijing Wang,
| |
Collapse
|
2
|
Zuo T, Xie M, Yan M, Zhang Z, Tian T, Zhu Y, Wang L, Sun Y. In situ analysis of acupuncture protecting dopaminergic neurons from lipid peroxidative damage in mice of Parkinson's disease. Cell Prolif 2022; 55:e13213. [PMID: 35274781 PMCID: PMC9055900 DOI: 10.1111/cpr.13213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Objectives Acupuncture stimulation has proven to protect dopaminergic neurons from oxidative damage in animal models of Parkinson's disease (PD), but it remains unclear about the in situ information of biochemical components in dopaminergic neurons. Here, we aimed to analyse in situ changes of biochemical components and lipid peroxidation levels in dopaminergic neurons in PD mice treated with acupuncture by synchrotron FTIR micro‐spectroscopy technique. Materials and Methods About 9–10‐week‐old C57BL/6 mice were used to establish PD model by intraperitoneal injection of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP, 30 mg/kg for 5 days). Acupuncture stimulation was performed once a day for 12 days. Behaviour test was determined using the rotarod instrument. Biochemical compositions of dopaminergic neurons in substantia nigra pars compacta were analysed by synchrotron FTIR micro‐spectroscopy technique. The number and ultrastructure of dopaminergic neurons were respectively observed by immunofluorescence and transmission electron microscopy (TEM). Results We found that the number and protein expression of dopaminergic neurons in MPTP‐treated mice were reduced by about half, while that in the mice treated by acupuncture were significantly restored. Acupuncture treatment also restored the motor ability of PD mice. The results of single cell imaging with synchrotron FTIR micro‐spectroscopy technique showed that the proportion of lipid in MPTP treated mice increased significantly. Especially the ratio of CH2 asymmetric stretching and CH3 asymmetric stretching increased significantly, suggesting that MPTP induced lipid peroxidation damage of dopaminergic neurons. It is also supported by the result of TEM, such as mitochondrial swelling or atrophy, loss of mitochondrial crests and mitochondrial vacuolization. Compared with MPTP treated mice, the proportion of lipid in acupuncture treated mice decreased and the mitochondrial structure was restored. Conclusions Acupuncture can inhibit the level of lipid peroxides in dopaminergic neurons and protect neurons from oxidative damage. The study provides a promising method for in situ analysis of biochemical compositions in PD mice and reveals the mechanism of acupuncture in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Tingting Zuo
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mo Xie
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Meiling Yan
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zengyan Zhang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Tian Tian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yanhong Sun
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Acupuncture for Parkinson's Disease: Efficacy Evaluation and Mechanisms in the Dopaminergic Neural Circuit. Neural Plast 2021; 2021:9926445. [PMID: 34221005 PMCID: PMC8221898 DOI: 10.1155/2021/9926445] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease caused by degeneration of dopaminergic neurons in the substantia nigra. Existing pharmaceutical treatments offer alleviation of symptoms but cannot delay disease progression and are often associated with significant side effects. Clinical studies have demonstrated that acupuncture may be beneficial for PD treatment, particularly in terms of ameliorating PD symptoms when combined with anti-PD medication, reducing the required dose of medication and associated side effects. During early stages of PD, acupuncture may even be used to replace medication. It has also been found that acupuncture can protect dopaminergic neurons from degeneration via antioxidative stress, anti-inflammatory, and antiapoptotic pathways as well as modulating the neurotransmitter balance in the basal ganglia circuit. Here, we review current studies and reflect on the potential of acupuncture as a novel and effective treatment strategy for PD. We found that particularly during the early stages, acupuncture may reduce neurodegeneration of dopaminergic neurons and regulate the balance of the dopaminergic circuit, thus delaying the progression of the disease. The benefits of acupuncture will need to be further verified through basic and clinical studies.
