1
|
Duncan CL, Gunosewoyo H, Mocerino M, Payne AD. Small Molecule Inhibitors of Human Papillomavirus: A Review of Research from 1997 to 2021. Curr Med Chem 2024; 31:5308-5350. [PMID: 37448363 DOI: 10.2174/0929867331666230713165407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Human papillomavirus (HPV) infections are the cause of warts, lesions and cancer, with different types of HPV causing different symptoms. HPV infections are the primary cause of cervical cancer. There are over 220 different types of HPV, and only nine of these can currently be vaccinated. There is a need to treat these viral infections without just treating the symptoms of the infection, as is currently the main method. There is a wide range of small molecules that have been used to inhibit various stages of the HPV infectious cycle. This review examined 132 small molecules from 121 studies that specifically target aspects of HPV infections. HPV DNA encodes for six early genes (E1 to E7, skipping E3) and two late genes (L1 and L2). According to the results, these targets for small molecule inhibitors fall into three categories: those targeting E1 and E2, targeting E6 and E7 and, finally, targeting L1 and L2. Inhibitors of E6 and E7 are the most widely studied targets, with the majority of HPV inhibition in this area. While compounds targeting both E1/E2 and E6/E7 have made it to clinical trials, there has been no significant advancement on the topic.
Collapse
Affiliation(s)
- Caitlin L Duncan
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Mauro Mocerino
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| |
Collapse
|
2
|
Li C, Cang W, Gu Y, Chen L, Xiang Y. The anti-PD-1 era of cervical cancer: achievement, opportunity, and challenge. Front Immunol 2023; 14:1195476. [PMID: 37559727 PMCID: PMC10407549 DOI: 10.3389/fimmu.2023.1195476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Cervical cancer is one of the three major female gynecological malignancies, becoming a major global health challenge. Although about 90% of early-stage patients can be cured by surgery, advanced-stage patients still need new treatment methods to improve their efficacy, especially for those with recurrence and metastasis tumors. Anti-PD-1 is currently the most widely used immune checkpoint inhibitor, which has revolutionized cancer therapy for different types of cancer. Pembrolizumab has been approved for second-line treatment of R/M CC but has a modest overall response rate of about 15%. Therefore, multiple types of anti-PD-1 have entered clinical trials successively and evaluated the efficacy in combination with chemotherapy, targeted therapy, and immunotherapy. At the same time, the dual specific antibody of PD-1/CTLA-4 was also used in clinical trials of cervical cancer, and the results showed better than anti-PD-1 monotherapy. In addition, anti-PD-1 has also been shown to sensitize radiotherapy. Therefore, understanding the current research progress of anti-PD-1 will better guide clinical application. This review summarizes ongoing clinical trials and published studies of anti-PD-1 monotherapy and combination therapy in the treatment of cervical cancer, as well as discusses the potential molecular biological mechanisms of combination, aiming to provide the basic evidence for support anti-PD-1 in the treatment of cervical cancer and new insights in combination immunotherapy.
Collapse
Affiliation(s)
- Chen Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wei Cang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lihua Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Kozuka-Hata H, Hiroki T, Miyamura N, Kitamura A, Tsumoto K, Inoue JI, Oyama M. Real-Time Search-Assisted Multiplexed Quantitative Proteomics Reveals System-Wide Translational Regulation of Non-Canonical Short Open Reading Frames. Biomolecules 2023; 13:979. [PMID: 37371559 DOI: 10.3390/biom13060979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Abnormal expression of histone deacetylases (HDACs) is reported to be associated with angiogenesis, metastasis and chemotherapy resistance regarding cancer in a wide range of previous studies. Suberoylanilide hydroxamic acid (SAHA) is well known to function as a pan-inhibitor for HDACs and recognized as one of the therapeutic drug candidates to epigenetically coordinate cancer cell fate regulation on a genomic scale. Here, we established a Real-Time Search (RTS)-assisted mass spectrometric platform for system-wide quantification of translated products encoded by non-canonical short open reading frames (ORFs) as well as already annotated protein coding sequences (CDSs) on the human transciptome and applied this methodology to quantitative proteomic analyses of suberoylanilide hydroxamic acid (SAHA)-treated human HeLa cells to evaluate proteome-wide regulation in response to drug perturbation. Very intriguingly, our RTS-based in-depth proteomic analysis enabled us to identify approximately 5000 novel peptides from the ribosome profiling-based short ORFs encoded in the diversified regions on presumed 'non-coding' nucleotide sequences of mRNAs as well as lncRNAs and nonsense mediated decay (NMD) transcripts. Furthermore, TMT-based multiplex large-scale quantification of the whole proteome changes upon differential SAHA treatment unveiled dose-dependent selective translational regulation of a limited fraction of the non-canonical short ORFs in addition to key cell cycle/proliferation-related molecules such as UBE2C, CENPF and PRC1. Our study provided the first system-wide landscape of drug-perturbed translational modulation on both canonical and non-canonical proteome dynamics in human cancer cells.
