1
|
Tang ZZ, Wang TY, Chen YM, Chen TY. Cloning and characterisation of type I interferon receptor 1 in orange-spotted grouper (Epinephelus coioides) for response to nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 101:302-311. [PMID: 32335315 DOI: 10.1016/j.fsi.2020.04.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/23/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Grouper is known as a highly economical teleost species in the Asian aquaculture industry; however, intensive culture activities easily cause disease outbreak, especially viral disease. For the prevention of viral outbreaks, interferon (IFN) is among the major defence systems being studied in different species. Fish type I IFNs are known to possess antiviral properties similar to mammalian type I IFNs. In order to stimulate antiviral function, IFN will bind to its cognate receptor, the type I interferon receptor (IFNAR), composed of heterodimeric receptor subunits known as IFNAR1 and IFNΑR2. The binding of type I interferon to receptors assists in the transduction of signals from the external to internal environments of cells to activate biological responses. In order to study the function of IFN, we first need to understand IFN receptors. In this study, we cloned and identified IFNAR1 in orange-spotted grouper (osgIFNAR1) and noted the up-regulated mRNA expression of the receptor and downstream effectors in the head kidney cells with cytokine treatment. The transcriptional expression of osgIFNAR1, which is characterised using polyinosinic-polycytidylic acid (poly[I:C]) and lipopolysaccharide (LPS) treatments, indicated the involvement of osgIFNAR1 in the immune response of grouper. The subcellular localisation of osgIFNAR1 demonstrated scattering across the grouper cell. Viral infection showed the negative feedback regulation of osgIFNAR1 in grouper larvae. Further loss of function of IFNAR1 showed a decreased expression of the virus. This study reported the identification of osgIFNAR1 and characterisation of receptor sensitivity towards immunostimulants, cytokine response, and viral challenge in the interferon pathway of orange-spotted grouper and possible different role of the receptor in viral production. Together, these results provide a frontline report of the potential function of osgIFNAR1 in the innate immunity of teleost.
Collapse
Affiliation(s)
- Zhi Zhuang Tang
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ting-Yu Wang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Young-Mao Chen
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, 70101, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, 70101, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
2
|
Yu S, Xia M, Alsiddig MA, Liu H, Wei W, Chen J. Molecular cloning, alternative splicing and mRNA expression analysis of MAGI1 and its correlation with laying performance in geese. Br Poult Sci 2017; 58:158-165. [DOI: 10.1080/00071668.2016.1268251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
- College of Life Science, Leshan Normal University, Sichuan, PR China
| | - M. Xia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - M. A. Alsiddig
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - H. Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - W. Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - J. Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
3
|
Zeng M, Chen S, Wang M, Jia R, Zhu D, Liu M, Sun K, Yang Q, Wu Y, Chen X, Cheng A. Molecular identification and comparative transcriptional analysis of myxovirus resistance GTPase (Mx) gene in goose (Anser cygnoide) after H9N2 AIV infection. Comp Immunol Microbiol Infect Dis 2016; 47:32-40. [PMID: 27477505 DOI: 10.1016/j.cimid.2016.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/20/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022]
Abstract
Interferon (IFN)-induced myxovirus resistance (Mx) GTPases belong to the family of dynamin-like GTPases and control a diverse range of viruses. In this study, the identified goose Mx (goMx) mRNA is 2009bp long, shares partially conserved exons with other homologues, and shares highly conserved domains in its primary structure. The amino acid position 629 (629aa) of the goMx protein was identified as serine (Ser), in contrast to the Ser located at 631aa in chicken Mx, which is considered to be responsible for the lack of chicken Mx antiviral activity. In addition, the goMx 142aa residue in the dynamin family signature differs from that of other functional Mx proteins. Transcriptional analysis revealed that goMx was mainly expressed in the digestive, respiratory and immune systems in an age-specific manner. GoMx transcript levels in goose peripheral blood mononuclear cells (PBMCs) were found to be significantly up-regulated by various agonists and avian viruses. Furthermore, a time course study of the effects of H9N2 avian influenza virus (AIV) on goMx expression in infected goslings suggested that H9N2 AIV affected goMx expression. However, significant changes in goMx expression were observed in the trachea, lung and small intestine of infected birds. Altogether, these results indicate that goMx protein may have acquired its broad antiviral activity by changing only a few amino acids at select sites, even as it shares a conserved architectures with species.
Collapse
Affiliation(s)
- Miao Zeng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
4
|
Yu S, Wei W, Xia M, Jiang Z, He D, Li Z, Han H, Chu W, Liu H, Chen J. Molecular characterization, alternative splicing and expression analysis ofACSF2and its correlation with egg-laying performance in geese. Anim Genet 2016; 47:451-62. [DOI: 10.1111/age.12435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 01/07/2023]
Affiliation(s)
- S. Yu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - W. Wei
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - M. Xia
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Z. Jiang
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - D. He
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Z. Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - H. Han
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - W. Chu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - H. Liu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - J. Chen
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
5
|
Gai L, Sun C, Yu W, Liu H. Screening of intracerebral hemorrhage associated allele combinations at different loci using a novel association analysis. Gene 2016; 579:1-7. [PMID: 26723510 DOI: 10.1016/j.gene.2015.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/28/2015] [Accepted: 12/15/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Genetic research has progressed along with scientific and technological developments. However, it is difficult to identify frequency differences in the allele combination at cross-loci. OBJECTIVE The purpose of this study was to examine the relationship between the presence of specific allele combinations of short tandem repeat (STR) loci and the onset of intracerebral hemorrhage (ICH) using a novel methodology. METHODS DNA samples were collected from patients with ICH, who were adult population. There were a total of 51 Chinese patients (102 chromosomes), comprising 30 males and 21 females. Alleles from short tandem repeat (STR) loci were determined using the STR Profiler Plus PCR amplification kit (15 STR loci). Statistically significant differences between observed and expected frequencies of allele combinations were identified. To further determine allele combinations related to the disease, analyses of patient age at disease onset for those carrying a specific allele combination were conducted. Finally, cross-validation of the two sets of analytical results was carried out. RESULTS A total of 1550 pairwise combinations were obtained by computer counting, of which eight pairs of alleles showed significant differences between the observed and expected frequencies (p<0.05, from 0.006 to 0.042). The p value for the cross-validation analysis was less than 0.05 for two pairs of alleles (D13S317-11 and vWA-17, p=0.021; D7S820-13 and D2S1338-18, p=0.023). CONCLUSIONS The study identified each population had a unique gene distribution and that distribution followed certain rules. ICH onset may be associated with this allele combinations (D13S317-11 and vWA-17; D7S820-13 and D2S1338-18). The new methodology used in this study could enable additional discoveries pertaining to the relationship between specific allele combinations at different loci and the onset of complex diseases.
Collapse
Affiliation(s)
- Liping Gai
- College of Medical Laboratory, Dalian Medical University, China
| | - Cui Sun
- College of Medical Laboratory, Dalian Medical University, China
| | - Weijian Yu
- College of Medical Laboratory, Dalian Medical University, China
| | - Hui Liu
- College of Medical Laboratory, Dalian Medical University, China.
| |
Collapse
|