1
|
Fabbri C, Leggio GM, Drago F, Serretti A. Imputed expression of schizophrenia-associated genes and cognitive measures in patients with schizophrenia. Mol Genet Genomic Med 2022; 10:e1942. [PMID: 35488718 PMCID: PMC9184669 DOI: 10.1002/mgg3.1942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/07/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Cognitive dysfunction is a core manifestation of schizophrenia and one of the best predictors of long‐term disability. Genes increasing risk for schizophrenia may partly act through the modulation of cognition. Methods We imputed the expression of 130 genes recently prioritized for association with schizophrenia, using PsychENCODE variant weights and genotypes of patients with schizophrenia in CATIE. Processing speed, reasoning, verbal memory, working memory, vigilance, and a composite cognitive score were used as phenotypes. We performed linear regression models for each cognitive measure and gene expression score, adjusting for age, years of education, antipsychotic treatment, years since the first antipsychotic treatment and population principal components. Results We included 425 patients and expression scores of 91 genes (others had no heritable expression; Bonferroni corrected alpha = 5.49e‐4). No gene expression score was associated with cognitive measures, though ENOX1 expression was very close to the threshold for verbal memory (p = 6e‐4) and processing speed (p = 7e‐4). Other genes were nominally associated with multiple phenotypes (MAN2A1 and PCGF3). Conclusion A better understanding of the mechanisms mediating cognitive dysfunction in schizophrenia may help in the definition of disease prognosis and in the identification of new treatments, as the treatment of cognitive impairment remains an unmet therapeutic need.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Reggio A, Buonomo V, Berkane R, Bhaskara RM, Tellechea M, Peluso I, Polishchuk E, Di Lorenzo G, Cirillo C, Esposito M, Hussain A, Huebner AK, Hübner CA, Settembre C, Hummer G, Grumati P, Stolz A. Role of FAM134 paralogues in endoplasmic reticulum remodeling, ER-phagy, and Collagen quality control. EMBO Rep 2021; 22:e52289. [PMID: 34338405 PMCID: PMC8447607 DOI: 10.15252/embr.202052289] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/23/2022] Open
Abstract
Degradation of the endoplasmic reticulum (ER) via selective autophagy (ER‐phagy) is vital for cellular homeostasis. We identify FAM134A/RETREG2 and FAM134C/RETREG3 as ER‐phagy receptors, which predominantly exist in an inactive state under basal conditions. Upon autophagy induction and ER stress signal, they can induce significant ER fragmentation and subsequent lysosomal degradation. FAM134A, FAM134B/RETREG1, and FAM134C are essential for maintaining ER morphology in a LC3‐interacting region (LIR)‐dependent manner. Overexpression of any FAM134 paralogue has the capacity to significantly augment the general ER‐phagy flux upon starvation or ER‐stress. Global proteomic analysis of FAM134 overexpressing and knockout cell lines reveals several protein clusters that are distinctly regulated by each of the FAM134 paralogues as well as a cluster of commonly regulated ER‐resident proteins. Utilizing pro‐Collagen I, as a shared ER‐phagy substrate, we observe that FAM134A acts in a LIR‐independent manner and compensates for the loss of FAM134B and FAM134C, respectively. FAM134C instead is unable to compensate for the loss of its paralogues. Taken together, our data show that FAM134 paralogues contribute to common and unique ER‐phagy pathways.
Collapse
Affiliation(s)
- Alessio Reggio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Viviana Buonomo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Rayene Berkane
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Ramachandra M Bhaskara
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mariana Tellechea
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany.,Structural Genomics Consortium at BMLS, Goethe University, Frankfurt am Main, Germany
| | - Ivana Peluso
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Marianna Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Adeela Hussain
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Antje K Huebner
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Institute for Biophysics, Goethe University, Frankfurt am Main, Germany
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Alexandra Stolz
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Zhu L, Wang X, Wang Y. Roles of FAM134B in diseases from the perspectives of organelle membrane morphogenesis and cellular homeostasis. J Cell Physiol 2021; 236:7242-7255. [PMID: 33843059 DOI: 10.1002/jcp.30377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 11/07/2022]
Abstract
Family with sequence similarity 134 member B (FAM134B)/RETREG1/JK1 is a novel gene with recently reported roles in various diseases. Understanding the function and mechanism of action of FAM134B is necessary to develop disease therapies. Notably, emerging data are clarifying the molecular mechanisms of FAM134B function in organelle membrane morphogenesis and the regulation of signaling pathways, such as the Wnt and AKT signaling pathways. In addition, transcription factors, RNA N6 -methyladenosine-mediated epigenetic regulation, microRNA, and small molecules are involved in the regulation of FAM134B expression. This review comprehensively considers recent studies on the role of FAM134B and its potential mechanisms in neurodegenerative diseases, obesity, viral diseases, cancer, and other diseases. The functions of FAM134B in maintaining cell homeostasis by regulating Golgi morphology, endoplasmic reticulum autophagy, and mitophagy are also highlighted, which may be the underlying mechanism of FAM134B gene mutation-induced diseases. Moreover, the molecular mechanisms of the FAM134B function during numerous biological processes are discussed. This review provides novel insights into the functions and mechanisms of FAM134B in various diseases, which will inform the development of effective drugs to treat diseases.