Collapse
Affiliation(s)
- Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoko Hiroki
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Naoaki Miyamura
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Aya Kitamura
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kouhei Tsumoto
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jun-Ichiro Inoue
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
4
|
Abstract
INTRODUCTION High-risk HPV infections are related to several epithelial cancers. Despite the availability of prophylactic vaccines, HPV infections are still responsible for about 5% of all human malignancies worldwide. While therapeutic vaccines are ongoing clinical trials, genotoxic agents and surgical interventions represent current clinical treatments, with no specific anti-HPV drugs yet available in the clinics. AREAS COVERED We offer a comprehensive report of small molecules in preclinical studies proposed as potential anticancer agents against HPV-driven tumors. Given the importance of HPV oncoproteins for cancer maintenance, particularly E6 and E7, we present a classification of both non-targeted and targeted agents, with a further subdivision of the latter into two categories according to their either direct or indirect activity against viral protein functions. EXPERT OPINION Prophylactic vaccines can prevent the insurgence of HPV-related cancers, but have no effect against pre-existing infections. Moreover, their high cost, genotype-restricted effect and the growing worldwide distrust for vaccines make the availability of a specific drug an unmet medical need. Different viral early proteins emerge as ideal candidates for drug development. We highlight the most promising strategies and address future challenges in this field to herald the prospect of a specific therapeutic regimen against HPV-related cancers.
Collapse
Affiliation(s)
- Lorenzo Messa
- Department of Molecular Medicine, University of Padua, Padua, 35121, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, 35121, Italy.,Clinical Microbiology and Virology Unit, Padua University Hospital, Padua, Italy
| |
Collapse
|
5
|
Pan B, Yin S, Peng F, Liu C, Liang H, Su J, Hsiao WLW, Cai Y, Luo D, Xia C. Vorinostat targets UBE2C to reverse epithelial-mesenchymal transition and control cervical cancer growth through the ubiquitination pathway. Eur J Pharmacol 2021; 908:174399. [PMID: 34331954 DOI: 10.1016/j.ejphar.2021.174399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 01/16/2023]
Abstract
Vorinostat is a histone deacetylase inhibitor (HDACi) that was demonstrated in our previous study to inhibit the proliferation, migration, and invasion of cervical cancer cells by regulating the PI3K/Akt signaling pathway. However, the molecular mechanism of vorinostat in cervical cancer treatment remains to be further elucidated. A nude mouse xenograft model was established to analyze the antitumor effect of vorinostat in vivo. The combination of iTRAQ-based proteomics and parallel reaction monitoring (PRM) technology has proven to be an efficient and reliable method to identify potential targets for cancer chemotherapy. In this study, 254 differentially expressed proteins in vorinostat-treated cervical cancer cells, among which 180 were upregulated and 74 were downregulated, were identified by using an iTRAQ-based proteomic strategy. Subsequent bioinformatic and PRM analysis of these differentially expressed proteins indicated that UBE2C is a promising target of vorinostat in the inhibition of cervical cancer cell proliferation. We confirmed that the expression of endogenous UBE2C in cervical cancer cell lines was significantly higher than that in normal cervical epithelial cell lines. Additionally, we found that vorinostat downregulated the expression of UBE2C, SQSTM1/p62, N-cadherin, vimentin and upregulated E-cadherin in SiHa and HeLa cells. Our results also showed that vorinostat can downregulate the expression of SQSTM1/p62, N-cadherin, and vimentin during the treatment of cervical cancer cells by regulating UBE2C, while upregulating the expression of E-cadherin. In conclusion, vorinostat reverses epithelial-mesenchymal transition by targeting UBE2C and controls the proliferation of cervical cancer cells through the ubiquitination pathway. UBE2C can be used as a promising target for the development of vorinostat treatment strategies.