Collapse
|
4
|
Seo MH, Yeo S. Triadin Decrease Impairs the Expression of E-C Coupling Related Proteins in Muscles of MPTP-Induced Parkinson's Disease Mice. Front Neurosci 2021; 15:649688. [PMID: 33967680 PMCID: PMC8100520 DOI: 10.3389/fnins.2021.649688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD), caused by destruction of dopaminergic neurons in the brain, leads to motor symptoms like bradykinesia, tremor, and walking impairments. While most research effort focuses on changes in neuronal pathology we examined how muscle proteins were altered in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. A Ca2+ release channel complex, consisting of ryanodine receptors (RYR), triadin (TRDN), and calsequestrin (CSQ1), is important for excitation-contraction coupling in the sarcoplasmic reticulum membrane in muscles. Thus, we investigated changes in the RYR Ca2+ release channel components in PD mice model. Based on a report that TRDN deletion impairs skeletal muscle function, we also investigated how the knock-down of TRDN affects other components of the RYR channel in the PD model. In this study, the expression levels of the components of RYR channels decreased in the quadriceps femoris muscle of MPTP-induced PD mice and in C2C12 cells treated with 1-methyl-4-phenylpyridinium. We show that decreased TRDN levels decrease RYR and CSQ1 levels. These results suggest that the levels of proteins related to Ca2+ channel function decreased in this model, which could impair muscle function. We conclude that muscle function alterations could add to the bradykinesia and tremor in this model of PD.
Collapse
Affiliation(s)
- Min Hyung Seo
- Department of Korean Medicine, Sangji University, Wonju, South Korea
| | - Sujung Yeo
- Department of Korean Medicine, Sangji University, Wonju, South Korea.,Research Institute of Korean Medicine, Sangji University, Wonju, South Korea
| |
Collapse
|
5
|
Signal Transduction Pathways of Acupuncture for Treating Some Nervous System Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2909632. [PMID: 31379957 PMCID: PMC6657648 DOI: 10.1155/2019/2909632] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/23/2019] [Indexed: 12/14/2022]
Abstract
In this article, we review signal transduction pathways through which acupuncture treats nervous system diseases. We electronically searched the databases, including PubMed, MEDLINE, clinical Key, the Cochrane Library, and the China National Knowledge Infrastructure from their inception to December 2018 using the following MeSH headings and keywords alone or in varied combination: acupuncture, molecular, signal transduction, genetic, cerebral ischemic injury, cerebral hemorrhagic injury, stroke, epilepsy, seizure, depression, Alzheimer's disease, dementia, vascular dementia, and Parkinson's disease. Acupuncture treats nervous system diseases by increasing the brain-derived neurotrophic factor level and involves multiple signal pathways, including p38 MAPKs, Raf/MAPK/ERK 1/2, TLR4/ERK, PI3K/AKT, AC/cAMP/PKA, ASK1-JNK/p38, and downstream CREB, JNK, m-TOR, NF-κB, and Bcl-2/Bax balance. Acupuncture affects synaptic plasticity, causes an increase in neurotrophic factors, and results in neuroprotection, cell proliferation, antiapoptosis, antioxidant activity, anti-inflammation, and maintenance of the blood-brain barrier.
Collapse
|
6
|
Ko JH, Lee H, Kim SN, Park HJ. Does Acupuncture Protect Dopamine Neurons in Parkinson's Disease Rodent Model?: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2019; 11:102. [PMID: 31139074 PMCID: PMC6517785 DOI: 10.3389/fnagi.2019.00102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Acupuncture has been reported to have significant effects, not only in alleviating impaired motor function, but also rescuing dopaminergic neuron deficits in rodent models of Parkinson's disease (PD). However, a systemic analysis of these beneficial effects has yet to be performed. Objective: To evaluate the neuroprotective effect of acupuncture in animal models of PD. Methods: A literature search of the PubMed, MEDLINE, EMBASE, China National Knowledge Infrastructure, Research Information Service System, and Japan Society of Acupuncture and Moxibustion databases was performed to retrieve studies that investigated the effects of acupuncture on PD. The quality of each included study was evaluated using the 10-item checklist modified from the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies. RevMan version 5.3 (Foundation for Statistical Computing, Vienna, Austria) was used for meta-analysis. Results: The 42 studies included scored between 2 and 7 points, with a mean score of 4.6. Outcome measures included tyrosine hydroxylase (TH) level and dopamine content. Meta-analysis results revealed statistically significant effects of acupuncture for increasing both TH levels (33.97 [95% CI 33.15-34.79]; p < 0.00001) and dopamine content (4.23 [95% CI 3.53-4.92]; p < 0.00001) compared with that observed in PD control groups. In addition, motor dysfunctions exhibited by model PD animals were also mitigated by acupuncture treatment. Conclusions: Although there were limitations in the number and quality of the included studies, results of this analysis suggest that acupuncture exerts a protective effect on dopaminergic neurons in rodent models of PD.