Collapse
Affiliation(s)
- Luoyi Zhu
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinxia Wang
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Kumar D, Lak B, Suntio T, Vihinen H, Belevich I, Viita T, Xiaonan L, Vartiainen A, Vartiainen M, Varjosalo M, Jokitalo E. RTN4B interacting protein FAM134C promotes ER membrane curvature and has a functional role in autophagy. Mol Biol Cell 2021; 32:1158-1170. [PMID: 33826365 PMCID: PMC8351555 DOI: 10.1091/mbc.e20-06-0409] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The endoplasmic reticulum (ER) is composed of a controlled ratio of sheets and tubules, which are maintained by several proteins with multiple functions. Reticulons (RTNs), especially RTN4, and DP1/Yop1p family members are known to induce ER membrane curvature. RTN4B is the main RTN4 isoform expressed in nonneuronal cells. In this study, we identified FAM134C as a RTN4B interacting protein in mammalian, nonneuronal cells. FAM134C localized specifically to the ER tubules and sheet edges. Ultrastructural analysis revealed that overexpression of FAM134C induced the formation of unbranched, long tubules or dense globular structures composed of heavily branched narrow tubules. In both cases, tubules were nonmotile. ER tubulation was dependent on the reticulon homology domain (RHD) close to the N-terminus. FAM134C plays a role in the autophagy pathway as its level elevated significantly upon amino acid starvation but not during ER stress. Moreover, FAM134C depletion reduced the number and size of autophagic structures and the amount of ER as a cargo within autophagic structures under starvation conditions. Dominant-negative expression of FAM134C forms with mutated RHD or LC3 interacting region also led to a reduced number of autophagic structures. Our results suggest that FAM134C provides a link between regulation of ER architecture and ER turnover by promoting ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes.
Collapse
Affiliation(s)
| | - Behnam Lak
- Cell and Tissue Dynamics Research Program
| | | | - Helena Vihinen
- Cell and Tissue Dynamics Research Program.,Electron Microscopy Unit, and
| | - Ilya Belevich
- Cell and Tissue Dynamics Research Program.,Electron Microscopy Unit, and
| | | | - Liu Xiaonan
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | | | | | - Markku Varjosalo
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Eija Jokitalo
- Cell and Tissue Dynamics Research Program.,Electron Microscopy Unit, and
| |
Collapse
|
5
|
Wu CC, Shields JN, Akemann C, Meyer DN, Connell M, Baker BB, Pitts DK, Baker TR. The phenotypic and transcriptomic effects of developmental exposure to nanomolar levels of estrone and bisphenol A in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143736. [PMID: 33243503 PMCID: PMC7790172 DOI: 10.1016/j.scitotenv.2020.143736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 04/14/2023]
Abstract
Estrone and BPA are two endocrine disrupting chemicals (EDCs) that are predicted to be less potent than estrogens such as 17β-estradiol and 17α-ethinylestradiol. Human exposure concentrations to estrone and BPA can be as low as nanomolar levels. However, very few toxicological studies have focused on the nanomolar-dose effects. Low level of EDCs can potentially cause non-monotonic responses. In addition, exposures at different developmental stages can lead to different health outcomes. To identify the nanomolar-dose effects of estrone and BPA, we used zebrafish modeling to study the phenotypic and transcriptomic responses after extended duration exposure from 0 to 5 days post-fertilization (dpf) and short-term exposure at days 4-5 post fertilization. We found that non-monotonic transcriptomic responses occurred after extended duration exposures at 1 nM of estrone or BPA. At this level, estrone also caused hypoactivity locomotive behavior in zebrafish. After both extended duration and short-term exposures, BPA led to more apparent phenotypic responses, i.e. skeletal abnormalities and locomotion changes, and more significant transcriptomic responses than estrone exposure. After short-term exposure, BPA at concentrations equal or above 100 nM affected locomotive behavior and changed the expression of both estrogenic and non-estrogenic genes that are linked to neurological diseases. These data provide gaps of mechanisms between neurological genes expression and associated phenotypic response due to estrone or BPA exposures. This study also provides insights for assessing the acceptable concentration of BPA and estrone in aquatic environments.