Collapse
Affiliation(s)
- Botao Pan
- Foshan Maternal and Child Health Research Institute, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, China
| | - Shuanghong Yin
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fang Peng
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Chang Liu
- Foshan Maternal and Child Health Research Institute, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, China
| | - Huiyi Liang
- Foshan Maternal and Child Health Research Institute, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, China
| | - Jiyan Su
- Foshan Maternal and Child Health Research Institute, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macau, 999078, China
| | - Yantao Cai
- Foshan Maternal and Child Health Research Institute, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, China.
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Guangdong, 518000, China.
| | - Chenglai Xia
- Foshan Maternal and Child Health Research Institute, South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 2021; 277:119504. [PMID: 33872660 DOI: 10.1016/j.lfs.2021.119504] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
The role of genetic and epigenetic factors in tumor initiation and progression is well documented. Histone deacetylases (HDACs), histone methyl transferases (HMTs), and DNA methyl transferases. (DNMTs) are the main proteins that are involved in regulating the chromatin conformation. Among these, histone deacetylases (HDAC) deacetylate the histone and induce gene repression thereby leading to cancer. In contrast, histone acetyl transferases (HATs) that include GCN5, p300/CBP, PCAF, Tip 60 acetylate the histones. HDAC inhibitors are potent drug molecules that can induce acetylation of histones at lysine residues and induce open chromatin conformation at tumor suppressor gene loci and thus resulting in tumor suppression. The key processes regulated by HDAC inhibitors include cell-cycle arrest, chemo-sensitization, apoptosis induction, upregulation of tumor suppressors. Even though FDA approved drugs are confined mainly to haematological malignancies, the research on HDAC inhibitors in glioblastoma multiforme and triple negative breast cancer (TNBC) are providing positive results. Thus, several combinations of HDAC inhibitors along with DNA methyl transferase inhibitors and histone methyl transferase inhibitors are in clinical trials. This review focuses on how HDAC inhibitors regulate the expression of coding and non-coding genes with specific emphasis on their anti-cancer potential.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, Telangana, India
| | - Rajasekhar Reddy Manyam
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
7
|
Hao X, Sun X, Zhu H, Xie L, Wang X, Jiang N, Fu P, Sang M. Hydroxypropyl-β-Cyclodextrin-Complexed Resveratrol Enhanced Antitumor Activity in a Cervical Cancer Model: In Vivo Analysis. Front Pharmacol 2021; 12:573909. [PMID: 33935691 PMCID: PMC8082405 DOI: 10.3389/fphar.2021.573909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
Trans-resveratrol (RES) exhibits a wide range of biological activities. Various methodological approaches have been established to improve the pharmacokinetic properties of RES. Moreover, additional in vivo studies are required to support clinical application. In this study, RES/HP-β-CD (RHSD) inclusion complex was prepared and characterized by FTIR, PXRD, DSC and NMR data. The effect and potential mechanism of RHSD against cervical cancer were investigated in a mouse xenograft tumor model by qPCR assay, Western blot assay, and immunohistochemical assay. Results showed that RHSD significantly decreased tumor growth compared with free RES, while the effect of preventing tumor growth was more prominent in vivo. Notably, RHSD could inhibit tumor development by suppressing the expression of HPV E6 and E7 oncogenes and upregulating P53 and Rb1 protein in cervical cancer. These findings demonstrated that RHSD was safe and potential for development of a new oral administration drug to treat cervical cancer.
