1
|
Gendron EMS, Qing X, Sevigny JL, Li H, Liu Z, Blaxter M, Powers TO, Thomas WK, Porazinska DL. Comparative mitochondrial genomics in Nematoda reveal astonishing variation in compositional biases and substitution rates indicative of multi-level selection. BMC Genomics 2024; 25:615. [PMID: 38890582 PMCID: PMC11184840 DOI: 10.1186/s12864-024-10500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Nematodes are the most abundant and diverse metazoans on Earth, and are known to significantly affect ecosystem functioning. A better understanding of their biology and ecology, including potential adaptations to diverse habitats and lifestyles, is key to understanding their response to global change scenarios. Mitochondrial genomes offer high species level characterization, low cost of sequencing, and an ease of data handling that can provide insights into nematode evolutionary pressures. RESULTS Generally, nematode mitochondrial genomes exhibited similar structural characteristics (e.g., gene size and GC content), but displayed remarkable variability around these general patterns. Compositional strand biases showed strong codon position specific G skews and relationships with nematode life traits (especially parasitic feeding habits) equal to or greater than with predicted phylogeny. On average, nematode mitochondrial genomes showed low non-synonymous substitution rates, but also high clade specific deviations from these means. Despite the presence of significant mutational saturation, non-synonymous (dN) and synonymous (dS) substitution rates could still be significantly explained by feeding habit and/or habitat. Low ratios of dN:dS rates, particularly associated with the parasitic lifestyles, suggested the presence of strong purifying selection. CONCLUSIONS Nematode mitochondrial genomes demonstrated a capacity to accumulate diversity in composition, structure, and content while still maintaining functional genes. Moreover, they demonstrated a capacity for rapid evolutionary change pointing to a potential interaction between multi-level selection pressures and rapid evolution. In conclusion, this study helps establish a background for our understanding of the potential evolutionary pressures shaping nematode mitochondrial genomes, while outlining likely routes of future inquiry.
Collapse
Affiliation(s)
- Eli M S Gendron
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Xue Qing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.
| | - Joseph L Sevigny
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Hongmei Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyin Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | | | - Thomas O Powers
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - W Kelly Thomas
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Dorota L Porazinska
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Marquez J, Hajihassani A. Identification, Diversity, and Distribution of Meloidogyne spp. in Vegetable Fields of South Georgia, U.S.A. PHYTOPATHOLOGY 2023; 113:1093-1102. [PMID: 36449528 DOI: 10.1094/phyto-07-22-0246-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Root-knot nematode (RKN; Meloidogyne spp.) is the most prevalent plant-parasitic nematode in vegetable fields of Georgia, with an incidence of 67.3%. Because aggressive RKN species are reported in the southeastern United States, molecular-based identification of RKN species was conducted on soil samples taken from a nematode surveillance study in 2018 from 292 RKN-infested vegetable fields in southern Georgia. The RKN-infested soil was potted with tomato cultivar Rutgers, and individual nematode females were isolated from galled roots and subjected to species-specific PCR and mitochondrial haplotype-based RKN species identification. The incidence (%), mean, and maximum relative abundance (second-stage juveniles per 100 cm3 of soil) of the five RKN species identified consisted of M. incognita (91.9, 486, 14,144), M. arenaria (36.0, 707, 14,144), M. floridensis (2.2, 909, 5,264), M. javanica (5.5, 352, 1,488), and M. haplanaria (0.7, 8, 14). A large proportion of fields (29%) had mixed populations of M. incognita and M. arenaria, which may reflect the region's long history of cotton and peanut cultivation. For unknown reasons, mixed populations of M. incognita and M. arenaria were associated with higher population densities. M. incognita is the most important RKN species in vegetable fields, followed by M. arenaria; therefore, pure or mixed populations of these species should be addressed in nematode management programs. Although at a lower incidence, the newly detected species, M. floridensis and M. haplanaria, have the potential to become a major threat since they reproduce on vegetables with Mi-resistant genes.