Collapse
Affiliation(s)
- Chia-Chen Wu
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Jeremiah N Shields
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Camille Akemann
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA
| | - Danielle N Meyer
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA
| | - Mackenzie Connell
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Bridget B Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - David K Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA.
| |
Collapse
|
6
|
Wan Nasri WN, Makpol S, Mazlan M, Tooyama I, Wan Ngah WZ, Damanhuri HA. Tocotrienol Rich Fraction Supplementation Modulate Brain Hippocampal Gene Expression in APPswe/PS1dE9 Alzheimer's Disease Mouse Model. J Alzheimers Dis 2020; 70:S239-S254. [PMID: 30507571 PMCID: PMC6700627 DOI: 10.3233/jad-180496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory and other cognitive abilities. AD is associated with aggregation of amyloid-β (Aβ) deposited in the hippocampal brain region. Our previous work has shown that tocotrienol rich fraction (TRF) supplementation was able to attenuate the blood oxidative status, improve behavior, and reduce fibrillary-type Aβ deposition in the hippocampus of an AD mouse model. In the present study, we investigate the effect of 6 months of TRF supplementation on transcriptome profile in the hippocampus of APPswe/PS1dE9 double transgenic mice. TRF supplementation can alleviate AD conditions by modulating several important genes in AD. Moreover, TRF supplementation attenuated the affected biological process and pathways that were upregulated in the AD mouse model. Our findings indicate that TRF supplementation can modulate hippocampal gene expression as well as biological processes that can potentially delay the progression of AD.
Collapse
Affiliation(s)
- Wan Nurzulaikha Wan Nasri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Musalmah Mazlan
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Ikuo Tooyama
- Molecular Neuroscience Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Bahr T, Welburn K, Donnelly J, Bai Y. Emerging model systems and treatment approaches for Leber's hereditary optic neuropathy: Challenges and opportunities. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165743. [PMID: 32105823 PMCID: PMC9252426 DOI: 10.1016/j.bbadis.2020.165743] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease mainly affecting retinal ganglion cells (RGCs). The pathogenesis of LHON remains ill-characterized due to a historic lack of effective disease models. Promising models have recently begun to emerge; however, less effective models remain popular. Many such models represent LHON using non-neuronal cells or assume that mutant mtDNA alone is sufficient to model the disease. This is problematic because context-specific factors play a significant role in LHON pathogenesis, as the mtDNA mutation itself is necessary but not sufficient to cause LHON. Effective models of LHON should be capable of demonstrating processes that distinguish healthy carrier cells from diseased cells. In light of these considerations, we review the pathophysiology of LHON as it relates to old, new and future models. We further discuss treatments for LHON and unanswered questions that might be explored using these new model systems.
