1
|
Duan Y, Zhang X, Zhai W, Zhang J, Zhang X, Xu G, Li H, Deng Z, Shi J, Xu Z. Deciphering the Rules of Ribosome Binding Site Differentiation in Context Dependence. ACS Synth Biol 2022; 11:2726-2740. [PMID: 35877551 DOI: 10.1021/acssynbio.2c00139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ribosome binding site (RBS) is a crucial element regulating translation. However, the activity of RBS is poorly predictable, because it is strongly affected by the local possible secondary structure, that is, context dependence. By the Flowseq technique, over 20 000 RBS variants were sorted and sequenced, and the translation of multiple genes under the same RBS was quantitatively characterized to evaluate the context dependence of each RBS variant in E. coli. Two regions, (-7 to -2) and (-17 to -12), of RBS were predicted with a higher possibility to pair with each other to slow down the translation initiation. Associations between phenotypes and the intrinsic factors suspected to affect translation efficiency and context dependence of the RBS, including nucleotide bias at each position, free energy, and conservation, were disentangled. The results showed that translation efficiency was influenced more significantly by conservation of the SD region (-16 to -8), while an AC-rich spacer region (-7 to -1) was associated with low context dependence. We confirmed these characteristics using a series of synthesized RBSs. The average correlation between multiple reporters was significantly higher for RBSs with an AC-rich spacer (0.714) compared with a GU-rich spacer (0.286). Overall, we proposed general design criteria to improve programmability and minimize context dependence of RBS. The characteristics unraveled here can be adapted to other bacteria for fine-tuning target-gene expression.
Collapse
Affiliation(s)
- Yanting Duan
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Xiaojuan Zhang
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Weiji Zhai
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jinpeng Zhang
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Xiaomei Zhang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guoqiang Xu
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Hui Li
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
| | - Zhaohong Deng
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhenghong Xu
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Neumann T, Tuller T. Modeling the ribosomal small subunit dynamic in Saccharomyces cerevisiae based on TCP-seq data. Nucleic Acids Res 2022; 50:1297-1316. [PMID: 35100399 PMCID: PMC8860609 DOI: 10.1093/nar/gkac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Translation Complex Profile Sequencing (TCP-seq), a protocol that was developed and implemented on Saccharomyces cerevisiae, provides the footprints of the small subunit (SSU) of the ribosome (with additional factors) across the entire transcriptome of the analyzed organism. In this study, based on the TCP-seq data, we developed for the first-time a predictive model of the SSU density and analyzed the effect of transcript features on the dynamics of the SSU scan in the 5′UTR. Among others, our model is based on novel tools for detecting complex statistical relations tailored to TCP-seq. We quantitatively estimated the effect of several important features, including the context of the upstream AUG, the upstream ORF length and the mRNA folding strength. Specifically, we suggest that around 50% of the variance related to the read counts (RC) distribution near a start codon can be attributed to the AUG context score. We provide the first large scale direct quantitative evidence that shows that indeed AUG context affects the small sub-unit movement. In addition, we suggest that strong folding may cause the detachment of the SSU from the mRNA. We also identified a number of novel sequence motifs that can affect the SSU scan; some of these motifs affect transcription factors and RNA binding proteins. The results presented in this study provide a better understanding of the biophysical aspects related to the SSU scan along the 5′UTR and of translation initiation in S. cerevisiae, a fundamental step toward a comprehensive modeling of initiation.
Collapse
Affiliation(s)
- Tamar Neumann
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Peeri M, Tuller T. High-resolution modeling of the selection on local mRNA folding strength in coding sequences across the tree of life. Genome Biol 2020; 21:63. [PMID: 32151272 PMCID: PMC7063772 DOI: 10.1186/s13059-020-01971-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND mRNA can form local secondary structure within the protein-coding sequence, and the strength of this structure is thought to influence gene expression regulation. Previous studies suggest that secondary structure strength may be maintained under selection, but the details of this phenomenon are not well understood. RESULTS We perform a comprehensive study of the selection on local mRNA folding strengths considering variation between species across the tree of life. We show for the first time that local folding strength selection tends to follow a conserved characteristic profile in most phyla, with selection for weak folding at the two ends of the coding region and for strong folding elsewhere in the coding sequence, with an additional peak of selection for strong folding located downstream of the start codon. The strength of this pattern varies between species and organism groups, and we highlight contradicting cases. To better understand the underlying evolutionary process, we show that selection strengths in the different regions are strongly correlated, and report four factors which have a clear predictive effect on local mRNA folding selection within the coding sequence in different species. CONCLUSIONS The correlations observed between selection for local secondary structure strength in the different regions and with the four genomic and environmental factors suggest that they are shaped by the same evolutionary process throughout the coding sequence, and might be maintained under direct selection related to optimization of gene expression and specifically translation regulation.
