1
|
Li Y, Li X, Zheng M, Bu F, Xiang C, Zhang F. Puerarin inhibits HDAC1-induced oxidative stress disorder by activating JNK pathway and alleviates acrolein-induced atherosclerosis. Clinics (Sao Paulo) 2024; 79:100413. [PMID: 39024795 PMCID: PMC11304693 DOI: 10.1016/j.clinsp.2024.100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVE Atherosclerosis (AS) is a common pathogenesis of cardiovascular diseases. Puerarin (Pue) is a Chinese herbal remedy used to prevent and treat AS. Here, this research investigated the effect of Pue on AS progression. METHODS ApoE-/- mice were induced with acrolein. Body weight, blood lipid index, inflammatory factors, mitochondrial oxidative stress, and lipid deposition were detected. IL-6 and TNF-α were detected by ELISA. Oil red staining and H&E staining were used to observe the aortic sinus plaque lesions. Serum expressions of inflammatory factors IL-6, TNF-a, SOD, GSH and MDA were detected by ELISA, the mRNA expression levels of HDAC1 in the aorta were detected by RT-qPCR, and IL-6 and TNF-α in the aorta were detected by immunohistochemistry. JNK, p-JNK, OPA-1, and HDAC1 were detected by Western blotting. RESULTS Pue administration can effectively reduce lipid accumulation in AS mice induced by acrolein. Pue promoted the activity of SOD, GSH and MDA, and inhibited the formation of atherosclerotic plaques and the process of aortic histological changes. Pue reduced IL-6 and TNF-α. HDAC1 expression was down-regulated and p-JNK-1 and JNK protein expression was up-regulated. CONCLUSION Pue reduces inflammation and alleviates AS induced by acrolein by mediating the JNK pathway to inhibit HDAC1-mediated oxidative stress disorder.
Collapse
Affiliation(s)
- YeTing Li
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China.
| | - XiaoNing Li
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - Man Zheng
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - FanLi Bu
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - ChunYan Xiang
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - FengLei Zhang
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| |
Collapse
|
2
|
Yuan L, Liu Y, Sun Y, Ren L, Gu X, Chen L, Zhou G, Sun X, Huang Q, Chen X, Gong G. Puerarin attenuates remifentanil‑induced postoperative hyperalgesia via targeting PAX6 to regulate the transcription of TRPV1. Mol Med Rep 2024; 29:81. [PMID: 38516772 PMCID: PMC10975072 DOI: 10.3892/mmr.2024.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Remifentanil‑induced hyperalgesia (RIH) is characterized by the emergence of stimulation‑induced pain, including phenomena such as allodynia and thermal hyperalgesia following remifentanil infusion. As a sequence‑specific DNA binding transcription factor, PAX6 positively and negatively regulates transcription and is expressed in multiple cell types in the developing and adult central nervous system. It was hypothesized that puerarin could relieve RIH via targeting PAX6 to regulate transcription of transient receptor potential cation channel subfamily V Member 1 (TRPV1). A total of 32 rats were randomly divided into five groups, namely control group, RI group, RI + 10 mg/kg puerarin group (RI + puerarin10), RI + 20 mg/kg puerarin group (RI + puerarin20), and RI + 40 mg/kg puerarin group (RI + puerarin40). Mechanical and thermal hyperalgesia were tested at ‑24, 2, 6, 24 and 48 h after remifentanil infusion. Following the sacrifice of rats after the last behavioral test, western blot was used to detect the expression levels of TRPV1 in the tissues; Immunofluorescence staining and western blotting were used to detect the expression of PAX6 in the spinal cord. PharmMapper and JASPAR were used to predict the binding sites of puerarin/PAX6/TRPV1. Chromatin immunoprecipitation‑PCR and dual luciferase reporter assay were used to verify the targeting relationship between PAX6 and TRPV1. Immunofluorescence was used to detect the expression levels of TRPV1 and p‑NR2B. The results revealed that puerarin (10, 20, 40 mg/kg) dose‑dependently reduced thermal and mechanical hyperalgesia from 2 to 48 h after remifentanil infusion. Remifentanil infusion remarkably stimulated the expression of phosphorylated (p‑)NR2B. Nevertheless, the increased amount of p‑NR2B by RIH was dose‑dependently suppressed by puerarin in rats. In conclusion, puerarin was revealed to attenuate postoperative RIH via targeting PAX6 to regulate the transcription of TRPV1.
