1
|
Mallikarjunappa S, Brito LF, Pant SD, Schenkel FS, Meade KG, Karrow NA. Johne's Disease in Dairy Cattle: An Immunogenetic Perspective. Front Vet Sci 2021; 8:718987. [PMID: 34513975 PMCID: PMC8426623 DOI: 10.3389/fvets.2021.718987] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Johne's disease (JD), also known as paratuberculosis, is a severe production-limiting disease with significant economic and welfare implications for the global cattle industry. Caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP), JD manifests as chronic enteritis in infected cattle. In addition to the economic losses and animal welfare issues associated with JD, MAP has attracted public health concerns with potential association with Crohn's disease, a human inflammatory bowel disease. The lack of effective treatment options, such as a vaccine, has hampered JD control resulting in its increasing global prevalence. The disease was first reported in 1895, but in recognition of its growing economic impact, extensive recent research facilitated by a revolution in technological approaches has led to significantly enhanced understanding of the immunological, genetic, and pathogen factors influencing disease pathogenesis. This knowledge has been derived from a variety of diverse models to elucidate host-pathogen interactions including in vivo and in vitro experimental infection models, studies measuring immune parameters in naturally-infected animals, and by studies conducted at the population level to enable the estimation of genetic parameters, and the identification of genetic markers and quantitative trait loci (QTL) putatively associated with susceptibility or resistance to JD. The main objectives of this review are to summarize these recent developments from an immunogenetics perspective and attempt to extract the principal and common findings emerging from this wealth of recent information. Based on these analyses, and in light of emerging technologies such as gene-editing, we conclude by discussing potential future avenues for effectively mitigating JD in cattle.
Collapse
Affiliation(s)
- Sanjay Mallikarjunappa
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Sameer D Pant
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Niel A Karrow
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Braz CU, Rowan TN, Schnabel RD, Decker JE. Genome-wide association analyses identify genotype-by-environment interactions of growth traits in Simmental cattle. Sci Rep 2021; 11:13335. [PMID: 34172761 PMCID: PMC8233360 DOI: 10.1038/s41598-021-92455-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding genotype-by-environment interactions (G × E) is crucial to understand environmental adaptation in mammals and improve the sustainability of agricultural production. Here, we present an extensive study investigating the interaction of genome-wide SNP markers with a vast assortment of environmental variables and searching for SNPs controlling phenotypic variance (vQTL) using a large beef cattle dataset. We showed that G × E contribute 10.1%, 3.8%, and 2.8% of the phenotypic variance of birth weight, weaning weight, and yearling weight, respectively. G × E genome-wide association analysis (GWAA) detected a large number of G × E loci affecting growth traits, which the traditional GWAA did not detect, showing that functional loci may have non-additive genetic effects regardless of differences in genotypic means. Further, variance-heterogeneity GWAA detected loci enriched with G × E effects without requiring prior knowledge of the interacting environmental factors. Functional annotation and pathway analysis of G × E genes revealed biological mechanisms by which cattle respond to changes in their environment, such as neurotransmitter activity, hypoxia-induced processes, keratinization, hormone, thermogenic and immune pathways. We unraveled the relevance and complexity of the genetic basis of G × E underlying growth traits, providing new insights into how different environmental conditions interact with specific genes influencing adaptation and productivity in beef cattle and potentially across mammals.
Collapse
Affiliation(s)
- Camila U Braz
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Troy N Rowan
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
3
|
Kumar S, Kumar S, Singh RV, Chauhan A, Kumar A, Bharati J, Singh SV. Association of genetic variability in CD209 gene with bovine paratuberculosis disease: a case-control study in the Indian cattle population. Anim Biotechnol 2020; 33:664-671. [PMID: 32985930 DOI: 10.1080/10495398.2020.1823400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study aimed to explore the association of single nucleotide polymorphisms (SNPs) in CD209 gene with the occurrence of bovine paratuberculosis (PTB) disease caused by Mycobacterium avium subspecies paratuberculosis (MAP) in Indian cattle. A total of 213 animals were preliminarily selected on the basis of physical body condition score, which was then screened by a panel of diagnostic tests viz. Johnin, ELISA, fecal microscopy, and fecal culture, for the establishment of a case-control resource population. A total of four SNPs viz. rs208222804, rs211654540, rs208814257, and rs210748127 in CD209 gene were genotyped by PCR-RFLP. All SNPs, except rs210748127, were polymorphic in our population. Genotypic-phenotypic associations were assessed by the PROCLOGISTIC procedure of SAS 9.3. The SNP rs208814257 yielded three genotypes viz. CC, CG, and GG, which were significantly (p < 0.05) different in case as compared to the control population. The odds of CC and CG in comparison to GG genotype were 1.21 and 0.40, respectively. The CG genotype was significantly higher in control population, indicating that this genotype may provide resistance against PTB in our resource population. Upon validation in an independent, larger test population and following biological characterization, SNP rs208814257 can be incorporated in marker panel for selection of animals with greater resistance to MAP infection.
