1
|
Repczynska A, Julga K, Skalska-Sadowska J, Kacprzak MM, Bartoszewska-Kubiak A, Lazarczyk E, Loska D, Drozniewska M, Czerska K, Wachowiak J, Haus O. Next-generation sequencing reveals novel variants and large deletion in FANCA gene in Polish family with Fanconi anemia. Orphanet J Rare Dis 2022; 17:282. [PMID: 35854323 PMCID: PMC9295492 DOI: 10.1186/s13023-022-02424-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. However, establishing its molecular diagnosis remains challenging. Chromosomal breakage analysis is the gold standard diagnostic test for this disease. Nevertheless, molecular analysis is always required for the identification of pathogenic alterations in the FA genes. RESULTS We report here on a family with FA diagnosis in two siblings. Mitomycin C (MMC) test revealed high level of chromosome breaks and radial figures. In both children, array-Comparative Genomic Hybridization (aCGH) showed maternally inherited 16q24.3 deletion, including FANCA gene, and next generation sequencing (NGS) disclosed paternally inherited novel variants in the FANCA gene-Asn1113Tyr and Ser890Asn. A third sibling was shown to be a carrier of FANCA deletion only. CONCLUSIONS Although genetic testing in FA patients often requires a multi-method approach including chromosome breakage test, aCGH, and NGS, every effort should be made to make it available for whole FA families. This is not only to confirm the clinical diagnosis of FA in affected individuals, but also to enable identification of carriers of FA gene(s) alterations, as it has implications for diagnostic and genetic counselling process.
Collapse
Affiliation(s)
- Anna Repczynska
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Katarzyna Julga
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Jolanta Skalska-Sadowska
- Department of Pediatric Oncology, Hematology and Transplantology, University of Medical Sciences, Poznan, Poland
| | | | - Alicja Bartoszewska-Kubiak
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Ewelina Lazarczyk
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | | | - Malgorzata Drozniewska
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | | | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, University of Medical Sciences, Poznan, Poland
| | - Olga Haus
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
2
|
George M, Solanki A, Chavan N, Rajendran A, Raj R, Mohan S, Nemani S, Kanvinde S, Munirathnam D, Rao S, Radhakrishnan N, Lashkari HP, Ghildhiyal RG, Manglani M, Shanmukhaiah C, Bhat S, Ramesh S, Cherian A, Junagade P, Vundinti BR. A comprehensive molecular study identified 12 complementation groups with 56 novel FANC gene variants in Indian Fanconi anemia subjects. Hum Mutat 2021; 42:1648-1665. [PMID: 34585473 DOI: 10.1002/humu.24286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/09/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is a rare autosomal or X-linked genetic disorder characterized by chromosomal breakages, congenital abnormalities, bone marrow failure (BMF), and cancer. There has been a discovery of 22 FANC genes known to be involved in the FA pathway. This wide number of pathway components makes molecular diagnosis challenging for FA. We present here the most comprehensive molecular diagnosis of FA subjects from India. We observed a high frequency (4.42 ± 1.5 breaks/metaphase) of chromosomal breakages in 181 FA subjects. The major clinical abnormalities observed were skin pigmentation (70.2%), short stature (46.4%), and skeletal abnormalities (43.1%), along with a few minor clinical abnormalities. The combination of Sanger sequencing and Next Generation Sequencing could molecularly characterize 164 (90.6%) FA patients and identified 12 different complementation groups [FANCA (56.10%), FANCG (16.46%), FANCL (12.80%), FANCD2 (4.88%), FANCJ (2.44%), FANCE (1.22%), FANCF (1.22%), FANCI (1.22%), FANCN (1.22%), FANCC (1.22%), FANCD1 (0.61%) and FANCB (0.61%)]. A total of 56 novel variants were identified in our cohort, including a hotspot variant: a deletion of exon 27 in the FANCA gene and a nonsense variant at c.787 C>T in the FANCG gene. Our comprehensive molecular findings can aid in the stratification of molecular investigation in the diagnosis and management of FA patients.