Collapse
Affiliation(s)
- Josiah Marquez
- Department of Plant Pathology, University of Georgia, Tifton, GA
| | - Abolfazl Hajihassani
- Department of Entomology and Nematology, Fort Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Davie, FL
| |
Collapse
|
3
|
Sikandar A, Jia L, Wu H, Yang S. Meloidogyne enterolobii risk to agriculture, its present status and future prospective for management. FRONTIERS IN PLANT SCIENCE 2023; 13:1093657. [PMID: 36762171 PMCID: PMC9902769 DOI: 10.3389/fpls.2022.1093657] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Meloidogyne enterolobii, commonly known as guava root-knot nematode, poses risk due to its widespread distribution and extensive host range. This species is recognized as the most virulent root-knot nematode (RKN) species because it can emerge and breed in plants that have resistance to other tropical RKNs. They cause chlorosis, stunting, and yield reductions in host plants by producing many root galls. It is extremely challenging for farmers to diagnose due to the symptoms' resemblance to nutritional inadequacies. This pathogen has recently been considered a significant worldwide threat to agricultural production. It is particularly challenging to diagnose a M. enterolobii due to the similarities between this species and other RKN species. Identified using traditional morphological and molecular techniques, which is a crucial first in integrated management. Chemical control, biological control, the adoption of resistant cultivars, and cultural control have all been developed and effectively utilized to combat root-knot nematodes in the past. The object of this study was to get about the geographical distribution, host plants, symptoms, identification, and control techniques of M. enterolobii and recommend future initiatives to progress its management.
Collapse
|
4
|
Morphological description and molecular characterization of Ancyracanthus electrophori n. sp. (Gnathostomatoidea: Gnathostomatidae): a new nematode parasitic in the electric eel Electrophorus varii (Gymnotiformes: Gymnotidae), from the Brazilian Amazon. J Helminthol 2023; 97:e9. [PMID: 36648225 DOI: 10.1017/s0022149x22000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A new species of Ancyracanthus, parasite of the electric eel Electrophorus varii, in the Brazilian Amazon, is described based on morphological and molecular characterization. Ancyracanthus electrophori n. sp. differs from the two congeners namely, Ancyracanthus pinnatifidus and Ancyracanthus schubarti, based on the structure of cephalic appendages, number and arrangement of caudal papillae in males, vulva very close to anus in females, eggs with smoothly mamillated shell, host taxon and geographical origin. Moreover, the new species is the first in the genus to be described with thorny cuticular rings and to be observed with the use of scanning electron microscopy (SEM). The morphology of A. pinnatifidus and A. schubarti is still poorly-known and should be revised in details; however, the separation between them and the new species was clear. Genetic characterization based on 28S rDNA and cytochrome c oxidase subunit I (cox1) mtDNA partial sequences, performed for the first time in Acyracanthus, along with phylogenetic reconstructions using both genetic markers, placed Ancyracanthus electrophori n. sp. in a suggestive basal position within Gnathostomatidae. Phylogenetic reconstructions using cox1 sequences also suggested lack of monophyly in the genera Gnathostoma and Spiroxys and, consequently, in the subfamilies Gnathostominae and Spiroxyinae. However, such results are preliminary. With the first genetic characterization and observations using SEM in Ancyracanthus, resulting in the discovery of a new species and in the expansion of the geographical occurrence of the genus to Amazonian fish, an important step towards a better understanding of these nematodes has been taken.