Collapse
Affiliation(s)
- Jade Heejae Ko
- College of Korean Medicine, Dongguk University, Goyang, South Korea.,Graduate School, Dongguk University, Seoul, South Korea
| | - Hyangsook Lee
- Acupuncture and Meridian Science Research Center, Seoul, South Korea.,College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Seoul, South Korea.,College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
7
|
Decreased expression of serum- and glucocorticoid-inducible kinase 1 (SGK1) promotes alpha-synuclein increase related with down-regulation of dopaminergic cell in the Substantia Nigra of chronic MPTP-induced Parkinsonism mice and in SH-SY5Y cells. Gene 2018; 661:189-195. [PMID: 29604467 DOI: 10.1016/j.gene.2018.03.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022]
Abstract
Parkinson's disease (PD) is a chronically progressive neurodegenerative disease, with its main pathological hallmarks being a dramatic loss of dopaminergic neurons predominantly in the Substantia Nigra (SN), and the formations of intracytoplasmic Lewy bodies and dystrophic neurites. Alpha-synuclein (α-syn), widely recognized as the most prominent element of the Lewy body, is one of the representative hallmarks in PD. However, the mechanisms behind the increased α-syn expression and aggregation have not yet been clarified. To examine what causes α-syn expression to increase, we analyzed the pattern of gene expression in the SN of mice intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), where down-regulation of dopaminergic cells occurred. We identified serum- and glucocorticoid-dependent kinase 1 (SGK1) as one of the genes that is evidently downregulated in chronic MPTP-intoxication. The results of Western blot analyses showed that, together with the down-regulation of dopaminergic cells, the decrease in SGK1 expression increased α-syn expression in the SN in a chronic MPTP-induced Parkinsonism mouse. For an examination of the expression correlation between SGK1 and α-syn, SH-5YSY cells were knocked down with SGK1 siRNA then, the downregulation of dopaminergic cells and the increase in the expression of α-syn were observed. These results suggest that decreased expression of SGK1 may play a critical role in increasing the expression of α-syn, which is related with dopaminergic cell death in the SN of chronic MPTP-induced Parkinsonism mice and in SH-SY5Y cells.
Collapse
|
8
|
Han L, Xie YH, Wu R, Chen C, Zhang Y, Wang XP. Traditional Chinese medicine for modern treatment of Parkinson’s disease. Chin J Integr Med 2017; 23:635-640. [DOI: 10.1007/s11655-016-2537-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Indexed: 01/30/2023]
|
9
|
Lee SH, van den Noort M, Bosch P, Lim S. Sex differences in acupuncture effectiveness in animal models of Parkinson's disease: a systematic review. Altern Ther Health Med 2016; 16:430. [PMID: 27809909 PMCID: PMC5094083 DOI: 10.1186/s12906-016-1405-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 10/19/2016] [Indexed: 01/08/2023]
Abstract
Background Many animal experimental studies have been performed to investigate the efficacy of acupuncture in Parkinson’s disease (PD). Sex differences are a major issue in all diseases including PD. However, to our knowledge, there have been no reviews investigating sex differences on the effectiveness of acupuncture treatment for animal PD models. The current study aimed to summarize and analyze past studies in order to evaluate these possible differences. Method Each of 7 databases (MEDLINE, EMBASE, the Cochrane Library, 3 Korean medical databases, and the China National Knowledge Infrastructure) was searched from its inception through March 2015 without language restrictions. Results We included studies of the use of acupuncture treatment in animal models of PD. A total of 810 potentially relevant articles were identified, 57 of which met our inclusion criteria. C57/BL6 mice were used most frequently (42 %) in animal PD models. Most of the studies were carried out using only male animals (67 %); only 1 study (2 %) was performed using solely females. The further 31 % of the studies used a male/female mix or did not specify the sex. Conclusions The results of our review suggest that acupuncture is an effective treatment for animal PD models, but there is insufficient evidence to determine whether sex differences exist. Future studies of acupuncture treatment for PD should use female animal models because they reflect the physiological characteristics of both males and females to fully evaluate the effect and the safety of the treatment for each sex. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1405-5) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Danqing X. Acupuncture for Parkinson's Disease: a review of clinical, animal, and functional Magnetic Resonance Imaging studies. J TRADIT CHIN MED 2015; 35:709-17. [DOI: 10.1016/s0254-6272(15)30164-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
N(ε)-Carboxymethyl Modification of Lysine Residues in Pathogenic Prion Isoforms. Mol Neurobiol 2015; 53:3102-3112. [PMID: 25983034 PMCID: PMC4902843 DOI: 10.1007/s12035-015-9200-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022]
Abstract
The most prominent hallmark of prion diseases is prion protein conversion and the subsequent deposition of the altered prions, PrPSc, at the pathological sites of affected individuals, particularly in the brain. A previous study has demonstrated that the N-terminus of the pathogenic prion isoform (PrPSc) is modified with advanced glycation end products (AGEs), most likely at one or more of the three Lys residues (positions 23, 24, and 27) in the N-terminus (23KKRPKP28). The current study investigated whether Nε-(carboxymethyl)lysine (CML), a major AGE form specific to Lys residues produced by nonenzymatic glycation, is an AGE adduct of the N-terminus of PrPSc. We show that CML is linked to at least one Lys residue at the N-terminus of PrPSc in 263K prion-infected hamster brains and at least one of the eight Lys residues (positions 101, 104, 106, 110, 185, 194, 204, and 220) in the proteinase K (PK)-resistant core region of PrPSc. The nonenzymatic glycation of the Lys residue(s) of PrPSc with CML likely occurs in the widespread prion-deposit areas within infected brains, particularly in some of the numerous tyrosine hydroxylase-positive thalamic and hypothalamic nuclei. CML glycation does not occur in PrPC but is seen in the pathologic PrPSc isoform. Furthermore, the modification of PrPSc with CML may be closely involved in prion propagation and deposition in pathological brain areas.
Collapse
|
12
|
Yeo S, An KS, Hong YM, Choi YG, Rosen B, Kim SH, Lim S. Neuroprotective changes in degeneration-related gene expression in the substantia nigra following acupuncture in an MPTP mouse model of Parkinsonism: Microarray analysis. Genet Mol Biol 2015; 38:115-27. [PMID: 25983633 PMCID: PMC4415566 DOI: 10.1590/s1415-475738120140137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the death of dopamine-generating cells in the substantia nigra (SN). Acupuncture stimulation results in an enhanced survival of dopaminergic neurons in the SN in Parkinsonism animal models. The present study investigated changes in gene expression profiles measured using whole transcript array in the SN region related to the inhibitory effects of acupuncture in a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Parkinsonism model. In this model, acupuncture stimulation at GB34 and LR3 attenuated the decrease in tyrosine hydroxylase in the SN region; stimulation at non-acupoints did not suppress this decrease. Gene array analysis revealed that 22 (10 annotated genes: Cdh1, Itih2, Mpzl2, Rdh9, Serping1, Slc6a13, Slc6a20a, Slc6a4, Tph2, and Ucma) probes that were up-regulated in MPTP animals relative to controls were exclusively down-regulated by acupuncture stimulation. In addition, 17 (two annotated genes: 4921530L21Rik and Gm13931) probes that were down-regulated in MPTP animals compared to controls were exclusively up-regulated by acupuncture stimulation. These findings indicate that the 39 probes (12 annotated genes) affected by MPTP and acupuncture may be responsible for the inhibitory effects of acupuncture on degeneration-related gene expression in the SN following damage induced by MPTP intoxication.