Collapse
Affiliation(s)
- Satish Kumar
- Division of Animal Genetics and Breeding, ICAR Indian Veterinary Research Institute, Bareilly, India.,Animal Genetics and Breeding, ICAR National Research Centre on Pig, Guwahati, India
| | - Subodh Kumar
- Division of Animal Genetics and Breeding, ICAR Indian Veterinary Research Institute, Bareilly, India
| | - Ran Vir Singh
- Division of Animal Genetics and Breeding, ICAR Indian Veterinary Research Institute, Bareilly, India
| | - Anuj Chauhan
- Division of Animal Genetics and Breeding, ICAR Indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Division of Animal Genetics and Breeding, ICAR Indian Veterinary Research Institute, Bareilly, India
| | - Jaya Bharati
- Animal Physiology, ICAR National Research Centre on Pig, Guwahati, India
| | | |
Collapse
|
4
|
Lindenwald DL, Lepenies B. C-Type Lectins in Veterinary Species: Recent Advancements and Applications. Int J Mol Sci 2020; 21:ijms21145122. [PMID: 32698416 PMCID: PMC7403975 DOI: 10.3390/ijms21145122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
C-type lectins (CTLs), a superfamily of glycan-binding receptors, play a pivotal role in the host defense against pathogens and the maintenance of immune homeostasis of higher animals and humans. CTLs in innate immunity serve as pattern recognition receptors and often bind to glycan structures in damage- and pathogen-associated molecular patterns. While CTLs are found throughout the whole animal kingdom, their ligand specificities and downstream signaling have mainly been studied in humans and in model organisms such as mice. In this review, recent advancements in CTL research in veterinary species as well as potential applications of CTL targeting in veterinary medicine are outlined.
Collapse
|
5
|
Jégouzo SAF, Nelson C, Hardwick T, Wong STA, Lau NKK, Neoh GKE, Castellanos-Rueda R, Huang Z, Mignot B, Hirdaramani A, Howitt A, Frewin K, Shen Z, Fox RJ, Wong R, Ando M, Emony L, Zhu H, Holder A, Werling D, Krishnan N, Robertson BD, Clements A, Taylor ME, Drickamer K. Mammalian lectin arrays for screening host-microbe interactions. J Biol Chem 2020; 295:4541-4555. [PMID: 32094229 PMCID: PMC7135977 DOI: 10.1074/jbc.ra120.012783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/14/2020] [Indexed: 12/22/2022] Open
Abstract
Many members of the C-type lectin family of glycan-binding receptors have been ascribed roles in the recognition of microorganisms and serve as key receptors in the innate immune response to pathogens. Other mammalian receptors have become targets through which pathogens enter target cells. These receptor roles have often been documented with binding studies involving individual pairs of receptors and microorganisms. To provide a systematic overview of interactions between microbes and the large complement of C-type lectins, here we developed a lectin array and suitable protocols for labeling of microbes that could be used to probe this array. The array contains C-type lectins from cow, chosen as a model organism of agricultural interest for which the relevant pathogen–receptor interactions have not been previously investigated in detail. Screening with yeast cells and various strains of both Gram-positive and -negative bacteria revealed distinct binding patterns, which in some cases could be explained by binding to lipopolysaccharides or capsular polysaccharides, but in other cases they suggested the presence of novel glycan targets on many of the microorganisms. These results are consistent with interactions previously ascribed to the receptors, but they also highlight binding to additional sugar targets that have not previously been recognized. Our findings indicate that mammalian lectin arrays represent unique discovery tools for identifying both novel ligands and new receptor functions.