Collapse
|
5
|
Singh PR, van de Vossenberg BTLH, Rybarczyk-Mydłowska K, Kowalewska-Groszkowska M, Bert W, Karssen G. An Integrated Approach for Synonymization of Rotylenchus rhomboides with R. goodeyi (Nematoda: Hoplolaimidae) Reveals High Intraspecific Mitogenomic Variation. PHYTOPATHOLOGY 2022; 112:1152-1164. [PMID: 34818905 DOI: 10.1094/phyto-08-21-0363-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rotylenchus is a widely distributed, economically important plant-parasitic nematode group whose species-level identification relies largely on limited morphological characters, including character-based tabular keys and molecular data of ribosomal and mitochondrial genes. In this study, a combined morphological and molecular analysis of three populations of Rotylenchus goodeyi from Belgium, Poland, and the Netherlands revealed important character variations of this species, leading to synonymization of R. rhomboides with R. goodeyi and a high nucleotide variation within cox1 gene sequences in these populations. Additional Illumina sequencing of DNA from individuals of the Dutch population revealed two variants of mitogenomes, each approximately 23 Kb in size, differing by approximately 9% and containing 11 protein-coding genes, 2 ribosomal RNA genes, and as many as 29 transfer RNA genes. In addition to the first representative whole-genome shotgun sequence datasets of the genus Rotylenchus, this study also provides the full-length mitogenome and the ribosomal DNA sequences of R. goodeyi.
Collapse
Affiliation(s)
| | - Bart T L H van de Vossenberg
- National Plant Protection Organization, National Reference Centre for Plant Health, 6706 EA Wageningen, The Netherlands
| | | | | | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Gerrit Karssen
- Nematology Research Unit, Department of Biology, Ghent University, 9000 Ghent, Belgium
- National Plant Protection Organization, National Reference Centre for Plant Health, 6706 EA Wageningen, The Netherlands
| |
Collapse
|
6
|
Feng S, Pozzi A, Stejskal V, Opit G, Yang Q, Shao R, Dowling DK, Li Z. Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements. BMC Biol 2022; 20:7. [PMID: 34996453 PMCID: PMC8742463 DOI: 10.1186/s12915-021-01218-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background A single circular mitochondrial (mt) genome is a common feature across most metazoans. The mt-genome includes protein-coding genes involved in oxidative phosphorylation, as well as RNAs necessary for translation of mt-RNAs, whose order and number are highly conserved across animal clades, with few known exceptions of alternative mt-gene order or mt-genome architectures. One such exception consists of the fragmented mitochondrial genome, a type of genome architecture where mt-genes are split across two or more mt-chromosomes. However, the origins of mt-genome fragmentation and its effects on mt-genome evolution are unknown. Here, we investigate these origin and potential mechanisms underlying mt-genome fragmentation, focusing on a genus of booklice, Liposcelis, which exhibits elevated sequence divergence, frequent rearrangement of mt-gene order, and fragmentation of the mt genome, and compare them to other Metazoan clades. Results We found this genus Liposcelis exhibits very low conservation of mt-gene order across species, relative to other metazoans. Levels of gene order rearrangement were, however, unrelated to whether or not mt-genomes were fragmented or intact, suggesting mitochondrial genome fragmentation is not affecting mt-gene order directly. We further investigated possible mechanisms underpinning these patterns and revealed very high conservation of non-coding sequences at the edges of multiple recombination regions across populations of one particular Liposcelis species, supportive of a hypothesis that mt-fragmentation arises from recombination errors between mt-genome copies. We propose these errors may arise as a consequence of a heightened mutation rate in clades exhibiting mt-fragmentation. Consistent with this, we observed a striking pattern across three Metazoan phyla (Arthropoda, Nematoda, Cnidaria) characterised by members exhibiting high levels of mt-gene order rearrangement and cases of mt-fragmentation, whereby the mt-genomes of species more closely related to species with fragmented mt-genomes diverge more rapidly despite experiencing strong purifying selection. Conclusions We showed that contrary to expectations, mt-genome fragmentation is not correlated with the increase in mt-genome rearrangements. Furthermore, we present evidence that fragmentation of the mt-genome may be part of a general relaxation of a natural selection on the mt-genome, thus providing new insights into the origins of mt-genome fragmentation and evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01218-7.