Collapse
Affiliation(s)
- Sujung Yeo
- Research Group of Pain and Neuroscience, WHO Collaborating Center for
Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul,
Republic of Korea
- Department of Basic Korean Medical Science, College of Korean Medicine,
Kyung Hee University, Seoul, Republic of Korea
| | - Keon Sang An
- Department of Basic Korean Medical Science, College of Korean Medicine,
Kyung Hee University, Seoul, Republic of Korea
| | - Yeon-Mi Hong
- Research Group of Pain and Neuroscience, WHO Collaborating Center for
Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul,
Republic of Korea
- Department of Basic Korean Medical Science, College of Korean Medicine,
Kyung Hee University, Seoul, Republic of Korea
| | - Yeong-Gon Choi
- Research Group of Pain and Neuroscience, WHO Collaborating Center for
Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul,
Republic of Korea
- Department of Basic Korean Medical Science, College of Korean Medicine,
Kyung Hee University, Seoul, Republic of Korea
| | - Bruce Rosen
- Department of Basic Korean Medical Science, College of Korean Medicine,
Kyung Hee University, Seoul, Republic of Korea
- Department of Radiology, Athinoula A. Martinos Center for Biomedical
Imaging, Massachusetts General Hospital, Harvard Medical School, Boston,
USA
| | - Sung-Hoon Kim
- Department of Basic Korean Medical Science, College of Korean Medicine,
Kyung Hee University, Seoul, Republic of Korea
| | - Sabina Lim
- Research Group of Pain and Neuroscience, WHO Collaborating Center for
Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul,
Republic of Korea
- Department of Basic Korean Medical Science, College of Korean Medicine,
Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Actigraph evaluation of acupuncture for treating restless legs syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:343201. [PMID: 25763089 PMCID: PMC4339862 DOI: 10.1155/2015/343201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/26/2014] [Indexed: 01/01/2023]
Abstract
We evaluated the effects of acupuncture in patients with restless legs syndrome (RLS) by actigraph recordings. Among the 38 patients with RLS enrolled, 31 (M = 12, F = 19; mean age, 47.2 ± 9.7 years old) completed the study. Patients were treated with either standard acupuncture (n = 15) or randomized acupuncture (n = 16) in a single-blind manner for 6 weeks. Changes in nocturnal activity (NA) and early sleep activity (ESA) between week 0 (baseline), week 2, week 4, and week 6 were assessed using leg actigraph recordings, the International Restless Legs Syndrome Rating Scale (IRLSRS), and Epworth Sleepiness Scale (ESS). Standard but not randomized acupuncture reduced the abnormal leg activity of NA and ESA significantly in week 2, week 4, and week 6 based on the changes in the clinical scores for IRLSRS and ESS in week 4 and week 6 compared with the baseline. No side effects were observed. The results indicate that standard acupuncture might improve the abnormal leg activity in RLS patients and thus is a potentially suitable integrative treatment for long-term use.
Collapse
|
14
|
Chen S, Wang S, Rong P, Liu J, Zhang H, Zhang J. Acupuncture for refractory epilepsy: role of thalamus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:950631. [PMID: 25548594 PMCID: PMC4273587 DOI: 10.1155/2014/950631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 12/29/2022]
Abstract
Neurostimulation procedures like vagus nerve stimulation (VNS) and deep brain stimulation have been used to treat refractory epilepsy and other neurological disorders. While holding promise, they are invasive interventions with serious complications and adverse effects. Moreover, their efficacies are modest with less seizure free. Acupuncture is a simple, safe, and effective traditional healing modality for a wide range of diseases including pain and epilepsy. Thalamus takes critical role in sensory transmission and is highly involved in epilepsy genesis particularly the absence epilepsy. Considering thalamus serves as a convergent structure for both acupuncture and VNS and the thalamic neuronal activities can be modulated by acupuncture, we propose that acupuncture could be a promising therapy or at least a screening tool to select suitable candidates for those invasive modalities in the management of refractory epilepsy.