Collapse
Affiliation(s)
- Xincai Hao
- Hubei Clinical Institute of Parkinson's Disease at Xiangyang No .1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Xiaodong Sun
- Hubei Clinical Institute of Parkinson's Disease at Xiangyang No .1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Haizhen Zhu
- Hubei Clinical Institute of Parkinson's Disease at Xiangyang No .1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Lixia Xie
- Hubei Clinical Institute of Parkinson's Disease at Xiangyang No .1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Xuanbin Wang
- Hubei Clinical Institute of Parkinson's Disease at Xiangyang No .1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Nan Jiang
- Hubei Province Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Pan Fu
- Hubei Clinical Institute of Parkinson's Disease at Xiangyang No .1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Ming Sang
- Hubei Clinical Institute of Parkinson's Disease at Xiangyang No .1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
8
|
Lourenço de Freitas N, Deberaldini MG, Gomes D, Pavan AR, Sousa Â, Dos Santos JL, Soares CP. Histone Deacetylase Inhibitors as Therapeutic Interventions on Cervical Cancer Induced by Human Papillomavirus. Front Cell Dev Biol 2021; 8:592868. [PMID: 33634093 PMCID: PMC7901962 DOI: 10.3389/fcell.2020.592868] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
The role of epigenetic modifications on the carcinogenesis process has received a lot of attention in the last years. Among those, histone acetylation is a process regulated by histone deacetylases (HDAC) and histone acetyltransferases (HAT), and it plays an important role in epigenetic regulation, allowing the control of the gene expression. HDAC inhibitors (HDACi) induce cancer cell cycle arrest, differentiation, and cell death and reduce angiogenesis and other cellular events. Human papillomaviruses (HPVs) are small, non-enveloped double-stranded DNA viruses. They are major human carcinogens, being intricately linked to the development of cancer in 4.5% of the patients diagnosed with cancer worldwide. Long-term infection of high-risk (HR) HPV types, mainly HPV16 and HPV18, is one of the major risk factors responsible for promoting cervical cancer development. In vitro and in vivo assays have demonstrated that HDACi could be a promising therapy to HPV-related cervical cancer. Regardless of some controversial studies, the therapy with HDACi could target several cellular targets which HR-HPV oncoproteins could be able to deregulate. This review article describes the role of HDACi as a possible intervention in cervical cancer treatment induced by HPV, highlighting the main advances reached in the last years and providing insights for further investigations regarding those agents against cervical cancer.
Collapse
Affiliation(s)
- Natália Lourenço de Freitas
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Maria Gabriela Deberaldini
- Drugs and Medicines Department, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Diana Gomes
- CICS-UBI – Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Aline Renata Pavan
- Drugs and Medicines Department, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ângela Sousa
- CICS-UBI – Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Jean Leandro Dos Santos
- Drugs and Medicines Department, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| | - Christiane P. Soares
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
9
|
Kumar A, Rathi E, Hariharapura RC, Kini SG. Is viral E6 oncoprotein a viable target? A critical analysis in the context of cervical cancer. Med Res Rev 2020; 40:2019-2048. [PMID: 32483862 DOI: 10.1002/med.21697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
An understanding of the pathology of cervical cancer (CC) mediated by E6/E7 oncoproteins of high-risk human papillomavirus (HPV) was developed by late 80's. But if we look at the present scenario, not a single drug could be developed to inhibit these oncoproteins and in turn, be used specifically for the treatment of CC. The readers are advised not to presume the "viability of E6 protein" as mentioned in the title relates to just druggability of E6. The viability aspect will cover almost everything a researcher should know to develop E6 inhibitors until the preclinical stage. Herein, we have analysed the achievements and shortcomings of the scientific community in the last four decades in targeting HPV E6 against CC. Role of all HPV proteins has been briefly described for better perspective with a little detailed discussion of the role of E6. We have reviewed the articles from 1985 onward, reporting in vitro inhibition of E6. Recently, many computational studies have reported potent E6 inhibitors and these have also been reviewed. Subsequently, a critical analysis has been reported to cover the in vitro assay protocols and in vivo models to develop E6 inhibitors. A paragraph has been devoted to the role of public policy to fight CC employing vaccines and whether the vaccine against HPV has quenched the zeal to develop drugs against it. The review concludes with the challenges and the way forward.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