Collapse
Affiliation(s)
- Merin George
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| | - Avani Solanki
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| | - Niranjan Chavan
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| | - Aruna Rajendran
- Department of Pediatric Hematology, Institute of Child Health and Hospital for Children, Chennai, Tamilnadu, India
| | - Revathi Raj
- Department of Pediatric Hematology, Oncology, Apollo Speciality Hospital, Chennai, Tamilnadu, India
| | - Sheila Mohan
- Department of Pediatric Hematology, Oncology, Apollo Speciality Hospital, Chennai, Tamilnadu, India
| | - Sandeep Nemani
- Department of Hematology, Usha Hematology Center, Sangli, Maharashtra, India
| | - Shailesh Kanvinde
- Department of Paediatric Hematology Oncology, Deenanath Mangeshkar Hospital and Research Center, Pune, Maharashtra, India
| | - Deendayalan Munirathnam
- Department of Pediatric Oncology, Kanchi Kamakoti Childs Trust Hospital, Chennai, Tamil Nadu, India
| | - Sudha Rao
- Department of Paediatric Haemato-Oncology and Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Nita Radhakrishnan
- Department of Paediatric Haematology Oncology, Super Specialty Pediatric Hospital & Post Graduate Teaching Institute, Noida, Uttar Pradesh, India
| | - Harsha Prasada Lashkari
- Department of Pediatrics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Mangalore, India
| | - Radha Gulati Ghildhiyal
- Department of Pediatrics, Lokmanya Tilak Municipal General Hospital, Mumbai, Maharashtra, India
| | - Mamta Manglani
- Department of Hematology, Comprehensive Thalassemia Care Center and Bone Marrow Transplantation Center, Mumbai, Maharashtra, India
| | | | - Sunil Bhat
- Department of Paediatric Haematology, Oncology and Blood & Bone Marrow Transplantation, Narayana Health Network Hospitals, Bangalore, India
| | - Sowmyashree Ramesh
- Department of Pediatrics, Vanivilas Hospital, Bangalore, Karnataka, India
| | - Anchu Cherian
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Pritesh Junagade
- Department of stem cell transplantation, Lotus Hospital, Pune, Maharashtra, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Thompson AS, Saba N, McReynolds LJ, Munir S, Ahmed P, Sajjad S, Jones K, Yeager M, Donovan FX, Chandrasekharappa SC, Alter BP, Savage SA, Rehman S. The causes of Fanconi anemia in South Asia and the Middle East: A case series and review of the literature. Mol Genet Genomic Med 2021; 9:e1693. [PMID: 33960719 PMCID: PMC8372062 DOI: 10.1002/mgg3.1693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Background Fanconi anemia (FA) is an inherited bone marrow failure syndrome associated with characteristic dysmorphology primarily caused by biallelic pathogenic germline variants in any of 22 different DNA repair genes. There are limited data on the specific molecular causes of FA in different ethnic groups. Methods We performed exome sequencing and copy number variant analyses on 19 patients with FA from 17 families undergoing hematopoietic cell transplantation evaluation in Pakistan. The scientific literature was reviewed, and we curated germline variants reported in patients with FA from South Asia and the Middle East. Results The genetic causes of FA were identified in 14 of the 17 families: seven FANCA, two FANCC, one FANCF, two FANCG, and two FANCL. Homozygous and compound heterozygous variants were present in 12 and two families, respectively. Nine families carried variants previously reported as pathogenic, including two families with the South Asian FANCL founder variant. We also identified five novel likely deleterious variants in FANCA, FANCF, and FANCG in affected patients. Conclusions Our study supports the importance of determining the genomic landscape of FA in diverse populations, in order to improve understanding of FA etiology and assist in the counseling of families.