Collapse
Affiliation(s)
- Shuping Chen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shubin Wang
- China General Meitan Hospital, Beijing 100028, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junling Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongqi Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jianliang Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
15
|
Mechanisms for alternative treatments in Parkinson's disease: acupuncture, tai chi, and other treatments. Curr Neurol Neurosci Rep 2014; 14:451. [PMID: 24760476 DOI: 10.1007/s11910-014-0451-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
At least 40% of patients with Parkinson's disease (PD) use one or more forms of alternative therapy (AT) to complement standard treatments. This article reviews the commonest forms of AT for PD, including acupuncture, tai chi, yoga, mindfulness, massage, herbal medicine, and cannabis. We discuss the current evidence for the clinical efficacy of each AT and discuss potential mechanisms, including those suggested by animal and human studies. With a few notable exceptions, none of the treatments examined were investigated rigorously enough to draw definitive conclusions about efficacy or mechanism. Tai chi, acupuncture, Mucuna pruriens, cannabinoids, and music therapy have all been proposed to work through specific mechanisms, although current evidence is insufficient to support or refute these claims, with the possible exception of Mucuna pruriens (which contains levodopa). It is likely that most ATs predominantly treat PD patients through general mechanisms, including placebo effects, stress reduction, and improved mood and sleep, and AT may provide patients with a greater locus of control regarding their illness.
Collapse
|
16
|
Yeo S, Choe IH, van den Noort M, Bosch P, Jahng GH, Rosen B, Kim SH, Lim S. Acupuncture on GB34 activates the precentral gyrus and prefrontal cortex in Parkinson's disease. Altern Ther Health Med 2014; 14:336. [PMID: 25220656 PMCID: PMC4175221 DOI: 10.1186/1472-6882-14-336] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 06/23/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Acupuncture is increasingly used as an additional treatment for patients with Parkinson's disease (PD). METHODS In this functional magnetic resonance imaging study, brain activation in response to acupuncture in a group of 12 patients with PD was compared with a group of 12 healthy participants. Acupuncture was conducted on a specific acupoint, the right GB 34 (Yanglingquan), which is a frequently used acupoint for motor function treatment in the oriental medical field. RESULTS Acupuncture stimulation on this acupoint activates the prefrontal cortex, precentral gyrus, and putamen in patients with PD; areas that are known to be impaired in patients with PD. Compared with healthy participants, patients with PD showed significantly higher brain activity in the prefrontal cortex and precentral gyrus, especially visible in the left hemisphere. CONCLUSIONS The neuroimaging results of our study suggest that in future acupuncture research; the prefrontal cortex as well as the precentral gyrus should be treated for symptoms of Parkinson's disease and that GB 34 seems to be a suitable acupoint. Moreover, acupuncture evoked different brain activations in patients with Parkinson's disease than in healthy participants in our study, stressing the importance of conducting acupuncture studies on both healthy participants as well as patients within the same study, in order to detect acupuncture efficacy. TRIAL REGISTRATION KCT0001122 at cris.nih.go.kr (registration date: 20140530).
Collapse
|
17
|
Zeng XH, Li QQ, Xu Q, Li F, Liu CZ. Acupuncture mechanism and redox equilibrium. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:483294. [PMID: 25097658 PMCID: PMC4109597 DOI: 10.1155/2014/483294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/17/2014] [Accepted: 06/25/2014] [Indexed: 01/08/2023]
Abstract
Oxidative stress participates in the pathological process of various diseases. Acupuncture is a component of the health care system in China that can be traced back for at least 3000 years. Recently, increased evidences indicate that acupuncture stimulation could reduce oxidative damage in organisms under pathological state, but the exact mechanism remains unclear. This review focuses on the emerging links between acupuncture and redox modulation in various disorders, such as vascular dementia, Parkinson's disease, and hypertension, ranging from redox system, antioxidant system, anti-inflammatory system, and nervous system to signaling pathway. Although the molecular and cellular pathways studies of acupuncture effect on oxidative stress are preliminary, they represent an important step forward in the research of acupuncture antioxidative effect.
Collapse
Affiliation(s)
- Xiang-Hong Zeng
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Acupuncture and Moxibustion College, Tianjin University of Traditional Chinese Medicine, No. 312, Anshan West Road, Nankai District, Tianjin 300193, China
| | - Qian-Qian Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Qian Xu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Fang Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Cun-Zhi Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| |
Collapse
|
18
|
Zeng BY, Salvage S, Jenner P. Current Development of Acupuncture Research in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 111:141-58. [DOI: 10.1016/b978-0-12-411545-3.00007-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|