Collapse
Affiliation(s)
- Libang Yuan
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Yinghai Liu
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Yangyang Sun
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Ling Ren
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Xiaoping Gu
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Liang Chen
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Gongrui Zhou
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Xiaoqin Sun
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Qingqing Huang
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Xufei Chen
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
3
|
Zhang YQ, Zhang M, Wang ZL, Qiao X, Ye M. Advances in plant-derived C-glycosides: Phytochemistry, bioactivities, and biotechnological production. Biotechnol Adv 2022; 60:108030. [PMID: 36031083 DOI: 10.1016/j.biotechadv.2022.108030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023]
Abstract
C-glycosides represent a large group of natural products with a C-C bond between the aglycone and the sugar moiety. They exhibit great structural diversity, wide natural distribution, and significant biological activities. By the end of 2021, at least 754 C-glycosides and their derivatives have been isolated and characterized from plants. Thus far, 66 functional C-glycosyltransferases (CGTs) have been discovered from plants, and provide green and efficient approaches to synthesize C-glycosides. Herein, advances in plant-derived C-glycosides are comprehensively summarized from aspects of structural diversity and identification, bioactivities, and biotechnological production. New strategies to discover novel C-glycosides and CGTs, as well as the applications of biotechnological methods to produce C-glycosides in the future are also discussed.
Collapse
Affiliation(s)
- Ya-Qun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
4
|
Tetramethylpyrazine: A review on its mechanisms and functions. Biomed Pharmacother 2022; 150:113005. [PMID: 35483189 DOI: 10.1016/j.biopha.2022.113005] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Ligusticum chuanxiong Hort (known as Chuanxiong in China, CX) is one of the most widely used and long-standing medicinal herbs in China. Tetramethylpyrazine (TMP) is an alkaloid and one of the active components of CX. Over the past few decades, TMP has been proven to possess several pharmacological properties. It has been used to treat a variety of diseases with excellent therapeutic effects. Here, the pharmacological characteristics and molecular mechanism of TMP in recent years are reviewed, with an emphasis on the signal-regulation mechanism of TMP. This review shows that TMP has many physiological functions, including anti-oxidant, anti-inflammatory, and anti-apoptosis properties; autophagy regulation; vasodilation; angiogenesis regulation; mitochondrial damage suppression; endothelial protection; reduction of proliferation and migration of vascular smooth muscle cells; and neuroprotection. At present, TMP is used in treating cardiovascular, nervous, and digestive system conditions, cancer, and other conditions and has achieved good curative effects. The therapeutic mechanism of TMP involves multiple targets, multiple pathways, and bidirectional regulation. TMP is, thus, a promising drug with great research potential.
Collapse
|
5
|
Zhou YX, Zhang H, Peng C. Effects of Puerarin on the Prevention and Treatment of Cardiovascular Diseases. Front Pharmacol 2021; 12:771793. [PMID: 34950032 PMCID: PMC8689134 DOI: 10.3389/fphar.2021.771793] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Puerarin, an isoflavone glycoside derived from Pueraria lobata (Willd.) Ohwi, has been identified as a pharmacologically active component with diverse benefits. A large number of experimental and clinical studies have demonstrated that puerarin is widely used in the treatment of a variety of diseases. Among them, cardiovascular diseases (CVDs) are the leading cause of death in the world, and therefore remain one of the most prominent global public health concerns. In this review, we systematically analyze the preclinical investigations of puerarin in CVDs, such as atherosclerosis, cardiac hypertrophy, heart failure, diabetic cardiovascular complications, myocardial infarction, stroke and hypertension. In addition, the potential molecular targets of puerarin are also discussed. Furthermore, we summarize the clinical trails of puerarin in the treatment of CVDs. Finally, the therapeutic effects of puerarin derivatives and its drug delivery systems are overviewed.