Collapse
Affiliation(s)
- Shiqian Feng
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Andrea Pozzi
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Vaclav Stejskal
- Crop Research Institute, Drnovská 507, 161 06, Prague, Czech Republic.,Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 00, Prague, Czech Republic
| | - George Opit
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, 74078, USA
| | - Qianqian Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Renfu Shao
- GeneCology Research Centre, Centre for Animal Health Innovation, School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4556, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Kim T, Lee Y, Kil HJ, Park JK. The mitochondrial genome of Acrobeloides varius (Cephalobomorpha) confirms non-monophyly of Tylenchina (Nematoda). PeerJ 2020; 8:e9108. [PMID: 32440374 PMCID: PMC7229770 DOI: 10.7717/peerj.9108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/10/2020] [Indexed: 01/08/2023] Open
Abstract
The infraorder Cephalobomorpha is a diverse and ecologically important nematode group found in almost all terrestrial environments. In a recent nematode classification system based on SSU rDNA, Cephalobomorpha was classified within the suborder Tylenchina with Panagrolaimomorpha, Tylenchomorpha and Drilonematomorpha. However, phylogenetic relationships among species within Tylenchina are not always consistent, and the phylogenetic position of Cephalobomorpha is still uncertain. In this study, in order to examine phylogenetic relationships of Cephalobomorpha with other nematode groups, we determined the complete mitochondrial genome sequence of Acrobeloides varius, the first sequenced representative of Cephalobomorpha, and used this sequence for phylogenetic analyses along with 101 other nematode species. Phylogenetic analyses using amino acid and nucleotide sequence data of 12 protein-coding genes strongly support a sister relationship between the two cephalobomorpha species A. varius and Acrobeles complexus (represented by a partial mt genome sequence). In this mitochondrial genome phylogeny, Cephalobomorpha was sister to all chromadorean species (excluding Plectus acuminatus of Plectida) and separated from Panagrolaimomorpha and Tylenchomorpha, rendering Tylenchina non-monophyletic. Mitochondrial gene order among Tylenchina species is not conserved, and gene clusters shared between A. varius and A. complexus are very limited. Results from phylogenetic analysis and gene order comparison confirms Tylenchina is not monophyletic. To better understand phylogenetic relationships among Tylenchina members, additional mitochondrial genome information is needed from underrepresented taxa representing Panagrolaimomorpha and Cephalobomorpha.
Collapse
Affiliation(s)
- Taeho Kim
- Division of EcoScience, Ewha Womans University, Seoul, Republic of Korea
| | - Yucheol Lee
- Division of EcoScience, Ewha Womans University, Seoul, Republic of Korea
| | - Hyun-Jong Kil
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Joong-Ki Park
- Division of EcoScience, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
8
|
On the Close Relatedness of Two Rice-Parasitic Root-Knot Nematode Species and the Recent Expansion of Meloidogyne graminicola in Southeast Asia. Genes (Basel) 2019; 10:genes10020175. [PMID: 30823612 PMCID: PMC6410229 DOI: 10.3390/genes10020175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
Meloidogyne graminicola is a facultative meiotic parthenogenetic root-knot nematode (RKN) that seriously threatens agriculture worldwide. We have little understanding of its origin, genomic structure, and intraspecific diversity. Such information would offer better knowledge of how this nematode successfully damages rice in many different environments. Previous studies on nuclear ribosomal DNA (nrDNA) suggested a close phylogenetic relationship between M. graminicola and Meloidogyne oryzae, despite their different modes of reproduction and geographical distribution. In order to clarify the evolutionary history of these two species and explore their molecular intraspecific diversity, we sequenced the genome of 12 M. graminicola isolates, representing populations of worldwide origins, and two South American isolates of M. oryzae. k-mer analysis of their nuclear genome and the detection of divergent homologous genomic sequences indicate that both species show a high proportion of heterozygous sites (ca. 1–2%), which had never been previously reported in facultative meiotic parthenogenetic RKNs. These analyses also point to a distinct ploidy level in each species, compatible with a diploid M. graminicola and a triploid M. oryzae. Phylogenetic analyses of mitochondrial genomes and three nuclear genomic sequences confirm close relationships between these two species, with M. graminicola being a putative parent of M. oryzae. In addition, comparative mitogenomics of those 12 M. graminicola isolates with a Chinese published isolate reveal only 15 polymorphisms that are phylogenetically non-informative. Eight mitotypes are distinguished, the most common one being shared by distant populations from Asia and America. This low intraspecific diversity, coupled with a lack of phylogeographic signal, suggests a recent worldwide expansion of M. graminicola.