Collapse
Affiliation(s)
- Sabine A F Jégouzo
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Conor Nelson
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Thomas Hardwick
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - S T Angel Wong
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Noel Kuan Kiat Lau
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gaik Kin Emily Neoh
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Zhiyao Huang
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Benjamin Mignot
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Aanya Hirdaramani
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Annie Howitt
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kathryn Frewin
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Zheng Shen
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rhys J Fox
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rachel Wong
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Momoko Ando
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Lauren Emony
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Henderson Zhu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Angela Holder
- Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - Nitya Krishnan
- Department of Infectious Disease and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Brian D Robertson
- Department of Infectious Disease and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Abigail Clements
- Department of Life Sciences and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Maureen E Taylor
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kurt Drickamer
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
6
|
Single-nucleotide polymorphisms in CLEC7A, CD209 and TLR4 gene and their association with susceptibility to paratuberculosis in Indian cattle. J Genet 2020. [DOI: 10.1007/s12041-019-1172-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Naji M, Drögemüller C, Mészáros G, Sölkner J. Deviation Patterns of Observed and Expected Haplotype Blocks Associated with Potential Recessive Disorders in Tyrol Grey Cattle. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2019. [DOI: 10.11118/actaun201967051183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Taylor ME, Drickamer K. Mammalian sugar-binding receptors: known functions and unexplored roles. FEBS J 2019; 286:1800-1814. [PMID: 30657247 PMCID: PMC6563452 DOI: 10.1111/febs.14759] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Mammalian glycan-binding receptors, sometimes known as lectins, interact with glycans, the oligosaccharide portions of endogenous mammalian glycoproteins and glycolipids as well as sugars on the surfaces of microbes. These receptors guide glycoproteins out of and back into cells, facilitate communication between cells through both adhesion and signaling, and allow the innate immune system to respond quickly to viral, fungal, bacterial, and parasitic pathogens. For many of the roughly 100 glycan-binding receptors that are known in humans, there are good descriptions of what types of glycans they bind and how selectivity for these ligands is achieved at the molecular level. In some cases, there is also comprehensive evidence for the roles that the receptors play at the cellular and organismal levels. In addition to highlighting these well-understood paradigms for glycan-binding receptors, this review will suggest where gaps remain in our understanding of the physiological functions that they can serve.
Collapse
|
9
|
Kumar S, Kumar S, Singh RV, Chauhan A, Kumar A, Sulabh S, Bharati J, Singh SV. Genetic association of polymorphisms in bovine TLR2 and TLR4 genes with Mycobacterium avium subspecies paratuberculosis infection in Indian cattle population. Vet Res Commun 2019; 43:105-114. [PMID: 30919207 DOI: 10.1007/s11259-019-09750-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023]
Abstract
Toll like receptors (TLRs) are pattern recognition molecules involved in cellular recognition of Mycobacterium avium subspecies paratuberculosis (MAP), the infectious agent causing Paratuberculosis (PTB), a notified disease of domestic and wild ruminants. The present study was undertaken to investigate the presence of single nucleotide polymorphisms (SNPs) in TLR2 and TLR4 gene and to evaluate association of these SNPs with occurrence of PTB in Indian cattle. A total of 213 cattle, were subjected to multiple diagnostic tests viz. Johnin PPD, ELISA test (Indigenous and Parachek kit method), fecal microscopy and fecal culture for detection of MAP infection. Based on screening results 51 animals each were assigned to case and control population. Two SNPs viz. rs55617172, rs41830058 in TLR2 gene and two SNPs viz. rs8193046, rs8193060 in TLR4 gene and were genotyped by PCR-RFLP method. All SNPs were found to be polymorphic except rs41830058 in the case-control population. Both SNPs in TLR4 gene but none in TLR2 genes were significantly associated with the occurrence of PTB in our population. The genotypes in SNP rs8193046 and SNP rs8193060 were significantly (P < 0.01) different in case-control population. These findings suggest that SNPs rs8193046 and rs8193060 are likely a potential marker against MAP infection and a selection programme eliminating AG genotype for rs8193046 and CT genotype for rs8193060 might be beneficial in conferring resistance to MAP infection in Indian cattle population.