Collapse
Affiliation(s)
- Yan-Xi Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Library, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Zhang
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Li G, Rao H, Xu W. Puerarin plays a protective role in chondrocytes by activating Beclin1-dependent autophagy. Biosci Biotechnol Biochem 2021; 85:621-625. [PMID: 33624774 DOI: 10.1093/bbb/zbaa078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 11/14/2022]
Abstract
Puerarin can protect chondrocytes, whereby ameliorating osteoarthritis. Puerarin also promotes autophagy. Autophagy maintains chondrocyte homeostasis. The role of autophagy in puerarin-protected chondrocytes is unknown. Puerarin promoted chondrocyte autophagy. Puerarin-protected chondrocytes were reversed by autophagy inhibitors and Beclin1 inhibitor. 3-MA or Beclin1 inhibitor in vivo reversed puerarin-ameliorated cartilage damage of osteoarthritis mice. Thus, puerarin can protect chondrocytes through Beclin1-dependent autophagy activation.
Collapse
Affiliation(s)
- Guishuang Li
- Department of orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Hongming Rao
- Department of orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Weihong Xu
- Department of orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Guo YF, Su T, Yang M, Li CJ, Guo Q, Xiao Y, Huang Y, Liu Y, Luo XH. The role of autophagy in bone homeostasis. J Cell Physiol 2021; 236:4152-4173. [PMID: 33452680 DOI: 10.1002/jcp.30111] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Autophagy is an evolutionarily conserved intracellular process and is considered one of the main catabolism pathways. In the process of autophagy, cells are digested nonselectively or selectively to recover nutrients and energy, so it is regarded as an antiaging process. In addition to the essential role of autophagy in cellular homeostasis, autophagy is a stress response mechanism for cell survival. Here, we review recent literature describing the pathway of autophagy and its role in different bone cell types, including osteoblasts, osteoclasts, and osteocytes. Also discussed is the mechanism of autophagy in bone diseases associated with bone homeostasis, including osteoporosis and Paget's disease. Finally, we discuss the application of autophagy regulators in bone diseases. This review aims to introduce autophagy, summarize the understanding of its relevance in bone physiology, and discuss its role and therapeutic potential in the pathogenesis of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Yi-Fan Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Hu Y, Li H, Li R, Wu Z, Yang W, Qu W. Puerarin protects vascular smooth muscle cells from oxidized low-density lipoprotein-induced reductions in viability via inhibition of the p38 MAPK and JNK signaling pathways. Exp Ther Med 2020; 20:270. [PMID: 33199995 DOI: 10.3892/etm.2020.9400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Puerarin belongs to the family of flavonoids extracted from Pueraria lobata (Wild.) Ohwi, which exhibits antioxidative, anti-inflammatory, anti-hyperglycemic, antitumor, anti-hypertensive and anti-atherosclerotic activities. In the present study, the effects of puerarin on oxidized low-density lipoprotein (ox-LDL)-stimulated vascular smooth muscle cells (VSMCs) were explored to understand the mechanisms underlying the anti-atherosclerotic effects of puerarin. VSMCs were treated with various concentrations of puerarin (0, 20, 40 and 80 µM) prior to stimulation with ox-LDL (50 µg/ml). VSMC viability was evaluated by performing MTT and Cell Counting Kit-8 assays. Moreover, superoxide dismutase (SOD) and malondialdehyde (MDA) levels were measured by performing ELISAs. The mRNA expression levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined via reverse transcription-quantitative PCR. Western blotting was conducted to assess the levels of p38-MAPK and JNK phosphorylation. The results indicated that puerarin inhibited ox-LDL-induced VSMC viability. Moreover, puerarin significantly decreased the mRNA expression levels of IL-6 and TNF-α, significantly reduced the production of MDA and significantly increased SOD activity in ox-LDL-stimulated VSMCs. Puerarin also inhibited ox-LDL-induced phosphorylation of p38 and JNK in VSMCs. The results suggested that puerarin reduced ox-LDL-induced VSMC viability via inhibition of the p38 MAPK and JNK signaling pathways. The present study provided theoretical evidence that puerarin may serve as a therapeutic agent to reduce the development of atherosclerosis.