10
|
Lai Y, He Z, Zhang A, Yan Z, Zhang X, Hu S, Wang N, He H. Tip60 and p300 function antagonistically in the epigenetic regulation of HPV18 E6/E7 genes in cervical cancer HeLa cells. Genes Genomics 2020; 42:691-698. [PMID: 32399935 DOI: 10.1007/s13258-020-00938-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND High-risk HPV is a causative factor of cervical cancer. HPV DNA fragments integrate into host genome resulting in the constitutive expression of HPV genes E6 and E7 under the regulation of transcription factors, such as p300 and Tip60. Interestingly, Tip60, a factor with HAT (histone acetyl transferase) activity, represses HPV18 E6/E7 genes while another HAT p300 activates the transcription of HPV18 E6/E7. OBJECTIVE To explore the mechanism for the opposite roles of Tip60 and p300 in the virus gene regulation, and the influence of Tip60 and p300 in histone modifications in the regulatory sequence of HPV18 genes. METHODS Tip60 or p300 was either knocked down or overexpressed in HeLa cells. The effects on HPV E6E7 expression were determined with RT-qPCR. The association of RNA polymerase II and the enrichment of acetylated or methylated histones in HPV promoter region were measured by ChIP assays with specific antibodies. RESULTS ChIP results showed that Tip60 and p300 differently affected the modifications of histone H3K9 and the deposition of nucleosomes in HPV18 long control region (LCR). HPV18 LCR in HeLa cells is bivalent chromatin carrying both the active histone H3K9 acetylation mark and the repressive histone H3K9 trimethylation mark, the balance is maintained by Tip60 and p300. CONCLUSION(S) Based on the roles of Tip60 and p300 in HPV gene regulation, chemical compounds targeting Tip60 or p300 are potential anti-cervical cancer drugs.
Collapse
Affiliation(s)
- Yongwei Lai
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
- Department of Pharmacology, Jilin Medical University, Jilin City, 132013, Jilin Province, People's Republic of China
| | - Zhao He
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Aowei Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Zhinan Yan
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Xiao Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Shiyue Hu
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Nan Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Hongpeng He
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City State Key Laboratory of Food Nutrition and Safety College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China.
| |
Collapse
|
11
|
Zhang Y, Liu Y, Guo X, Hu Z, Shi H. Interfering Human Papillomavirus E6/E7 Oncogenes in Cervical Cancer Cells Inhibits the Angiogenesis of Vascular Endothelial Cells via Increasing miR-377 in Cervical Cancer Cell-Derived Microvesicles. Onco Targets Ther 2020; 13:4145-4155. [PMID: 32523352 PMCID: PMC7236052 DOI: 10.2147/ott.s239979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/11/2020] [Indexed: 01/06/2023] Open
Abstract
Background The dysregulation of the human papillomavirus 18 E6 and E7 oncogenes plays a critical role in the angiogenesis of cervical cancer (CC), including the proliferation, migration, and tube formation of vascular endothelial cells. Interfering E6/E7 increases the number of CC cell-derived microvesicles (CC-MVs). Additionally, microRNAs (miRNAs) can modulate CC angiogenesis and can be encapsulated in MVs. Objective We aim to investigate whether E6/E7 affects CC angiogenesis via regulating miRNAs in CC-MVs. Methods CC-MVs were isolated from a CC cell line (HeLa) which were transfected with small interfering RNAs (siRNAs) against E6/E7 or co-transfected with miR-377 mimics/inhibitors. The expression of several miRNAs in CC-MVs was detected using quantitative real-time PCR. After co-incubating CC-MVs with human umbilical vein endothelial cells (HUVECs), cell proliferation, migration, and tube formation of HUVECs were determined using cell counting kit-8, transwell, and tube formation assays, respectively. Results MiR-377 was increased in E6/E7-interfering CC-MVs. Overexpressing miR-377 in CC-MVs suppressed HUVEC proliferation, migration, and tube formation. LPAR2, the cell surface G protein-coupled receptor, was the downstream target of miR-377 in HUVECs. The co-transfection of E6/E7 siRNAs and miR-377 inhibitors in CCs negated the effect of E6/E7 siRNAs on the elevation of miR-377 in CC-MVs. In HUVECs, the co-transfection of E6/E7 siRNAs and miR-377 inhibitors restored the LPAR2 expression which was reduced by the E6/E7 siRNA transfection. Meanwhile, miR-377 mimic reduced LPAR2 expression and inhibited HUVEC proliferation, migration, and tube formation, while such response was negated by LPAR2 overexpression. Conclusion Interfering E6/E7 increased miR-377 in CC-MVs, and overexpressing miR-377 in CC-MVs inhibited angiogenesis of HUVECs via reducing LPAR2.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Yao Liu