Collapse
Affiliation(s)
- Tyler Bahr
- University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78229. First Author
| | - Kyle Welburn
- University of the Incarnate Word School of Medicine 7615 Kennedy Hill Drive, San Antonio, Texas 78235 Contributing Author
| | - Jonathan Donnelly
- University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78229. Contributing author
| | - Yidong Bai
- University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78229
| |
Collapse
|
8
|
Kiyama T, Chen CK, Wang SW, Pan P, Ju Z, Wang J, Takada S, Klein WH, Mao CA. Essential roles of mitochondrial biogenesis regulator Nrf1 in retinal development and homeostasis. Mol Neurodegener 2018; 13:56. [PMID: 30333037 PMCID: PMC6192121 DOI: 10.1186/s13024-018-0287-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 10/02/2018] [Indexed: 01/08/2023] Open
Abstract
Background Mitochondrial dysfunction has been implicated in the pathologies of a number of retinal degenerative diseases in both the outer and inner retina. In the outer retina, photoreceptors are particularly vulnerable to mutations affecting mitochondrial function due to their high energy demand and sensitivity to oxidative stress. However, it is unclear how defective mitochondrial biogenesis affects neural development and contributes to neural degeneration. In this report, we investigated the in vivo function of nuclear respiratory factor 1 (Nrf1), a major transcriptional regulator of mitochondrial biogenesis in both proliferating retinal progenitor cells (RPCs) and postmitotic rod photoreceptor cells (PRs). Methods We used mouse genetic techniques to generate RPC-specific and rod PR-specific Nrf1 conditional knockout mouse models. We then applied a comprehensive set of tools, including histopathological and molecular analyses, RNA-seq, and electroretinography on these mouse lines to study Nrf1-regulated genes and Nrf1’s roles in both developing retinas and differentiated rod PRs. For all comparisons between genotypes, a two-tailed two-sample student’s t-test was used. Results were considered significant when P < 0.05. Results We uncovered essential roles of Nrf1 in cell proliferation in RPCs, cell migration and survival of newly specified retinal ganglion cells (RGCs), neurite outgrowth in retinal explants, reconfiguration of metabolic pathways in RPCs, and mitochondrial morphology, position, and function in rod PRs. Conclusions Our findings provide in vivo evidence that Nrf1 and Nrf1-mediated pathways have context-dependent and cell-state-specific functions during neural development, and disruption of Nrf1-mediated mitochondrial biogenesis in rod PRs results in impaired mitochondria and a slow, progressive degeneration of rod PRs. These results offer new insights into the roles of Nrf1 in retinal development and neuronal homeostasis and the differential sensitivities of diverse neuronal tissues and cell types of dysfunctional mitochondria. Moreover, the conditional Nrf1 allele we have generated provides the opportunity to develop novel mouse models to understand how defective mitochondrial biogenesis contributes to the pathologies and disease progression of several neurodegenerative diseases, including glaucoma, age-related macular degeneration, Parkinson’s diseases, and Huntington’s disease.
Collapse
Affiliation(s)
- Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX, 77030, USA
| | - Ching-Kang Chen
- Department of Ophthalmology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Steven W Wang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Ping Pan
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX, 77030, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Shinako Takada
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Present Address: Office of Scientific Review, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William H Klein
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Lim SP, Ioannou N, Ramsay AG, Darling D, Gäken J, Mufti GJ. miR-181c-BRK1 axis plays a key role in actin cytoskeleton-dependent T cell function. J Leukoc Biol 2018; 103:855-866. [PMID: 29656550 DOI: 10.1002/jlb.1a0817-325rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs are short endogenous noncoding RNAs that play pivotal roles in a diverse range of cellular processes. The miR-181 family is important in T cell development, proliferation, and activation. In this study, we have identified BRK1 as a potential target of miR-181c using a dual selection functional assay and have showed that miR-181c regulates BRK1 by translational inhibition. Given the importance of miR-181 in T cell function and the potential role of BRK1 in the involvement of WAVE2 complex and actin polymerization in T cells, we therefore investigated the influence of miR-181c-BRK1 axis in T cell function. Stimulation of PBMC derived CD3+ T cells resulted in reduced miR-181c expression and up-regulation of BRK1 protein expression, suggesting that miR-181c-BRK1 axis is important in T cell activation. We further showed that overexpression of miR-181c or suppression of BRK1 resulted in inhibition of T cell activation and actin polymerization coupled with defective lamellipodia generation and immunological synapse formation. Additionally, we found that BRK1 silencing led to reduced expressions of other proteins in the WAVE2 complex, suggesting that the impairment of T cell actin dynamics was a result of the instability of the WAVE2 complex following BRK1 depletion. Collectively, we demonstrated that miR-181c reduces BRK1 protein expression level and highlighted the important role of miR-181c-BRK1 axis in T cell activation and actin polymerization-mediated T cell functions.