Collapse
Affiliation(s)
- Yanwu Hu
- Department of Traditional Chinese Medicine, School of Medicine, Tonghua Normal University, Tonghua, Jilin 134002, P.R. China
| | - Haitao Li
- Department of Pharmacy, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Ruili Li
- Department of Pharmacy, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Zijing Wu
- Department of Traditional Chinese Medicine, School of Medicine, Tonghua Normal University, Tonghua, Jilin 134002, P.R. China
| | - Wenxin Yang
- Department of Traditional Chinese Medicine, School of Medicine, Tonghua Normal University, Tonghua, Jilin 134002, P.R. China
| | - Wei Qu
- Department of Pharmacy, Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| |
Collapse
|
9
|
Lin S, Ke D, Lin Y, Fu X, Yu Y. Puerarin inhibits the migration of osteoclast precursors and osteoclastogenesis by inhibiting MCP-1 production. Biosci Biotechnol Biochem 2020; 84:1455-1459. [PMID: 32154764 DOI: 10.1080/09168451.2020.1738912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Puerarin inhibits osteoclastogenesis and cells migration. This study aims to explore whether puerarin prevents osteoclastogenesis by inhibiting osteoclast precursors (OCPs) migration. The results showed that puerarin reduced MCP-1 production in OCPs, while inhibiting OCPs migration based on MCP-1. Puerarin reversed MCP-1-promoted osteoclastogenesis. CCR2 overexpression didn't increase osteoclastogenesis with puerarin. Therefore, puerarin prevents OCPs migration by reducing MCP-1, whereby inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
- Sanfu Lin
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University , Quanzhou, Fujian, China
| | - Dianshan Ke
- Department of Orthopedics, The People's Hospital of JiangMen , Jiangmen, Guangdong, China
| | - Yinquan Lin
- Department of Orthopedics, The People's Hospital of JiangMen , Jiangmen, Guangdong, China
| | - Xiaomin Fu
- Division of Metabolism and Endocrinology, John Hopkins University , Baltimore, MD, USA
| | - Yunlong Yu
- Department of Orthopedics, Fujian Provincial Hospital , Fuzhou, Fujian, China
| |
Collapse
|
10
|
Zhang G, Wang Y, Tang G, Ma Y. Puerarin inhibits the osteoclastogenesis by inhibiting RANKL-dependent and -independent autophagic responses. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:269. [PMID: 31615565 PMCID: PMC6794871 DOI: 10.1186/s12906-019-2691-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/20/2019] [Indexed: 01/13/2023]
Abstract
Background Puerarin exerts therapeutic effect on osteoporosis due to its inhibitory effect on the formation of osteoclasts. Puerarin is also widely established as an autophagy inhibitor. The study aimed to investigate the significance of autophagy in Puerarin-treated osteoclast formation. Methods Osteoclast precursors (OCPs) derived from bone marrow-derived macrophages (BMMs) were treated with Puerarin along with RANKL or without RANKL, and then the autophagic parameters of OCPs (including autophagic proteins, LC3 transformation, autophagosome or LC3-puncta) were observed through Western Blotting, Transmission Electron Microscopy and Immunofluorescence assays. Next, after using overexpression vectors of autophagic genes (Atg7, Atg5 and BECN1) to alter autophagy activity, OCP proliferation was measured by Ethynyl deoxyuridine (EdU) assays and Cell Counting Kit-8 (CCK-8) kit, and osteoclast differentiation was assessed by Tartrate-resistant acid phosphatase (TRAP) staining. Results The results showed that Puerarin could directly inhibit the autophagy and proliferation of OCPs. Importantly, overexpression of autophagic genes Atg5, Atg7 and BECN1 reversed Puerarin-inhibited OCP autophagy and proliferation. What’s more, RANKL could promote the autography of OCPs, which was recovered by Puerarin treatment. Interestingly, different from single-Puerarin treatment, we found that in the presence of RANKL, only BECN1 overexpression significantly reversed Puerarin-inhibited osteoclast differentiation and OCP autophagy. Conclusion In conclusion, Puerarin could inhibit the OCP autophagy in the presence or absence of RANKL, which blocked the OCP proliferation and osteoclast differentiation respectively. Moreover, BECN1 plays an essential role in Puerarin-inhibited osteoclastogenesis. Our study provides potential clue to further complete the intrinsic mechanism of Puerarin in treating osteoporosis.