Collapse
|
9
|
Topalović O, Moore JF, Janssen T, Bert W, Karssen G. An early record of Meloidogyne fallax from Ireland. Zookeys 2017:33-52. [PMID: 28144174 PMCID: PMC5242265 DOI: 10.3897/zookeys.643.11266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/12/2016] [Indexed: 11/12/2022] Open
Abstract
Root-knot nematodes, Meloidogyne spp., cause huge economic losses worldwide. Currently, three Meloidogyne spp. are present on the quarantine A2 list of EPPO, Meloidogyne chitwoodi, Meloidogyne fallax and Meloidogyne enterolobii. As a quarantine organism, Meloidogyne fallax has been detected in England and Northern Ireland on sport turf in 2011, and in England on leek in 2013. However, its presence in Ireland has probably been overlooked since 1965, when Mr. John F. Moore and Dr. Mary T. Franklin had detected a new Meloidogyne species for that time. While the relevant data was recorded and a preliminary manuscript describing the species was prepared but never submitted for publication, and together with the original slides, pictures and drawings, it was restudied recently. We compared the population of Irish Meloidogyne sp. to other similar Meloidogyne spp. Careful observation and comparison shows that it belongs to Meloidogyne fallax. The characters found to be common for Irish Meloidogyne sp. and Meloidogyne fallax are female stylet length (14.6 μm) with oval to rounded basal knobs, oval shaped perineal pattern with moderately high dorsal arch, slender stylet in males (18.5 μm) with set off and rounded basal knobs, slightly set off male head with one post-labial annule and incomplete transverse incisures, and second-stage juveniles with large and rounded stylet basal knobs, and a gradually tapering tail (46.9 μm) with a broadly rounded tip and a clearly delimitated smooth hyaline part sometimes marked by constrictions (12.9 μm). The host test and gall formation also correspond to Meloidogyne fallax. The identification could not be additionally supported by molecular analysis, as we were unable to extract DNA from the old permanent slides. Nevertheless, our study reveals that the Meloidogyne species detected in Ireland in 1965 belongs to Meloidogyne fallax.
Collapse
Affiliation(s)
- Olivera Topalović
- National Plant Protection Organization, Wageningen, Geertjesweg 15, 6706 EA, The Netherlands; Nematology Research Unit, Department of Biology, Faculty of Sciences, University of Gent, K. L. Ledeganckstraat 35, 9000 Gent, Belgium; Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI), Messeweg 11-12, 38104 Braunschweig, Germany
| | | | - Toon Janssen
- Nematology Research Unit, Department of Biology, Faculty of Sciences, University of Gent, K. L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Faculty of Sciences, University of Gent, K. L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Gerrit Karssen
- National Plant Protection Organization, Wageningen, Geertjesweg 15, 6706 EA, The Netherlands; Nematology Research Unit, Department of Biology, Faculty of Sciences, University of Gent, K. L. Ledeganckstraat 35, 9000 Gent, Belgium
| |
Collapse
|
10
|
Mantelin S, Bellafiore S, Kyndt T. Meloidogyne graminicola: a major threat to rice agriculture. MOLECULAR PLANT PATHOLOGY 2017; 18:3-15. [PMID: 26950515 PMCID: PMC6638252 DOI: 10.1111/mpp.12394] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
TAXONOMY Superkingdom Eukaryota; Kingdom Metazoa; Phylum Nematoda; Class Chromadorea; Order Tylenchida; Suborder Tylenchina; Infraorder Tylenchomorpha; Superfamily Tylenchoidea; Family Meloidogynidae; Subfamily Meloidogyninae; Genus Meloidogyne. BIOLOGY Microscopic non-segmented roundworm. Plant pathogen; obligate sedentary endoparasitic root-knot nematode. Reproduction: facultative meiotic parthenogenetic species in which amphimixis can occur at a low frequency (c. 0.5%); relatively fast life cycle completed in 19-27 days on rice depending on the temperature range. HOST RANGE Reported to infect over 100 plant species, including cereals and grass plants, as well as dicotyledonous plants. Main