Collapse
Affiliation(s)
- Shok Ping Lim
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Nikolaos Ioannou
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Alan G Ramsay
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - David Darling
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Joop Gäken
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Ghulam J Mufti
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.,Department of Haemato-Oncology, King's College Hospital, London, United Kingdom
| |
Collapse
|
10
|
Preciados M, Yoo C, Roy D. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases. Int J Mol Sci 2016; 17:E2086. [PMID: 27983596 PMCID: PMC5187886 DOI: 10.3390/ijms17122086] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/21/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs) because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA), polychlorinated biphenyls (PCBs), phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1) signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2) and NRF1. Some of these genes are involved with brain diseases, such as Alzheimer's Disease (AD), Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis, Autism Spectrum Disorder, and Brain Neoplasms. For example, the search of enriched pathways showed that top ten E2 interacting genes in AD-APOE, APP, ATP5A1, CALM1, CASP3, GSK3B, IL1B, MAPT, PSEN2 and TNF-underlie the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) AD pathway. With AD, the six E2-responsive genes are NRF1 target genes: APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1. These genes are also responsive to the following EEDs: ethinyl estradiol (APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1), BPA (APBB2, EIF2S1, ENO1, MAPT, and PAXIP1), dibutyl phthalate (DPYSL2, EIF2S1, and ENO1), diethylhexyl phthalate (DPYSL2 and MAPT). To validate findings from Comparative Toxicogenomics Database (CTD) curated data, we used Bayesian network (BN) analysis on microarray data of AD patients. We observed that both gender and NRF1 were associated with AD. The female NRF1 gene network is completely different from male human AD patients. AD-associated NRF1 target genes-APLP1, APP, GRIN1, GRIN2B, MAPT, PSEN2, PEN2, and IDE-are also regulated by E2. NRF1 regulates targets genes with diverse functions, including cell growth, apoptosis/autophagy, mitochondrial biogenesis, genomic instability, neurogenesis, neuroplasticity, synaptogenesis, and senescence. By activating or repressing the genes involved in cell proliferation, growth suppression, DNA damage/repair, apoptosis/autophagy, angiogenesis, estrogen signaling, neurogenesis, synaptogenesis, and senescence, and inducing a wide range of DNA damage, genomic instability and DNA methylation and transcriptional repression, NRF1 may act as a major regulator of EEDs-induced brain health deficits. In summary, estrogenic endocrine disrupting chemicals-modified genes in brain health deficits are part of both estrogen and NRF1 signaling pathways. Our findings suggest that in addition to estrogen signaling, EEDs influencing NRF1 regulated communities of genes across genomic and epigenomic multiple networks may contribute in the development of complex chronic human brain health disorders.
Collapse
Affiliation(s)
- Mark Preciados
- Department of Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA.
| | - Changwon Yoo
- Department of Biostatistics, Florida International University, Miami, FL 33199, USA.
| | - Deodutta Roy
- Department of Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
11
|
Lithium promotes DNA stability and survival of ischemic retinal neurocytes by upregulating DNA ligase IV. Cell Death Dis 2016; 7:e2473. [PMID: 27853172 PMCID: PMC5260892 DOI: 10.1038/cddis.2016.341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 02/01/2023]
Abstract
Neurons display genomic fragility and show fragmented DNA in pathological degeneration. A failure to repair DNA breaks may result in cell death or apoptosis. Lithium protects retinal neurocytes following nutrient deprivation or partial nerve crush, but the underlying mechanisms are not well defined. Here we demonstrate that pretreatment with lithium protects retinal neurocytes from ischemia-induced damage and enhances light response in rat retina following ischemia–reperfusion injury. Moreover, we found that DNA nonhomologous end-joining (NHEJ) repair is implicated in this process because in ischemic retinal neurocytes, lithium significantly reduces the number of γ-H2AX foci (well-characterized markers of DNA double-strand breaks in situ) and increases the DNA ligase IV expression level. Furthermore, we also demonstrate that nuclear respiratory factor 1 (Nrf-1) and phosphorylated cyclic AMP-response element binding protein-1 (P-CREB1) bind to ligase IV promoter to cause upregulation of ligase IV in neurocytes. The ischemic upregulation of Nrf-1 and lithium-induced increase of P-CREB1 cooperate to promote transcription of ligase IV. Short hairpin RNAs against Nrf-1 and CREB1 could significantly inhibit the increase in promoter activity and expression of ligase IV observed in the control oligos following lithium treatment in retinal neurocytes. More importantly, ischemic stimulation triggers the expression of ligase IV. Taken together, our results thus reveal a novel mechanism that lithium offers neuroprotection from ischemia-induced damage by enhancing DNA NHEJ repair.