Collapse
|
11
|
Guo CJ, Xie JJ, Hong RH, Pan HS, Zhang FG, Liang YM. Puerarin alleviates streptozotocin (STZ)-induced osteoporosis in rats through suppressing inflammation and apoptosis via HDAC1/HDAC3 signaling. Biomed Pharmacother 2019; 115:108570. [DOI: 10.1016/j.biopha.2019.01.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 11/15/2022] Open
|
12
|
Zhou M, Ren P, Zhang Y, Li S, Li M, Li P, Shang J, Liu W, Liu H. Shen-Yuan-Dan Capsule Attenuates Atherosclerosis and Foam Cell Formation by Enhancing Autophagy and Inhibiting the PI3K/Akt/mTORC1 Signaling Pathway. Front Pharmacol 2019; 10:603. [PMID: 31214032 PMCID: PMC6554665 DOI: 10.3389/fphar.2019.00603] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/13/2019] [Indexed: 01/08/2023] Open
Abstract
Background and Aim: The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway plays a crucial role in autophagy and inflammation. Our previous studies demonstrated that Shen-Yuan-Dan Capsule (SYDC), a Chinese medicine used for treating angina pectoris, has anti-atherosclerotic and anti-inflammatory effects in mice. However, its effects on autophagy and the PI3K/Akt/mTORC1 signaling pathway remain unclear. This study aimed to explore the effects of SYDC on autophagy and PI3K/Akt/mTORC1 signaling in the apolipoprotein E knockout (ApoE−/−) mouse model and in macrophage-derived foam cells to delineate the underlying mechanism. Methods: After 6 weeks of high-fat diet, ApoE–/– mice were randomly grouped into control, Lipitor, low-SYDC (SYDC-L), middle-SYDC (SYDC-M), and high-SYDC (SYDC-H) groups (n = 10). The mice were intragastrically administered the respective treatment for 6 weeks. Murine RAW264.7 cells were stimulated with oxidized low-density lipoprotein (ox-LDL) (80 µg/ml) for 24 h and then pretreated with SYDC freeze-dried powder for another 24 h. Cells treated with SYDC were co-cultured for 24 h with LY294002, tricirbine, and rapamycin to investigate the effects on the PI3K/Akt/mTORC1 signaling pathway. Results: SYDC ameliorated blood lipid levels, reduced the atherosclerotic index and plaque areas in the aortic root in mice, and inhibited total cholesterol (TC) levels and cholinesterase (ChE)/TC ratios in ox-LDL stimulated macrophages. Moreover, SYDC up-regulated Beclin1 and LC3II/I proteins in mice and in the ox-LDL–stimulated macrophages. Moreover, SYDC inhibited AKT phosphorylation at Ser473 and mTOR phosphorylation at Ser2448 in mice and in ox-LDL–stimulated macrophages. Furthermore, SYDC’s inhibitory of ChE/TC ratios in ox-LDL–stimulated macrophages was not changed by selective inhibition of the PI3K/Akt/mTORC1 pathway. Conclusions: Our results highlight that SYDC treatment attenuates foam cell formation by promoting autophagy via inhibiting activation of the PI3K/Akt/mTORC1 signaling pathway. This study provides new insights into the molecular mechanism underlying SYDC’s therapeutic potential for treating atherosclerosis.
Collapse
Affiliation(s)
- Mingxue Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Pan Ren
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Ying Zhang
- Department of Traditional Chinese Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Sinai Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Mengjie Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Juju Shang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Weihong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Hongxu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Chen Y, Wang Z, Huang Y, Feng S, Zheng Z, Liu X, Liu M. Label-free detection of hydrogen peroxide-induced oxidative stress in human retinal pigment epithelium cells via laser tweezers Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:500-513. [PMID: 30800495 PMCID: PMC6377875 DOI: 10.1364/boe.10.000500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 05/03/2023]
Abstract
Human retinal pigment epithelium cells under hydrogen peroxide-induced oxidative stress and a ligustrazine-based protective effect were investigated using laser tweezers Raman spectroscopy. Protein and lipid were significantly affected by oxidative damage, along with increased reactive oxygen species (ROS) level within cells. The effects of ligustrazine against the reaction of ROS with protein seemed to be able to inhibit such damages but were limited during the desamidization of amides, along with additional effect on nucleic acid base and DNA phosphoric acid skeleton. This work laid the basis for both understanding the molecular mechanisms of oxidative stress-induced injury and highlighting possible biomarkers in retinal diseases.