host: rice (Oryza sativa). SYMPTOMS Characteristic hook-shaped galls (root swellings), mainly formed at the root tips of infected plants. Alteration of the root vascular system causes disruption of water and nutrient transport, stunting, chlorosis and loss of vigour, resulting in poor growth and reproduction of the plants with substantial yield losses in crops. DISEASE CONTROL Nematicides, chemical priming, constant immersion of rice in irrigated fields, crop rotation with resistant or non-host plants, use of nematode-free planting material. Some sources of resistance to Meloidogyne graminicola have been identified in African rice species (O. glaberrima and O. longistaminata), as well as in a few Asian rice cultivars. AGRONOMIC IMPORTANCE Major threat to rice agriculture, particularly in Asia. Adapted to flooded conditions, Meloidogyne graminicola causes problems in all types of rice agrosystems.
Collapse
Affiliation(s)
- Sophie Mantelin
- The James Hutton Institute, Dundee Effector ConsortiumInvergowrieDundeeDD2 5DAUK
| | - Stéphane Bellafiore
- IRD‐CIRAD‐Université Montpellier II, UMR Interactions Plantes Microorganismes Environnement (IPME)34394MontpellierFrance
- LMI‐RICEHanoiVietnam
| | - Tina Kyndt
- Department of Molecular BiotechnologyGhent University9000GhentBelgium
| |
Collapse
|
11
|
SALALIA RAJAN, WALIA RK, SOMVANSHI VISHALSINGH, KUMAR PUNEET, KUMAR ANIL. Morphological, Morphometric, and Molecular Characterization of Intraspecific Variations within Indian Populations of Meloidogyne graminicola. J Nematol 2017. [DOI: 10.21307/jofnem-2017-071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
12
|
Phillips WS, Brown AMV, Howe DK, Peetz AB, Blok VC, Denver DR, Zasada IA. The mitochondrial genome of Globodera ellingtonae is composed of two circles with segregated gene content and differential copy numbers. BMC Genomics 2016; 17:706. [PMID: 27595608 PMCID: PMC5011991 DOI: 10.1186/s12864-016-3047-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/27/2016] [Indexed: 01/21/2023] Open
Abstract
Background The evolution of animal mitochondrial (mt) genomes has resulted in a highly conserved structure: a single compact circular chromosome approximately 14 to 20 kb long. Within the last two decades exceptions to this conserved structure, such as the division of the genome into multiple chromosomes, have been reported in a diverse set of metazoans. We report on the two circle multipartite mt genome of a newly described cyst nematode, Globodera ellingtonae. Results The G. ellingtonae mt genome was found to be comprised of two circles, each larger than any other multipartite circular mt chromosome yet reported, and both were larger than the single mt circle of the model nematode Caenorhabditis elegans. The genetic content of the genome was disproportionately divided between the two circles, although they shared a ~6.5 kb non-coding region. The 17.8 kb circle (mtDNA-I) contained ten protein-coding genes and two tRNA genes, whereas the 14.4 kb circle (mtDNA-II) contained two protein-coding genes, 20 tRNA genes and both rRNA genes. Perhaps correlated with this division of genetic content, the copy number of mtDNA-II was more than four-fold that of mtDNA-I in individual nematodes. The difference in copy number increased between second-stage and fourth-stage juveniles. Conclusions The segregation of gene types to different mt circles in G. ellingtonae could provide benefit by localizing gene functional types to independent transcriptional units. This is the first report of both two-circle and several-circle mt genomes within a single genus. The differential copy number associated with this multipartite mt organization could provide a model system for deconstructing mechanisms regulating mtDNA copy number both in somatic cells and during germline development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3047-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wendy S Phillips
- Horticultural Crops Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Corvallis, OR, USA.
