1
|
Chen R, Liu J, Zhang Y, Cai W, Zhang X, Xu Y, Dou X, Wang Z, Han D, Wang J, Lin G, Wang L, Sun Y, Bai Z, Gu M, Wang Z. Association analysis between reproduction genes INHA, PGR, RARG with lamb and other traits of Liaoning cashmere goats. Anim Biotechnol 2023; 34:2094-2105. [PMID: 35622393 DOI: 10.1080/10495398.2022.2077212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Reproductive traits have a high economic value in goat breeding, and increasing the number of lambs produced by ewes is of great importance to improve the production efficiency of goat farming. Lambing traits in goats are low heritability traits, but their genetic basis is ultimately determined by genes. This study aimed to investigate the relationship between INHA, RARG, and PGR gene polymorphisms and production performance, such as lambing, cashmere production, milk production, and body size in Liaoning cashmere goats. A total of six single nucleotide polymorphisms (SNPs) loci were identified in these three genes, G144A and T504C on the INHA gene, A56G, G144A, G490C on the RARG gene, and G109519T on the PGR gene. For lambing and cashmere production traits, the AA genotype of G144A on the INHA gene, TT on the T504C genotype, GG genotype of G144A on the INHA gene, A56G, G144A, and T504C on RARG and G109519T on PGR gene are dominant genotypes. AATT is a dominant haplotype combination. Allele G can be used as a molecular marker for lambing, cashmere, and milk production traits in Liaoning cashmere goats. Marker-assisted selection can be used for early selection to achieve improvement of genetic traits in Liaoning cashmere goats.
Collapse
Affiliation(s)
- Rui Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jichang Liu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yurou Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanan Xu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xingtang Dou
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Shenyang, China
| | - Zhanhong Wang
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Shenyang, China
| | - Di Han
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Shenyang, China
| | - Jiaming Wang
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Shenyang, China
| | - Guangyu Lin
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Shenyang, China
| | - Lingling Wang
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Shenyang, China
| | - Yinggang Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ming Gu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
2
|
Bian Z, Li K, Chen S, Man C, Wang F, Li L. Association between INHA gene polymorphisms and litter size in Hainan black goats. PeerJ 2023; 11:e15381. [PMID: 37187517 PMCID: PMC10178212 DOI: 10.7717/peerj.15381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Background The inhibin alpha (INHA) gene is one of the important genes affecting the reproductive traits of animals. Hainan black goats are the main goat breed in Hainan Island (China), whose development is limited by low reproductive performance. However, the relationship between INHA gene and the reproductive performance of Hainan black goats is still unclear. Therefore, the purpose of this work was to explore the effect of INHA gene polymorphisms on the litter size of Hainan black goats. Methods Single nucleotide polymorphisms (SNPs) of INHA were detected, and the genetic parameters and haplotype frequency of these SNPs were calculated and association analysis was performed for these SNPs with the litter size. Finally, the SNP with significant correlations to litter size was analyzed by Bioinformatics tools. Results The results showed that the litter size of individuals with the AC genotype at loci g.28317663A>C of INHA gene was significantly higher than those with the AA genotype. This SNP changed the amino acid sequence, which may affect the function of INHA protein by affecting its structure. Our results suggest that g.28317663A>C loci may serve as a potential molecular marker for improving the reproductive traits in Hainan black goats.
Collapse
|
3
|
Houston BJ, O'Connor AE, Wang D, Goodchild G, Merriner DJ, Luan H, Conrad DF, Nagirnaja L, Aston KI, Kliesch S, Wyrwoll MJ, Friedrich C, Tüttelmann F, Harrison C, O'Bryan MK, Walton K. Human INHBB Gene Variant (c.1079T>C:p.Met360Thr) Alters Testis Germ Cell Content, but Does Not Impact Fertility in Mice. Endocrinology 2022; 163:6504015. [PMID: 35022746 DOI: 10.1210/endocr/bqab269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/19/2022]
Abstract
Testicular-derived inhibin B (α/β B dimers) acts in an endocrine manner to suppress pituitary production of follicle-stimulating hormone (FSH), by blocking the actions of activins (β A/B/β A/B dimers). Previously, we identified a homozygous genetic variant (c.1079T>C:p.Met360Thr) arising from uniparental disomy of chromosome 2 in the INHBB gene (β B-subunit of inhibin B and activin B) in a man suffering from infertility (azoospermia). In this study, we aimed to test the causality of the p.Met360Thr variant in INHBB and testis function. Here, we used CRISPR/Cas9 technology to generate InhbbM364T/M364T mice, where mouse INHBB p.Met364 corresponds with human p.Met360. Surprisingly, we found that the testes of male InhbbM364T/M364T mutant mice were significantly larger compared with those of aged-matched wildtype littermates at 12 and 24 weeks of age. This was attributed to a significant increase in Sertoli cell and round spermatid number and, consequently, seminiferous tubule area in InhbbM364T/M364T males compared to wildtype males. Despite this testis phenotype, male InhbbM364T/M364T mutant mice retained normal fertility. Serum hormone analyses, however, indicated that the InhbbM364T variant resulted in reduced circulating levels of activin B but did not affect FSH production. We also examined the effect of this p.Met360Thr and an additional INHBB variant (c.314C>T: p.Thr105Met) found in another infertile man on inhibin B and activin B in vitro biosynthesis. We found that both INHBB variants resulted in a significant disruption to activin B in vitro biosynthesis. Together, this analysis supports that INHBB variants that limit activin B production have consequences for testis composition in males.