Collapse
Affiliation(s)
- Yang Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou 350004, China
| | - ZhiQiang Wang
- Department of Ophthalmology & Optometry, Fujian Medical University, Fuzhou 350004, China
| | - Yan Huang
- Department of Ophthalmology & Optometry, Fujian Medical University, Fuzhou 350004, China
| | - ShangYuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - ZuCi Zheng
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - XiuJie Liu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - MengMeng Liu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
14
|
Wan Q, Liu Z, Yang Y. Puerarin inhibits vascular smooth muscle cells proliferation induced by fine particulate matter via suppressing of the p38 MAPK signaling pathway. Altern Ther Health Med 2018; 18:146. [PMID: 29728095 PMCID: PMC5935934 DOI: 10.1186/s12906-018-2206-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/17/2018] [Indexed: 12/18/2022]
Abstract
Background Fine particulate matter (PM2.5) is a major risk factor for the development and progression of atherosclerosis. Proliferation and infiltration of vascular smooth muscle cells (VSMCs) from the blood vessel media into the intima is a crucial step in the pathophysiology of atherosclerosis. Puerarin, a natural extract from Radix Puerariae, possesses significant anti-atherosclerosis properties. However, the underlying molecular mechanisms responsible for the effect of puerarin on the VSMCs proliferation induced by PM2.5 remain unclear. The present study was designed to examine the effect of puerarin on PM2.5-induced VSMCs proliferation, and to explore the p38 mitogen-activated protein kinase (p38 MAPK) signal mechanism involved. Methods VSMCs viability was measured by CCK-8 assay, VSMCs proliferation was assessed by BrdU immunofluorescence, the levels of superoxide dismutase (SOD) and malonaldehyde (MDA) were assayed by colorimetric assay kits, the levels of nitric oxide (NO) and endothelin-1 (ET-1) were determined by nitrate reductase method and radioimmunoassay, the levels of vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were measured by ELISA. The protein expressions of phospho-p38 MAPK (p-p38 MAPK) and proliferating cell nuclear antigen (PCNA) in the VSMCs were subjected by Western blot. Results Compared to the PM2.5-treated cells, in addition to inhibiting the PM2.5-induced VSMCs proliferation, puerarin also down-regulated the protein expressions of p-p38 MAPK and PCNA, decreased the levels of ET-1, VCAM-1, IL-6, TNF-α and MDA, increased the levels of NO and SOD. Moreover, the anti-proliferative effects of puerarin were significantly enhanced by the co-incubation of puerarin with SB203580, a selective inhibitor of p38 MAPK, as compared to the puerarin-treated cells. Conclusion These results suggest that puerarin might suppress the PM2.5-induced VSMCs proliferation via the inhibition of the p38 MAPK signaling pathway.
Collapse
|
15
|
Effect of Tetramethylpyrazine on Atherosclerosis and SCAP/SREBP-1c Signaling Pathway in ApoE -/- Mice Fed with a High-Fat Diet. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3121989. [PMID: 28491104 PMCID: PMC5405370 DOI: 10.1155/2017/3121989] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/03/2022]
Abstract
Lipid metabolism dysregulation plays a crucial role in the occurrence of atherosclerosis (As). SCAP/SREBP signaling is the main pathway for regulating lipid metabolism. Tetramethylpyrazine (TMP), a Traditional Chinese Medicine (TCM) for treating angina pectoris, has antiatherosclerotic effects and ameliorates blood lipids disturbance. However, its precise mechanism remains unclear. This study investigated the mechanism of TMP in ameliorating As in mice model. After six weeks of high-fat diet, 30 ApoE−/− mice were randomized (n = 10) and treated with Lipitor, TMP, or distilled water for six weeks. The serum blood lipids and insulin levels were measured. The expressions of PAQR3, Insig-1, SCAP, SREBP-1c, IRS-1, PI3K, Akt, and mTORC-1 in the adipose tissues were determined. The results showed that TMP could significantly decrease blood lipids levels, insulin, and corrected plaque area of the ApoE−/− mice as compared to the untreated mice (P < 0.05, P < 0.01). Moreover, TMP could significantly downregulate the expressions of SCAP, SREBP-1c, PAQR3, IRS-1, PI3K, Akt, and mTORC1 (P < 0.01). Thus, TMP may ameliorate lipid metabolism disorder and As by downregulating PAQR3 and inhibiting SCAP/SREBP-1c signaling pathway. In addition, PI3K/Akt/mTORC1 signaling pathway may be involved in this process.