Collapse
Affiliation(s)
- Ashley S Thompson
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nusrat Saba
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Saeeda Munir
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Parvez Ahmed
- Quaid-i-Azam International Hospital, Islamabad, Pakistan
| | - Sumaira Sajjad
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 20850, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 20850, USA
| | - Frank X Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sadia Rehman
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| |
Collapse
|
4
|
Repczyńska A, Haus O. Genetic background and diagnosis of Fanconi anemia. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.6332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fanconi anemia (FA) is a rare genetic disease caused by mutations in genes whose protein products are involved in important cell processes such as replication, cell cycle control and repair of DNA damage. FA is characterized by congenital malformations, bone marrow failure and high risk of cancer. Phenotypic symptoms, present in about 75% of patients, most often include such abnormalities as short stature, microcephaly, thumb and radial side of the limb defects, abnormal skin pigmentation, gastrointestinal and genitourinary defects. Progressive bone marrow failure occurs in the first decade of life, often initially with leukopenia or thrombocytopenia. The most common cancers occurring in patients with FA are myelodysplastic syndromes and acute myeloid leukemia, as well as solid tumors of the head and neck, skin, gastrointestinal system and genitourinary system. So far, 22 genes of Fanconi anemia (FANC) have been identified, which are located on the autosomal chromosomes, except for FANCB, which is located on the X chromosome. Protein products of FANC genes are the elements of Fanconi anemia pathway, which regulates DNA damage repair systems. Genetic diagnostics of Fanconi anemia should start by testing crosslinking agents: mitomycin C (MMC) or diepoxybutane (DEB) assuring differential diagnosis of chromosome instability syndromes. In patients with Fanconi anemia, an increased number of chromosomal gaps and breaks as well as specific radial structures are observed. In order to detect a mutation underlying Fanconi anemia, molecular techniques should be used, preferentially next generation sequencing (NGS).
Collapse
Affiliation(s)
- Anna Repczyńska
- Katedra Genetyki Klinicznej, Wydział Lekarski Collegium Medicum w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| | - Olga Haus
- Katedra Genetyki Klinicznej, Wydział Lekarski Collegium Medicum w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| |
Collapse
|
5
|
Novel Variations of FANCA Gene Provokes Fanconi Anemia: Molecular Diagnosis in a Special Chinese Family. J Pediatr Hematol Oncol 2018; 40:e299-e304. [PMID: 29702541 DOI: 10.1097/mph.0000000000001197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fanconi anemia (FA) is a rare autosomal recessive or X-linked disorder with highly variable clinical manifestations and an incidence of ∼1 to 5 in 1 million births. To date, 15 bona fide FA genes have been reported to be responsible for the known FA complementation groups and the FANCA gene accounts for almost 60%. In the present study, we report a special Chinese family, which has 2 children with classic FA characteristics. Via 2-step analysis of the whole-exome sequencing data and verification using multiplex ligation-dependent probe amplification test, one child was found to have a novel compound heterozygous mutation of a splicing variant (c.1471-1G>A) and a large intragenic deletion (exons 23-30 del) of the FANCA gene. The other child had the same splicing variant and another novel large deletion (exons 1-18 del) in the FANCA gene. Clone sequencing showed the c.1471-1G>A variant generate an altered transcript with 1 cryptic splice site in intron 15, resulting in a premature termination codon (p.Val490HisfsX6). This study not only shows the complexity of FA molecular diagnosis via comprehensively studying the FA pathogenic genes and the mutational spectrum, but also has significant reference value for the future molecular diagnosis of FA.