Collapse
Affiliation(s)
- Michael Peeri
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
4
|
Villada JC, Brustolini OJB, Batista da Silveira W. Integrated analysis of individual codon contribution to protein biosynthesis reveals a new approach to improving the basis of rational gene design. DNA Res 2017; 24:419-434. [PMID: 28449100 PMCID: PMC5737324 DOI: 10.1093/dnares/dsx014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 01/21/2023] Open
Abstract
Gene codon optimization may be impaired by the misinterpretation of frequency and optimality of codons. Although recent studies have revealed the effects of codon usage bias (CUB) on protein biosynthesis, an integrated perspective of the biological role of individual codons remains unknown. Unlike other previous studies, we show, through an integrated framework that attributes of codons such as frequency, optimality and positional dependency should be combined to unveil individual codon contribution for protein biosynthesis. We designed a codon quantification method for assessing CUB as a function of position within genes with a novel constraint: the relativity of position-dependent codon usage shaped by coding sequence length. Thus, we propose a new way of identifying the enrichment, depletion and non-uniform positional distribution of codons in different regions of yeast genes. We clustered codons that shared attributes of frequency and optimality. The cluster of non-optimal codons with rare occurrence displayed two remarkable characteristics: higher codon decoding time than frequent-non-optimal cluster and enrichment at the 5'-end region, where optimal codons with the highest frequency are depleted. Interestingly, frequent codons with non-optimal adaptation to tRNAs are uniformly distributed in the Saccharomyces cerevisiae genes, suggesting their determinant role as a speed regulator in protein elongation.
Collapse
Affiliation(s)
- Juan C. Villada
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | | |
Collapse
|
5
|
Codon Usage in Signal Sequences Affects Protein Expression and Secretion Using Baculovirus/Insect Cell Expression System. PLoS One 2015; 10:e0145887. [PMID: 26697848 PMCID: PMC4689351 DOI: 10.1371/journal.pone.0145887] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/09/2015] [Indexed: 11/19/2022] Open
Abstract
By introducing synonymous mutations into the coding sequences of GP64sp and FibHsp signal peptides, the influences of mRNA secondary structure and codon usage of signal sequences on protein expression and secretion were investigated using baculovirus/insect cell expression system. The results showed that mRNA structural stability of the signal sequences was not correlated with the protein production and secretion levels, and FibHsp was more tolerable to codon changes than GP64sp. Codon bias analyses revealed that codons for GP64sp were well de-optimized and contained more non-optimal codons than FibHsp. Synonymous mutations in GP64sp sufficiently increased its average codon usage frequency and resulted in dramatic reduction of the activity and secretion of luciferase. Protein degradation inhibition assay with MG-132 showed that higher codon usage frequency in the signal sequence increased the production as well as the degradation of luciferase protein, indicating that the synonymous codon substitutions in the signal sequence caused misfolding of luciferase instead of slowing down the protein production. Meanwhile, we found that introduction of more non-optimal codons into FibHsp could increase the production and secretion levels of luciferase, which suggested a new strategy to improve the production of secretory proteins in insect cells.
Collapse
|
6
|
Ullrich KK, Hiss M, Rensing SA. Means to optimize protein expression in transgenic plants. Curr Opin Biotechnol 2015; 32:61-67. [DOI: 10.1016/j.copbio.2014.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/29/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022]
|
7
|
Abstract
A comprehensive understanding of RNA structure will provide fundamental insights into the cellular function of both coding and non-coding RNAs. Although many RNA structures have been analysed by traditional biophysical and biochemical methods, the low-throughput nature of these approaches has prevented investigation of the vast majority of cellular transcripts. Triggered by advances in sequencing technology, genome-wide approaches for probing the transcriptome are beginning to reveal how RNA structure affects each step of protein expression and RNA stability. In this Review, we discuss the emerging relationships between RNA structure and the regulation of gene expression.
Collapse
|
8
|
Mao Y, Li Q, Zhang Y, Zhang J, Wei G, Tao S. Genome-wide analysis of selective constraints on high stability regions of mRNA reveals multiple compensatory mutations in Escherichia coli. PLoS One 2013; 8:e73299. [PMID: 24086278 PMCID: PMC3785496 DOI: 10.1371/journal.pone.0073299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/18/2013] [Indexed: 12/27/2022] Open
Abstract
Message RNA (mRNA) carries a large number of local secondary structures, with structural stability to participate in the regulations of gene expression. A worthy question is how the local structural stability is maintained under the constraint that multiple selective pressures are imposed on mRNA local regions. Here, we performed the first genome-wide study of natural selection operating on high structural stability regions (HSRs) of mRNAs in Escherichia coli. We found that HSR tends to adjust the folded conformation to reduce the harm of mutations, showing a high level of mutational robustness. Moreover, guanine preference in HSR was observed, supporting the hypothesis that the selective constraint for high structural stability may partly account for the high percentage of G content in Escherichia coli genome. Notably, we found a substantially reduced synonymous substitution rate in HSRs compared with that in their adjacent regions. Surprisingly and interestingly, the non-key sites in HSRs, which have slight effect on structural stability, have synonymous substitution rate equivalent to background regions. To explain this result, we identified compensatory mutations in HSRs based on structural stability, and found that a considerable number of synonymous mutations occur to restore the structural stability decreased heavily by the mutations on key sites. Overall, these results suggest a significant role of local structural stability as a selective force operating on mRNA, which furthers our understanding of the constraints imposed on protein-coding RNAs.
Collapse
Affiliation(s)
- Yuanhui Mao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Li
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Yinwen Zhang
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Junjie Zhang
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Gehong Wei
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (GW); (ST)
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (GW); (ST)
| |
Collapse
|