Collapse
|
16
|
Ligustrazine for the Treatment of Unstable Angina: A Meta-Analysis of 16 Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8617062. [PMID: 27213001 PMCID: PMC4861787 DOI: 10.1155/2016/8617062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/07/2016] [Accepted: 02/22/2016] [Indexed: 01/18/2023]
Abstract
Ligustrazine is a principal ingredient of chuanxiong. Concerns regarding the evaluation of the effectiveness of ligustrazine in the treatment of UA have resulted in a meta-analysis combined with recent clinical evidence. Seven computer databases that included the China hospital knowledge database (CHKD), Wanfang Med Online, the Chinese medical journal database (CMJD), PubMed, Cochrane, Embase (Ovid), and Medline (Ovid) were systematically searched. We included randomized controlled trials and quasi-randomized controlled trials. Our systematic review identified 16 RCTs that met our eligibility criteria. Ligustrazine combined with conventional medicine was associated with an increased rate of marked improvement in symptoms and an increased rate of marked improvement of ECG compared with conventional Western medicine alone. Additionally, the use of ligustrazine was associated with significant trends in the reduction of the consumption of nitroglycerin and the level of fibrinogen when compared with conventional Western medicine alone. No firm results were found between the intervention and the control method groups in the reduction of the time of onset or the frequency of acute attack angina due to the high level of heterogeneity. In conclusion, our meta-analysis found that ligustrazine was associated with some benefits for people with unstable angina.
Collapse
|
17
|
Puerarin Inhibits oxLDL-Induced Macrophage Activation and Foam Cell Formation in Human THP1 Macrophage. BIOMED RESEARCH INTERNATIONAL 2015; 2015:403616. [PMID: 26576421 PMCID: PMC4631854 DOI: 10.1155/2015/403616] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/17/2015] [Accepted: 10/04/2015] [Indexed: 11/18/2022]
Abstract
Puerarin, an isoflavone derived from Kudzu roots, has been widely used for treatment of cardiovascular and cerebral vascular diseases in China and other Asian countries. However, the underlying mechanisms are largely unknown. The present study investigated whether puerarin inhibited atherogenic lipid oxLDL-mediated macrophage activation and foam cell formation in human THP1 macrophage. Treatment with oxLDL significantly increased the mRNA expression of proinflammatory cytokines tumor necrosis factor α (TNFα, 160%) and interleukin (IL) 1β (13 fold) accompanied by upregulation of toll-like receptor 4 (TLR4, 165%) and the ratio of phospho-IκBα/IκBα in THP1 macrophage. Puerarin dose-dependently prevented an increase in oxLDL-induced proinflammatory gene expression with downregulation of TLR4 and the ratio of phospho-IκBα/IκBα. Furthermore, puerarin prevented oxLDL-mediated lipid deposition and foam cell formation associated with downregulation of scavenger receptor CD36. Flow cytometry analysis showed that puerarin reduced the number of early apoptotic cells of macrophages induced by oxLDL. Our results show that puerarin has anti-inflammatory and antiatherogenic effects in vitro; the underlying mechanisms may involve the inhibition of TLR4/NFκB pathway and downregulation of CD36 expression. The results from the present study provide scientific evidence and may expand our armamentarium to use puerarin for prevention and treatment of cardiovascular and atherosclerotic diseases.
Collapse
|