Collapse
Affiliation(s)
- Satish Kumar
- Division of Animal Genetics and Breeding, ICAR- Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India.,ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Subodh Kumar
- Division of Animal Genetics and Breeding, ICAR- Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India
| | - Ran Vir Singh
- Division of Animal Genetics and Breeding, ICAR- Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India.
| | - Anuj Chauhan
- Division of Animal Genetics and Breeding, ICAR- Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India
| | - Amit Kumar
- Division of Animal Genetics and Breeding, ICAR- Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India
| | - Sourabh Sulabh
- Division of Animal Genetics and Breeding, ICAR- Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India
| | - Jaya Bharati
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Shoor Vir Singh
- Animal Health Division, ICAR- Central Institute for Research on Goats, Makhdoom, U.P., 281112, India
| |
Collapse
|
10
|
Kumar S, Kumar S, Singh RV, Chauhan A, Kumar A, Bharati J, Singh SV. Association of Bovine CLEC7A gene polymorphism with host susceptibility to paratuberculosis disease in Indian cattle. Res Vet Sci 2019; 123:216-222. [PMID: 30684908 DOI: 10.1016/j.rvsc.2019.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 01/21/2023]
Abstract
Bovine CLEC7A gene, encodes Dectin-1, an important pattern recognition molecule that generates proinflammatory response against mycobacterium. The aim of the present study was to identify single nuceotide polymorphisms (SNPs) in the gene CLEC7A and to evaluate association of these SNPs with occurrence of paratuberculosis (PTB) in cattle. A total of 213 cattle from three different farms were subjected to single intradermal Johnin test, ELISA test, faecal microscopy and faecal culture for establishment of case-control resource population. A total 6 SNPs viz. rs110353594, rs110671821, rs110343521, rs41654445, rs109429379 and rs109280145 in gene CLEC7A were investigated for association with susceptibility/resistance to PTB. All the six SNPs were found to be polymorphic in case-control population. SNP rs41654445 was significantly (P < .01) associated with PTB and odds ratio (OR) indicated that TT genotype had more prevalence than CC and CT genotype in case population and probability for getting PTB infection in animals with T allele was 12 times more as compared to C allele. For SNP rs110353594, T allele was significantly (P < .01) higher in case population as compared to control population and the probability for getting infection in animals with C allele was one third as compared to T allele. SNP rs41654445 was non-synonymous, while SNP rs110353594 was located in promoter region suggesting their functional role in the immune response against bovine PTB. SNP s41654445 and rs110353594 can be incorporated in marker panel for selection of animals with greater resistance to MAP after validation in independent, larger resource population and following biological characterization.
Collapse
Affiliation(s)
- Satish Kumar
- Division of Animal Genetics and Breeding, ICAR- IVRI, Izatnagar-243122, Bareilly, U.P., India; ICAR-National Research Centre on Pig, Rani-781131, Guwahati, Assam, India
| | - Subodh Kumar
- Division of Animal Genetics and Breeding, ICAR- IVRI, Izatnagar-243122, Bareilly, U.P., India
| | - Ran Vir Singh
- Division of Animal Genetics and Breeding, ICAR- IVRI, Izatnagar-243122, Bareilly, U.P., India.
| | - Anuj Chauhan
- Division of Animal Genetics and Breeding, ICAR- IVRI, Izatnagar-243122, Bareilly, U.P., India
| | - Amit Kumar
- Division of Animal Genetics and Breeding, ICAR- IVRI, Izatnagar-243122, Bareilly, U.P., India
| | - Jaya Bharati
- ICAR-National Research Centre on Pig, Rani-781131, Guwahati, Assam, India
| | - Shoor Vir Singh
- Animal Health Division, ICAR- CIRG, Makhdoom-281112, U.P., India
| |
Collapse
|
11
|
Gao Y, Jiang J, Yang S, Cao J, Han B, Wang Y, Zhang Y, Yu Y, Zhang S, Zhang Q, Fang L, Cantrell B, Sun D. Genome-wide association study of Mycobacterium avium subspecies Paratuberculosis infection in Chinese Holstein. BMC Genomics 2018; 19:972. [PMID: 30591025 PMCID: PMC6307165 DOI: 10.1186/s12864-018-5385-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
Background Paratuberculosis is a contagious, chronic and enteric disease in ruminants, which is caused by Mycobacterium avium subspecies paratuberculosis (MAP) infection, resulting in enormous economic losses worldwide. There is currently no effective cure for MAP infection or a vaccine, it is thus important to explore the genetic variants that contribute to host susceptibility to infection by MAP, which may provide a better understanding of the mechanisms of paratuberculosis and benefit animal genetic improvement. Herein we performed a genome-wide association study (GWAS) to identify genomic regions and candidate genes associated with susceptibility to MAP infection in dairy cattle. Results Using Illumina Bovine 50 K (54,609 SNPs) and GeneSeek HD (138,893 SNPs) chips, two