- Department of Gynaecology, Hami Central Hospital, Hami, Xinjiang 839000, People's Republic of China
| | - Xingrong Guo
- Department of Gynaecology, Hami Central Hospital, Hami, Xinjiang 839000, People's Republic of China
| | - Zhenhua Hu
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| | - Huirong Shi
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
12
|
Steels A, Vannevel L, Zwaenepoel O, Gettemans J. Nb-induced stabilisation of p53 in HPV-infected cells. Sci Rep 2019; 9:12680. [PMID: 31481667 PMCID: PMC6722090 DOI: 10.1038/s41598-019-49061-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/13/2019] [Indexed: 11/23/2022] Open
Abstract
Cervical cancer is caused by a persistent infection of the mucosal epithelia with high-risk human papilloma viruses (HPVs). The viral oncoprotein E6 is responsible for the inactivation of the tumour suppressor p53 and thus plays a crucial role in HPV-induced tumorigenesis. The viral E6 protein forms a trimeric complex with the endogenous E3 ubiquitine ligase E6AP and the DNA-binding domain (DBD) of p53, which results in the polyubiquitination and proteasomal degradation of p53. We have developed nanobodies (Nbs) against the DBD of p53, which substantially stabilise p53 in HeLa cells. The observed effect is specific for HPV-infected cells, since similar effects were not seen for U2OS cells. Despite the fact that the stabilised p53 was strongly nuclear enriched, its tumour suppressive functions were hampered. We argue that the absence of a tumour suppressive effect is caused by inhibition of p53 transactivation in both HPV-infected and HPV-negative cells. The inactivation of the transcriptional activity of p53 was associated with an increased cellular proliferation and viability of HeLa cells. In conclusion, we demonstrate that p53 DBD Nbs positively affect protein stability whilst adversely affecting protein function, attesting to their ability to modulate protein properties in a very subtle manner.
Collapse
Affiliation(s)
- Anneleen Steels
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Laura Vannevel
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Olivier Zwaenepoel
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium.
| |
Collapse
|
13
|
Liu J, Nie S, Gao M, Jiang Y, Wan Y, Ma X, Zhou S, Cheng W. Identification of EPHX2 and RMI2 as two novel key genes in cervical squamous cell carcinoma by an integrated bioinformatic analysis. J Cell Physiol 2019; 234:21260-21273. [PMID: 31041817 DOI: 10.1002/jcp.28731] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
Cervical cancer is the fourth most common malignancy in women worldwide and cervical squamous cell carcinoma (CESC) is the most common histological type of cervical cancer. The dysregulation of genes plays a significant role in cancer. In the present study, we screened out differentially expressed genes (DEGs) of CESC in the GSE63514 data set from the Gene Expression Omnibus database. An integrated bioinformatics analysis was used to select hub genes, as well as to investigate their related prognostic signature, functional annotation, methylation mechanism, and candidate molecular drugs. As a result, a total of 1907 DEGs were identified (944 were upregulated and 963 were downregulated). In the protein-protein interaction network, three hub modules and 30 hub genes were identified. And two hub modules and 116 hub genes were screened out from four CESC-related modules by the weighted gene coexpression network analysis. The gene ontology term enrichment analysis and Kyoto encyclopedia of genes and genomes pathway analysis were performed to better understand functions and pathways. Genes with a significant prognostic value were found by prognostic signature analysis. And there were five genes (EPHX2, CHAF1B, KIAA1524, CDC45, and RMI2) identified as significant CESC-associated genes after expression validation and survival analysis. Among them, EPHX2 and RMI2 were noted as two novel key genes for the CESC-associated methylation and expression. In addition, four candidate small molecule drugs for CESC (camptothecin, resveratrol, vorinostat, and trichostatin A) were defined. Further studies are required to explore these significant CESC-associated genes for their potentiality in diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sipei Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mei Gao