Collapse
|
12
|
Li H, Yuan Z, Ji J, Xu J, Zhang T, Zhang X, Xue F. A novel Markov Blanket-based repeated-fishing strategy for capturing phenotype-related biomarkers in big omics data. BMC Genet 2016; 17:51. [PMID: 26957081 PMCID: PMC4784463 DOI: 10.1186/s12863-016-0358-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/26/2016] [Indexed: 11/10/2022] Open
Abstract
Background We propose a novel Markov Blanket-based repeated-fishing strategy (MBRFS) in attempt to increase the power of existing Markov Blanket method (DASSO-MB) and maintain its advantages in omic data analysis. Results Both simulation and real data analysis were conducted to assess its performances by comparing with other methods including χ2 test with Bonferroni and B-H adjustment, least absolute shrinkage and selection operator (LASSO) and DASSO-MB. A serious of simulation studies showed that the true discovery rate (TDR) of proposed MBRFS was always close to zero under null hypothesis (odds ratio = 1 for each SNPs) with excellent stability in all three scenarios of independent phenotype-related SNPs without linkage disequilibrium (LD) around them, correlated phenotype-related SNPs without LD around them, and phenotype-related SNPs with strong LD around them. As expected, under different odds ratio and minor allel frequency (MAFs), MBRFS always had the best performances in capturing the true phenotype-related biomarkers with higher matthews correlation coefficience (MCC) for all three scenarios above. More importantly, since proposed MBRFS using the repeated fishing strategy, it still captures more phenotype-related SNPs with minor effects when non-significant phenotype-related SNPs emerged under χ2 test after Bonferroni multiple correction. The various real omics data analysis, including GWAS data, DNA methylation data, gene expression data and metabolites data, indicated that the proposed MBRFS always detected relatively reasonable biomarkers. Conclusions Our proposed MBRFS can exactly capture the true phenotype-related biomarkers with the reduction of false negative rate when the phenotype-related biomarkers are independent or correlated, as well as the circumstance that phenotype-related biomarkers are associated with non-phenotype-related ones. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0358-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongkai Li
- Department of biostatistics, School of Public Health, Shandong University, Jinan City, Shandong Province, P. R. China.
| | - Zhongshang Yuan
- Department of biostatistics, School of Public Health, Shandong University, Jinan City, Shandong Province, P. R. China.
| | - Jiadong Ji
- Department of biostatistics, School of Public Health, Shandong University, Jinan City, Shandong Province, P. R. China.
| | - Jing Xu
- Department of biostatistics, School of Public Health, Shandong University, Jinan City, Shandong Province, P. R. China.
| | - Tao Zhang
- Department of biostatistics, School of Public Health, Shandong University, Jinan City, Shandong Province, P. R. China.
| | - Xiaoshuai Zhang
- Department of biostatistics, School of Public Health, Shandong University, Jinan City, Shandong Province, P. R. China.
| | - Fuzhong Xue
- Department of biostatistics, School of Public Health, Shandong University, Jinan City, Shandong Province, P. R. China.
| |
Collapse
|
13
|
Liu X, Kelsoe JR, Greenwood TA. A genome-wide association study of bipolar disorder with comorbid eating disorder replicates the SOX2-OT region. J Affect Disord 2016; 189:141-9. [PMID: 26433762 PMCID: PMC4640946 DOI: 10.1016/j.jad.2015.09.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Bipolar disorder is a heterogeneous mood disorder associated with several important clinical comorbidities, such as eating disorders. This clinical heterogeneity complicates the identification of genetic variants contributing to bipolar susceptibility. Here we investigate comorbidity of eating disorders as a subphenotype of bipolar disorder to identify genetic variation that is common and unique to both disorders. METHODS We performed a genome-wide association analysis contrasting 184 bipolar subjects with eating disorder comorbidity against both 1370 controls and 2006 subjects with bipolar disorder only from the Bipolar Genome Study (BiGS). RESULTS The most significant genome-wide finding was observed bipolar with comorbid eating disorder vs. controls within SOX2-OT (p=8.9×10(-8) for rs4854912) with a secondary peak in the adjacent FXR1 gene (p=1.2×10(-6) for rs1805576) on chromosome 3q26.33. This region was also the most prominent finding in the case-only analysis (p=3.5×10(-7) and 4.3×10(-6), respectively). Several regions of interest containing genes involved in neurodevelopment and neuroprotection processes were also identified. LIMITATIONS While our primary finding did not quite reach genome-wide significance, likely due to the relatively limited sample size, these results can be viewed as a replication of a recent study of eating disorders in a large cohort. CONCLUSIONS These findings replicate the prior association of SOX2-OT with eating disorders and broadly support the involvement of neurodevelopmental/neuroprotective mechanisms in the pathophysiology of both disorders. They further suggest that different clinical manifestations of bipolar disorder may reflect differential genetic contributions and argue for the utility of clinical subphenotypes in identifying additional molecular pathways leading to illness.