analytical approaches were performed, GRAMMAR-GC and ROADTRIPS in 937 Chinese Holstein cows, among which individuals genotyped by the 50 K chip were imputed to HD SNPs with Beagle software. Consequently, 15 and 11 significant SNPs (P < 5 × 10− 5) were identified with GRAMMAR-GC and ROADTDRIPS, respectively. A total of 10 functional genes were in proximity to (i.e., within 1 Mb) these SNPs, including IL4, IL5, IL13, IRF1, MyD88, PACSIN1, DEF6, TDP2, ZAP70 and CSF2. Functional enrichment analysis showed that these genes were involved in immune related pathways, such as interleukin, T cell receptor signaling pathways and inflammatory bowel disease (IBD), implying their potential associations with susceptibility to MAP infection. In addition, by examining the publicly available cattle QTLdb, a previous QTL for MAP was found to be overlapped with one of regions detected currently at 32.5 Mb on BTA23, where the TDP2 gene was anchored. Conclusions In conclusion, we identified 26 SNPs located on 15 chromosomes in the Chinese Holstein population using two GWAS strategies with high density SNPs. Integrated analysis of GWAS, biological functions and the reported QTL information helps to detect positional candidate genes and the identification of regions associated with susceptibility to MAP traits in dairy cattle. Electronic supplementary material The online version of this article (10.1186/s12864-018-5385-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yahui Gao
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianping Jiang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shaohua Yang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Cao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Bo Han
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yachun Wang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yi Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lingzhao Fang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Bonnie Cantrell
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Truyers I, Jennings A. Management and control of Johne's disease in beef suckler herds. IN PRACTICE 2016. [DOI: 10.1136/inp.i3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Mortier RAR, Barkema HW, De Buck J. Susceptibility to and diagnosis of Mycobacterium avium subspecies paratuberculosis infection in dairy calves: A review. Prev Vet Med 2015; 121:189-98. [PMID: 26321657 DOI: 10.1016/j.prevetmed.2015.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/31/2015] [Accepted: 08/18/2015] [Indexed: 12/18/2022]
Abstract
The primary objectives of paratuberculosis control programs are reducing exposure of calves to Mycobacterium avium subspecies paratuberculosis (MAP), reducing herd infection pressure and regular testing of cattle >36 months of age. Although control programs based on these principles have reduced prevalence of MAP infection in dairy herds, they have generally not eliminated the infection. Recent infection trial(s) have yielded new knowledge regarding diagnostic testing and age- and dose-dependent susceptibility to MAP infection. Calves up to 1 year of age are still susceptible to MAP infection; therefore, control programs should refrain from referring to specific ages with respect to susceptibility and prevention of new infections. Notwithstanding, lesions were more severe when calves were inoculated at 2 weeks versus 1 year of age. Furthermore, a high inoculation dose resulted in more pronounced lesions than a low inoculation dose, especially in young calves. Consequently, keeping infection pressure low should decrease the incidence of new MAP infections and severity of JD in cattle that do acquire the infection. It was also evident that early diagnosis of MAP infection was possible and could improve efficacy of control programs. Although its use will still need to be validated in the field, a combination of antibody ELISA and fecal culture in young stock, in addition to testing cattle >36 months of age when screening a herd for paratuberculosis, was expected to improve detection of dairy cattle infected with MAP. Although calves were inoculated using a standardized method in a controlled environment, there were substantial differences among calves with regards to immune response, shedding and pathology. Therefore, we inferred there were genetic differences in susceptibility. Important insights were derived from experimental infection trials. Therefore, it was expected that these could improve paratuberculosis control programs by reducing severity and incidence of JD by lowering infection pressure on-farm, and reducing exposure of young calves and older cattle. Furthermore, an earlier diagnosis could be achieved by combining ELISA and fecal shedding in young stock, in addition to testing cattle >36 months of age.
Collapse
Affiliation(s)
- Rienske A R Mortier
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada.
| | - Herman W Barkema
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada.
| | - Jeroen De Buck
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada.
| |
Collapse
|