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoling Ma
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shulin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Human Papillomavirus E6/E7 and Long Noncoding RNA TMPOP2 Mutually Upregulated Gene Expression in Cervical Cancer Cells. J Virol 2019; 93:JVI.01808-18. [PMID: 30728257 DOI: 10.1128/jvi.01808-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
TMPOP2 was previously suggested to be an oncogenic long noncoding RNA which is excessively expressed in cervical cancer cells and inhibits E-cadherin gene expression by recruiting transcription repressor EZH2 to the gene promoter. So far, the function and regulation of TMPOP2 in cervical cancer remain largely unknown. Herein, we found that TMPOP2 expression was correlated with human papillomavirus 16/18 (HPV16/18) E6 and E7 in cervical cancer cell lines CaSki and HeLa. Tumor suppressor p53, which is targeted for degradation by HPV16/18, was demonstrated to associate with two p53 response elements in the TMPOP2 promoter to repress the transcription of the TMPOP2 gene. Reciprocally, ectopic expression of TMPOP2 was demonstrated to sequester tumor repressor microRNAs (miRNAs) miR-375 and miR-139 which target HPV16/18 E6/E7 mRNA and resulted in an upregulation of HPV16/18 E6/E7 genes. Thereby, HPV16/18 E6/E7 and the long noncoding RNA (lncRNA) TMPOP2 form a positive feedback loop to mutually derepress gene expression in cervical cancer cells. Moreover, results of RNA sequencing and cell cycle analysis showed that knockdown of TMPOP2 impaired the expression of cell cycle genes, induced cell cycle arrest, and inhibited HeLa cell proliferation. Together, our results indicate that TMPOP2 and HPV16/18 E6/E7 mutually strengthen their expression in cervical cancer cells to enhance tumorigenic activities.IMPORTANCE Human papillomaviruses 16 and 18 (HPV16/18) are the main causative agents of cervical cancer. Viral proteins HPV16/18 E6 and E7 are constitutively expressed in cancer cells to maintain oncogenic phenotypes. Accumulating evidences suggest that HPVs are correlated with the deregulation of long noncoding RNAs (lncRNAs) in cervical cancer, although the mechanism was unexplored in most cases. TMPOP2 is a newly identified lncRNA excessively expressed in cervical cancer. However, the mechanism for the upregulation of TMPOP2 in cervical cancer cells remains largely unknown and its relationship with HPVs is still elusive. The significance of our research is in revealing the mutual upregulation of HPV16/18 E6/E7 and TMPOP2 with the molecular mechanisms explored. This study will expand our understandings of the oncogenic activities of human papillomaviruses and lncRNAs.
Collapse
|
15
|
Tang X, Xu Y, Lu L, Jiao Y, Liu J, Wang L, Zhao H. Identification of key candidate genes and small molecule drugs in cervical cancer by bioinformatics strategy. Cancer Manag Res 2018; 10:3533-3549. [PMID: 30271202 PMCID: PMC6145638 DOI: 10.2147/cmar.s171661] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Cervical cancer (CC) is one of the most common malignant tumors among women. The present study aimed at integrating two expression profile datasets to identify critical genes and potential drugs in CC. Materials and methods Expression profiles, GSE7803 and GSE9750, were integrated using bioinformatics methods, including differentially expressed genes analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and protein–protein interaction (PPI) network construction. Subsequently, survival analysis was performed among the key genes using Gene Expression Profiling Interactive Analysis websites. Connectivity Map (CMap) was used to query potential drugs for CC. Results A total of 145 upregulated genes and 135 downregulated genes in CC were identified. The functional changes of these differentially expressed genes related to CC were mainly associated with cell cycle, DNA replication, p53 signaling pathway, and oocyte meiosis. A PPI network was identified by STRING with 220 nodes and 2,111 edges. Thirteen key genes were identified as the intersecting genes of the enrichment pathways and the top 20 nodes in PPI network. Survival analysis revealed that high mRNA expression of MCM2, PCNA, and RFC4 was significantly associated with longer overall survival, and the survival was significantly better in the low-expression RRM2 group. Moreover, CMap predicted nine small molecules as possible adjuvant drugs to treat CC. Conclusion Our study found key dysregulated genes involved in CC and potential drugs to combat it, which might provide insights into CC pathogenesis and might shed light on potential CC treatments.