Collapse
|
6
|
Affiliation(s)
- Dipika Mohanty
- Department of Hematology & Lab Services, Apollo Hospitals, Bhubaneswar 751 005, Odisha, India
| |
Collapse
|
7
|
Solanki A, Mohanty P, Shukla P, Rao A, Ghosh K, Vundinti BR. FANCA Gene Mutations with 8 Novel Molecular Changes in Indian Fanconi Anemia Patients. PLoS One 2016; 11:e0147016. [PMID: 26799702 PMCID: PMC4723128 DOI: 10.1371/journal.pone.0147016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/27/2015] [Indexed: 11/18/2022] Open
Abstract
Fanconi anemia (FA), a rare heterogeneous genetic disorder, is known to be associated with 19 genes and a spectrum of clinical features. We studied FANCA molecular changes in 34 unrelated and 2 siblings of Indian patients with FA and have identified 26 different molecular changes of FANCA gene, of which 8 were novel mutations (a small deletion c.2500delC, 4 non-sense mutations c.2182C>T, c.2630C>G, c.3677C>G, c.3189G>A; and 3 missense mutations; c.1273G>C, c.3679 G>C, and c.3992 T>C). Among these only 16 patients could be assigned FA-A complementation group, because we could not confirm single exon deletions detected by MLPA or cDNA amplification by secondary confirmation method and due to presence of heterozygous non-pathogenic variations or heterozygous pathogenic mutations. An effective molecular screening strategy should be developed for confirmation of these mutations and determining the breakpoints for single exon deletions.
Collapse
Affiliation(s)
- Avani Solanki
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), Mumbai, Maharashtra, India
| | - Purvi Mohanty
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), Mumbai, Maharashtra, India
| | - Pallavi Shukla
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), Mumbai, Maharashtra, India
| | - Anita Rao
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), Mumbai, Maharashtra, India
| | - Kanjaksha Ghosh
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), Mumbai, Maharashtra, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), Mumbai, Maharashtra, India
- * E-mail:
| |
Collapse
|
8
|
Solomon PJ, Margaret P, Rajendran R, Ramalingam R, Menezes GA, Shirley AS, Lee SJ, Seong MW, Park SS, Seol D, Seo SH. A case report and literature review of Fanconi Anemia (FA) diagnosed by genetic testing. Ital J Pediatr 2015; 41:38. [PMID: 25953249 PMCID: PMC4438458 DOI: 10.1186/s13052-015-0142-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/22/2015] [Indexed: 12/29/2022] Open
Abstract
Fanconi anemia (FA) is a genetically heterogeneous rare autosomal recessive disorder characterized by congenital malformations, hematological problems and predisposition to malignancies. The genes that have been found to be mutated in FA patients are called FANC. To date 16 distinct FANC genes have been reported. Among these, mutations in FANCA are the most frequent among FA patients worldwide which account for 60- 65%. In this study, a nine years old male child was brought to our hospital one year ago for opinion and advice. He was the third child born to consanguineous parents. The mutation analyses were performed for proband, parents, elder sibling and the relatives [maternal aunt and maternal aunt’s son (cousin)]. Molecular genetic testing [targeted next-generation sequencing (MiSeq, Illumina method)] was performed by mutation analysis in 15 genes involved. Entire coding exons and their flanking regions of the genes were analysed. Sanger sequencing [(ABI 3730 analyzer by Applied Biosystems)] was performed using primers specific for 43 coding exons of the FANCA gene. A novel splice site mutation, c.3066 + 1G > T, (IVS31 + 1G > T), homozygote was detected by sequencing in the patient. The above sequence variant was identified in heterozygous state in his parents. Further, the above sequence variant was not identified in other family members (elder sibling, maternal aunt and cousin). It is concluded that genetic study should be done if possible in all the cases of suspected FA, including siblings, parents and close blood relatives. It will help us to plan appropriate treatment and also to select suitable donor for hematopoietic stem cell transplantation and to plan for genetic counseling. In addition to the case report, the main focus of this manuscript was to review literature on role of FANCA gene in FA since large number of FANCA mutations and polymorphisms have been identified.
Collapse
Affiliation(s)
- Ponnumony John Solomon
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Priya Margaret
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Ramya Rajendran
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Revathy Ramalingam
- Department of Physiology/Central research laboratory (CRL), Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Godfred A Menezes
- College of Applied Medical Sciences and Molecular Diagnostics and Personalised Therapeutics Unit (MDPTU), Ha'il University, Ha'il, Kingdom of Saudi Arabia (KSA). .,Worked previously as in-charge and scientist in Central Research Laboratory (CRL), Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Alph S Shirley
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Seung Jun Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Dodam Seol
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|