1
|
Guan L, Xue Y, Ding W, Zhao Z. Biosynthesis and regulation mechanisms of the Pasteurella multocida capsule. Res Vet Sci 2019; 127:82-90. [PMID: 31678457 DOI: 10.1016/j.rvsc.2019.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Pasteurella multocida possesses a polysaccharide capsule composed of a viscous surface layer that acts as a critical structural component and virulence factor. Capsular polysaccharides are structurally similar to vertebrate glycosaminoglycans, providing an immunological mechanism for bacterial molecular mimicry, resistance to phagocytosis, and immune evasion during the infection process. In recent years, a series of important research advances have been made in understanding the biosynthesis and regulatory aspects of the P. multocida capsule. This review systematically examines the serogroups, polysaccharide composition and structures, biosynthetic loci and functions, biosynthesis pathways, and expression regulation mechanisms of the P. multocida capsule, supplying a theoretical basis for the molecular pathogenesis of the P. multocida capsule and the future development of capsular polysaccharide vaccines.
Collapse
Affiliation(s)
- Lijun Guan
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yun Xue
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenwen Ding
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhanqin Zhao
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
2
|
Milano T, Gulzar A, Narzi D, Guidoni L, Pascarella S. Molecular dynamics simulation unveils the conformational flexibility of the interdomain linker in the bacterial transcriptional regulator GabR from Bacillus subtilis bound to pyridoxal 5'-phosphate. PLoS One 2017; 12:e0189270. [PMID: 29253008 PMCID: PMC5734734 DOI: 10.1371/journal.pone.0189270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
GabR from Bacillus subtilis is a transcriptional regulator belonging to the MocR subfamily of the GntR regulators. The structure of the MocR regulators is characterized by the presence of two domains: i) a N-terminal domain, about 60 residue long, possessing the winged-Helix-Turn-Helix (wHTH) architecture with DNA recognition and binding capability; ii) a C-terminal domain (about 350 residue) folded as the pyridoxal 5'-phosphate (PLP) dependent aspartate aminotransferase (AAT) with dimerization and effector binding functions. The two domains are linked to each other by a peptide bridge. Although structural and functional characterization of MocRs is proceeding at a fast pace, virtually nothing is know about the molecular changes induced by the effector binding and on how these modifications influence the properties of the regulator. An extensive molecular dynamics simulation on the crystallographic structure of the homodimeric B. subtilis GabR has been undertaken with the aim to envisage the role and the importance of conformational flexibility in the action of GabR. Molecular dynamics has been calculated for the apo (without PLP) and holo (with PLP bound) forms of the GabR. A comparison between the molecular dynamics trajectories calculated for the two GabR forms suggested that one of the wHTH domain detaches from the AAT-like domain in the GabR PLP-bound form. The most evident conformational change in the holo PLP-bound form is represented by the rotation and the subsequent detachment from the subunit surface of one of the wHTH domains. The movement is mediated by a rearrangement of the linker connecting the AAT domain possibly triggered by the presence of the negative charge of the PLP cofactor. This is the second most significant conformational modification. The C-terminal section of the linker docks into the "active site" pocket and establish stabilizing contacts consisting of hydrogen-bonds, salt-bridges and hydrophobic interactions.
Collapse
Affiliation(s)
- Teresa Milano
- Dipartimento di Scienze biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Italy
| | - Adnan Gulzar
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, L’Aquila, Italy
| | - Daniele Narzi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, L’Aquila, Italy
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, L’Aquila, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Italy
| |
Collapse
|
3
|
Smith AD, Yan X, Chen C, Dawson HD, Bhagwat AA. Understanding the host-adapted state of Citrobacter rodentium by transcriptomic analysis. Arch Microbiol 2016; 198:353-62. [PMID: 26837900 DOI: 10.1007/s00203-016-1191-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/17/2015] [Accepted: 01/12/2016] [Indexed: 12/18/2022]
Abstract
Citrobacter rodentium (Cr) is a mouse pathogen that mimics many aspects of enteropathogenic Escherichia coli infections including producing attaching and effacing (A/E) lesions. Host-adapted (HA) Cr cells that are shed at the peak of infection have been reported to be hyper-infective. The exact mechanism underlying this phenomenon has remained elusive since the pathogen loses its HA 'status' immediately upon subculturing in laboratory media. We sequenced the entire transcriptome of Cr directly from the feces of infected mice and analyzed the gene expression pattern. We observed that the entire transcriptional machinery as well as several transcriptional regulators to be differentially expressed when compared with the transcriptome of cells grown on laboratory media. Major adhesion and effector genes, tir and eae, were highly expressed in HA along with many genes located on all five loci of enterocyte effacement regions (LEE 1-5). Notable absent among the HA expressed genes were 19 fimbrial operons and non-fimbrial adhesions and several non-LEE encoded effectors. These results demonstrate that host-adapted Cr has a unique transcriptome that is associated with increased host transmission.
Collapse
Affiliation(s)
- Allen D Smith
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, 10300 Baltimore Ave., B307C, Rm. 228, BARC-E, Beltsville, MD, 20705, USA.
| | - Xianghe Yan
- Environmental, Microbial, and Food Safety Laboratory, Beltsville Agriculture Research Center, USDA-ARS, Beltsville, MD, USA
| | - Celine Chen
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, 10300 Baltimore Ave., B307C, Rm. 228, BARC-E, Beltsville, MD, 20705, USA
| | - Harry D Dawson
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, 10300 Baltimore Ave., B307C, Rm. 228, BARC-E, Beltsville, MD, 20705, USA
| | - Arvind A Bhagwat
- Environmental, Microbial, and Food Safety Laboratory, Beltsville Agriculture Research Center, USDA-ARS, Beltsville, MD, USA
| |
Collapse
|