Collapse
Affiliation(s)
- Xin Tang
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Yicong Xu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Lin Lu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Yang Jiao
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Jianjun Liu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Linlin Wang
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Hongbo Zhao
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| |
Collapse
|
16
|
A quantitative LumiFluo assay to test inhibitory compounds blocking p53 degradation induced by human papillomavirus oncoprotein E6 in living cells. Sci Rep 2018; 8:6020. [PMID: 29662081 PMCID: PMC5902497 DOI: 10.1038/s41598-018-24470-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/29/2018] [Indexed: 12/25/2022] Open
Abstract
High-risk human papillomaviruses (HR-HPVs) are the causative agents for the onset of several epithelial cancers in humans. The deregulated expression of the viral oncoproteins E6 and E7 is the driving force sustaining the progression of malignant transformation in pre-neoplastic lesions. Targeting the viral E6 oncoprotein through inhibitory compounds can counteract the survival of cancer cells due to the reactivation of p53-mediated pathways and represents an intriguing strategy to treat HPV-associated neoplasias. Here, we describe the development of a quantitative and easy-to-perform assay to monitor the E6-mediated degradation of p53 in living cells to be used for small-molecule testing. This assay allows to unbiasedly determine whether a compound can protect p53 from the E6-mediated degradation in cells, through a simple 3-step protocol. We validated the assay by testing two small molecules, SAHA and RITA, reported to impair the E6-mediated p53 degradation. Interestingly, we observed that only SAHA efficiently rescued p53, while RITA could not provide the same degree of protection. The possibility to specifically and quantitatively monitor the ability of a selected compound to rescue p53 in a cellular context through our LumiFluo assay could represent an important step towards the successful development of anti-HPV drugs.
Collapse
|
17
|
Janaki Ramaiah M, Naushad SM, Lavanya A, Srinivas C, Anjana Devi T, Sampathkumar S, Dharan DB, Bhadra MP. Scriptaid cause histone deacetylase inhibition and cell cycle arrest in HeLa cancer cells: A study on structural and functional aspects. Gene 2017; 627:379-386. [PMID: 28668345 DOI: 10.1016/j.gene.2017.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/31/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Scriptaid (SCR), a well-known histone deacetylase inhibitor, cause various cellular effects such as cell growth inhibition and apoptosis. In this study, we have evaluated the anti-cancer effects of Scriptaid in HeLa cells, IMR-32 and HepG2 cells. Scriptaid inhibited the growth of HeLa cells with IC50 of 2μM at 48h in a dose-dependent manner. Flow-cytometric analysis indicated that SCR induced apoptosis. Scriptaid was found to inhibit HDAC-8 effectively than other HDAC inhibitor such as TSA as observed by HDAC-8 assay, Western blotting and modelling study. This observation was further strengthened by an artificial neuronal network (ANN) model.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, India.
| | - Shaik Mohammad Naushad
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, India; Sandor Life Sciences Pvt. Ltd, Banjara Hills, Road No: 3, Hyderabad-500034, India
| | - A Lavanya
- Chemical Biology Department, Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India
| | - Chatla Srinivas
- Chemical Biology Department, Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India
| | - Tangutur Anjana Devi
- Chemical Biology Department, Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India
| | | | | | - Manika Pal Bhadra
- Chemical Biology Department, Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India.
| |
Collapse
|
18
|
Human Papillomavirus Vaccine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:231-322. [DOI: 10.1016/bs.apcsb.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|