1
|
Schember I, Reid W, Sterling-Lentsch G, Halfon MS. Conserved and novel enhancers in the Aedes aegypti single-minded locus recapitulate embryonic ventral midline gene expression. PLoS Genet 2024; 20:e1010891. [PMID: 38683842 PMCID: PMC11081499 DOI: 10.1371/journal.pgen.1010891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/09/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Transcriptional cis-regulatory modules, e.g., enhancers, control the time and location of metazoan gene expression. While changes in enhancers can provide a powerful force for evolution, there is also significant deep conservation of enhancers for developmentally important genes, with function and sequence characteristics maintained over hundreds of millions of years of divergence. Not well understood, however, is how the overall regulatory composition of a locus evolves, with important outstanding questions such as how many enhancers are conserved vs. novel, and to what extent are the locations of conserved enhancers within a locus maintained? We begin here to address these questions with a comparison of the respective single-minded (sim) loci in the two dipteran species Drosophila melanogaster (fruit fly) and Aedes aegypti (mosquito). sim encodes a highly conserved transcription factor that mediates development of the arthropod embryonic ventral midline. We identify two enhancers in the A. aegypti sim locus and demonstrate that they function equivalently in both transgenic flies and transgenic mosquitoes. One A. aegypti enhancer is highly similar to known Drosophila counterparts in its activity, location, and autoregulatory capability. The other differs from any known Drosophila sim enhancers with a novel location, failure to autoregulate, and regulation of expression in a unique subset of midline cells. Our results suggest that the conserved pattern of sim expression in the two species is the result of both conserved and novel regulatory sequences. Further examination of this locus will help to illuminate how the overall regulatory landscape of a conserved developmental gene evolves.
Collapse
Affiliation(s)
- Isabella Schember
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - William Reid
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Geyenna Sterling-Lentsch
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Marc S. Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, New York, United States of America
| |
Collapse
|
2
|
Toyota K, Hiruta C, Ogino Y, Miyagawa S, Okamura T, Onishi Y, Tatarazako N, Iguchi T. Comparative Developmental Staging of Female and Male Water Fleas Daphnia pulex and Daphnia magna During Embryogenesis. Zoolog Sci 2016; 33:31-7. [DOI: 10.2108/zs150116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kenji Toyota
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyam
| | - Chizue Hiruta
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyam
| | - Yukiko Ogino
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyam
| | - Shinichi Miyagawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyam
| | - Tetsuro Okamura
- Institute of Environmental Ecology, IDEA Consultants, Inc., 1334-5 Riemon, Yaizu, Shizuoka 421-0212, Japan
| | - Yuta Onishi
- Institute of Environmental Ecology, IDEA Consultants, Inc., 1334-5 Riemon, Yaizu, Shizuoka 421-0212, Japan
| | - Norihisa Tatarazako
- Environmental Quality Measurement Section, Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyam
| |
Collapse
|