Collapse
Affiliation(s)
- Xiaohua Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | - John R. Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,San Diego Veterans Affairs Healthcare System, San Diego, CA,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA
| | | |
Collapse
|
14
|
FOXO target gene CTDSP2 regulates cell cycle progression through Ras and p21(Cip1/Waf1). Biochem J 2015; 469:289-98. [PMID: 25990325 PMCID: PMC4613505 DOI: 10.1042/bj20140831] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 05/20/2015] [Indexed: 01/07/2023]
Abstract
Growth factor controlled activity of forkhead box O transcription factors results in altered gene expression, including expression of CTDSP2 (C-terminal domain small phosphatase 2). CTDSP2 can regulate cell cycle progression through Ras and the cyclin-dependent kinase inhibitor p21Cip1/Waf1. Activity of FOXO (forkhead box O) transcription factors is inhibited by growth factor–PI3K (phosphoinositide 3-kinase)–PKB (protein kinase B)/Akt signalling to control a variety of cellular processes including cell cycle progression. Through comparative analysis of a number of microarray datasets we identified a set of genes commonly regulated by FOXO proteins and PI3K–PKB/Akt, which includes CTDSP2 (C-terminal domain small phosphatase 2). We validated CTDSP2 as a genuine FOXO target gene and show that ectopic CTDSP2 can induce cell cycle arrest. We analysed transcriptional regulation after CTDSP2 expression and identified extensive regulation of genes involved in cell cycle progression, which depends on the phosphatase activity of CTDSP2. The most notably regulated gene is the CDK (cyclin-dependent kinase) inhibitor p21Cip1/Waf1 and in the present study we show that p21Cip1/Waf1 is partially responsible for the cell cycle arrest through decreasing cyclin–CDK activity. Our data suggest that CTDSP2 induces p21Cip1/Waf1 through increasing the activity of Ras. As has been described previously, Ras induces p21Cip1/Waf1 through p53-dependent and p53-independent pathways and indeed both p53 and MEK inhibition can mitigate the CTDSP2-induced p21Cip1/Waf1 mRNA up-regulation. In support of Ras activation by CTDSP2, depletion of endogenous CTDSP2 results in reduced Ras activity and thus CTDSP2 seems to be part of a larger set of genes regulated by FOXO proteins, which increase growth factor signalling upon FOXO activation.
Collapse
|
15
|
Hübner CA, Kurth I. Membrane-shaping disorders: a common pathway in axon degeneration. ACTA ACUST UNITED AC 2014; 137:3109-21. [PMID: 25281866 DOI: 10.1093/brain/awu287] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurons with long projections are particularly liable to damage, which is reflected by a large group of hereditary neurodegenerative disorders that primarily affect these neurons. In the group of hereditary spastic paraplegias motor axons of the central nervous system degenerate, while distal pure motor neuropathies, Charcot-Marie-Tooth disorders and the group of hereditary sensory and autonomic neuropathies are characterized by degeneration of peripheral nerve fibres. Because the underlying pathologies share many parallels, the disorders are also referred to as axonopathies. A large number of genes has been associated with axonopathies and one of the emerging subgroups encodes membrane-shaping proteins with a central reticulon homology domain. Association of these proteins with lipid bilayers induces positive membrane curvature and influences the architecture of cellular organelles. Membrane-shaping proteins closely cooperate and directly interact with each other, but their structural features and localization to distinct subdomains of organelles suggests mutually exclusive roles. In some individuals a mutation in a shaping protein can result in upper motor neuron dysfunction, whereas in other patients it can lead to a degeneration of peripheral neurons. This suggests that membrane-shaping disorders might be considered as a continuous disease-spectrum of the axon.
Collapse
Affiliation(s)
- Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|