Collapse
Affiliation(s)
- Brendan J Houston
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, Australia
- School of BioSciences and Bio21 Institute, Faculty of Science, University of Melbourne, Parkville, Australia
| | - Anne E O'Connor
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, Australia
- School of BioSciences and Bio21 Institute, Faculty of Science, University of Melbourne, Parkville, Australia
| | - Degang Wang
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- The Affiliated Zhongshan Boai Hospital of Southern Medical University, Guangdong, China
| | - Georgia Goodchild
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - D Jo Merriner
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, Australia
| | - Haitong Luan
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Don F Conrad
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
- Genetics of Male Infertility Initiative, GEMINI, Portland, OR, USA
| | - Liina Nagirnaja
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
- Genetics of Male Infertility Initiative, GEMINI, Portland, OR, USA
| | - Kenneth I Aston
- Genetics of Male Infertility Initiative, GEMINI, Portland, OR, USA
- Department of Surgery (Urology Division) University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sabine Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Margot J Wyrwoll
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Corinna Friedrich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Craig Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, Australia
- School of BioSciences and Bio21 Institute, Faculty of Science, University of Melbourne, Parkville, Australia
| | - Kelly Walton
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
4
|
Rafaqat W, Kayani MR, Fatima T, Shaharyar S, Khan S, Ashraf M, Afzal U, Rehman R. Association of polymorphism c.-124G>A and c.-16 C>T in the promoter region of human INHA gene with altered sperm parameters; A pilot study. Int J Clin Pract 2020; 74:e13595. [PMID: 32593229 DOI: 10.1111/ijcp.13595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The objective of this was to demonstrate the association of Inhibin α (INHα) c.-124G>A and INHα-c.-16 C>T polymorphisms with altered sperm parameters in a selected male population of Karachi, Pakistan. STUDY DESIGN & SETTINGS In this pilot study, male subjects were stratified on the basis of the WHO criteria for altered sperm parameters; 83 (cases-altered sperm parameters) and 30 (controls-normal sperm parameters) subjects were included for analysis of INHα-c.124G>A polymorphism and 88 (cases) and 38 (controls) were analysed for INHα -c-16 C>T polymorphism. Genotyping of INHα-c.-124G>A and INHα-c.-16 C>T was performed by PCR-RFLP, genotype distribution in Hardy-Weinberg equilibrium was evaluated by binary logistic regression model. RESULTS For the c.-124G>A polymorphism in INHα gene, frequency of the three major genotypes in controls was: GG: 80.0%, GA: 20.0% and AA: 0% and in cases was: GG: 59.0%, GA: 30.2% and AA: 10.8%. The GG genotype was significantly associated with male infertility (P < .045, OR = 2.776, 95% CI = 1.025-7.513) while the GA genotype was not significantly associated with infertility (P < .290 OR = 0.580, 95% CI = 0.211-1.593). Frequency of mutant AA genotype was 10.8% in cases (altered sperm parameters) and absent (0%) in normal sperm parameter (controls). The frequencies of three major genotypes CC, CT and TT did not show any significant difference between cases and controls (P > .05). CONCLUSION The results from our study exhibited a significant association of c.-124G>A polymorphism in the INHα gene promoter region with male infertility in the Pakistani population. A significant association of c.-16 C>T polymorphism with male infertility, however, was not observed. Further large-scale studies should be conducted to confirm this association.
Collapse
Affiliation(s)
| | | | - Tasneem Fatima
- Department of Biological & Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Saeeda Shaharyar
- Department of Biological & Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Shagufta Khan
- Department of Biological & Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Mussarat Ashraf
- Department of Biological & Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Usman Afzal
- Medical College, Aga Khan University, Karachi, Pakistan
| | - Rehana Rehman
- Medical College, Aga Khan University, Karachi, Pakistan
| |
Collapse
|