1
|
Sui Z, Zhang Y, Zhang Z, Wang C, Li X, Xing F, Chu M. Analysis of Lin28B Promoter Activity and Screening of Related Transcription Factors in Dolang Sheep. Genes (Basel) 2023; 14:genes14051049. [PMID: 37239408 DOI: 10.3390/genes14051049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The Lin28B gene is involved in the initiation of puberty, but its regulatory mechanisms remain unclear. Therefore, in this study, we aimed to study the regulatory mechanism of the Lin28B promoter by cloning the Lin28B proximal promoter for bioinformatic analysis. Next, a series of deletion vectors were constructed based on the bioinformatic analysis results for dual-fluorescein activity detection. The transcriptional regulation mechanism of the Lin28B promoter region was analyzed by detecting mutations in transcription factor-binding sites and overexpression of transcription factors. The dual-luciferase assay showed that the Lin28B promoter region -837 to -338 bp had the highest transcriptional activity, and the transcriptional activity of the Lin28B transcriptional regulatory region decreased significantly after Egr1 and SP1 mutations. Overexpression of the Egr1 transcription factor significantly enhanced the transcription of Lin28B, and the results indicated that Egr1 and SP1 play important roles in regulating Lin28B. These results provide a theoretical basis for further research on the transcriptional regulation of sheep Lin28B during puberty initiation.
Collapse
Affiliation(s)
- Zhiyuan Sui
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Group, Alar 843300, China
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Yongjie Zhang
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Group, Alar 843300, China
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Zhishuai Zhang
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Group, Alar 843300, China
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Chenguang Wang
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Group, Alar 843300, China
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Xiaojun Li
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Group, Alar 843300, China
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Feng Xing
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Group, Alar 843300, China
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Xiang G, Huang L, Zhang X, Wang N, Wang H, Mu Y, Li K, Liu Z. Molecular Characteristics and Promoter Analysis of Porcine COL1A1. Genes (Basel) 2022; 13:1971. [PMID: 36360208 PMCID: PMC9689670 DOI: 10.3390/genes13111971] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 03/25/2024] Open
Abstract
COL1A1 encodes the type I collagen α1 chain, which shows the highest abundance among members of the collagen family and is widely expressed in different mammalian cells and tissues. However, its molecular characteristics are not completely elucidated. In this study, the molecular profiles of COL1A1 and characteristics of the COL1A1 protein were investigated using a promoter activity assay and multiple bioinformatics tools. The results showed that the 5' flanking region of porcine COL1A1 contained two CpG islands, five core promoter sequences, and twenty-six transcription factor-binding sites. In the luciferase assay, the upstream 294 bp region of the initiation codon of COL1A1 showed the highest activity, confirming that this section is the core region of the porcine COL1A1 promoter. Bioinformatic analysis revealed that COL1A1 is a negatively charged, hydrophilic secreted protein. It does not contain a transmembrane domain and is highly conserved in humans, mice, sheep, and pigs. Protein interaction analysis demonstrated that the interaction coefficient of COL1A1 with COL1A2, COL3A1, ITGB1, and ITGA2 was greater than 0.9, suggesting that this protein plays a crucial role in collagen structure formation and cell adhesion. These results provide a theoretical basis for further investigation of the functions of porcine COL1A1.
Collapse
Affiliation(s)
- Guangming Xiang
- Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Huang
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiuling Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Wang
- Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Wang
- Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulian Mu
- Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui Li
- Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zhiguo Liu
- Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Wang YC, Li ZJ, Han RL, Xu CL, Wang SH, Sun GR, Wang SH, Wu JP, Kang XT. Promoter analysis and tissue expression of the chicken ASB15 gene. Br Poult Sci 2016; 58:26-31. [PMID: 27844487 DOI: 10.1080/00071668.2016.1236363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. This study was conducted to explore the promoter region of the chicken ASB15 gene by detecting the activities of the dual luciferase reporter gene and to assess expression profiles of the ASB15 gene in 10 different tissues from Gushi chickens. 2. Five dual luciferase reporter gene vectors were constructed and transfected into DF1 cells. The activities of recombined plasmids were measured and the core promoter was confirmed by bioinformatic analysis. Total RNA was extracted and the relative expression of the ASB15 gene was examined. 3. Data analysis indicated that the promoter was located from -955 to -212 bp. Results showed that the chicken ASB15 gene was expressed in heart, breast muscle and leg muscle. 4. This study has confirmed the promoter region and the expression profile of the chicken ASB15 gene, which provides a foundation for further exploring its transcriptional regulation and function.
Collapse
Affiliation(s)
- Y C Wang
- b Department of Animal Science , College of Animal Science and Technology, Gansu Agricultural University , Lanzhou , P. R. China
| | - Z J Li
- a Department of Animal Science , College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou , P. R. China
| | - R L Han
- a Department of Animal Science , College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou , P. R. China
| | - C L Xu
- a Department of Animal Science , College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou , P. R. China
| | - S H Wang
- a Department of Animal Science , College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou , P. R. China
| | - G R Sun
- a Department of Animal Science , College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou , P. R. China
| | - S H Wang
- a Department of Animal Science , College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou , P. R. China
| | - J P Wu
- b Department of Animal Science , College of Animal Science and Technology, Gansu Agricultural University , Lanzhou , P. R. China
| | - X T Kang
- a Department of Animal Science , College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou , P. R. China
| |
Collapse
|