| | - Amanda M V Brown
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Dana K Howe
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Amy B Peetz
- Horticultural Crops Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Corvallis, OR, USA
| | - Vivian C Blok
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, UK
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Inga A Zasada
- Horticultural Crops Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Corvallis, OR, USA
| |
Collapse
|
13
|
Janssen T, Karssen G, Verhaeven M, Coyne D, Bert W. Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. Sci Rep 2016; 6:22591. [PMID: 26940543 PMCID: PMC4778069 DOI: 10.1038/srep22591] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/17/2016] [Indexed: 11/17/2022] Open
Abstract
The polyphagous parthenogenetic root-knot nematodes of the genus Meloidogyne are considered to be the most significant nematode pest in sub-tropical and tropical agriculture. Despite the crucial need for correct diagnosis, identification of these pathogens remains problematic. The traditionally used diagnostic strategies, including morphometrics, host-range tests, biochemical and molecular techniques, now appear to be unreliable due to the recently-suggested hybrid origin of root-knot nematodes. In order to determine a suitable barcode region for these pathogens nine quickly-evolving mitochondrial coding genes were screened. Resulting haplotype networks revealed closely related lineages indicating a recent speciation, an anthropogenic-aided distribution through agricultural practices, and evidence for reticulate evolution within M. arenaria. Nonetheless, nucleotide polymorphisms harbor enough variation to distinguish these closely-related lineages. Furthermore, completeness of lineage sorting was verified by screening 80 populations from widespread geographical origins and variable hosts. Importantly, our results indicate that mitochondrial haplotypes are strongly linked and consistent with traditional esterase isozyme patterns, suggesting that different parthenogenetic lineages can be reliably identified using mitochondrial haplotypes. The study indicates that the barcode region Nad5 can reliably identify the major lineages of tropical root-knot nematodes.
Collapse
Affiliation(s)
- Toon Janssen
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Gerrit Karssen
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
- National Plant Protection Organization, Wageningen Nematode Collection, P.O. Box 9102, 6700 HC Wageningen, The Netherlands
| | - Myrtle Verhaeven
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Danny Coyne
- International Institute of Tropical Agriculture (IITA), c/o icipe, Kasarani, P.O. Box 30772-00100, Nairobi, Kenya
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Hunt VL, Tsai IJ, Coghlan A, Reid AJ, Holroyd N, Foth BJ, Tracey A, Cotton JA, Stanley EJ, Beasley H, Bennett HM, Brooks K, Harsha B, Kajitani R, Kulkarni A, Harbecke D, Nagayasu E, Nichol S, Ogura Y, Quail MA, Randle N, Xia D, Brattig NW, Soblik H, Ribeiro DM, Sanchez-Flores A, Hayashi T, Itoh T, Denver DR, Grant W, Stoltzfus JD, Lok JB, Murayama H, Wastling J, Streit A, Kikuchi T, Viney M, Berriman M. The genomic basis of parasitism in the Strongyloides clade of nematodes. Nat Genet 2016; 48:299-307. [PMID: 26829753 PMCID: PMC4948059 DOI: 10.1038/ng.3495] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022]
Abstract
Soil-transmitted nematodes, including the Strongyloides genus, cause one of the most prevalent neglected tropical diseases. Here we compare the genomes of four Strongyloides species, including the human pathogen Strongyloides stercoralis, and their close relatives that are facultatively parasitic (Parastrongyloides trichosuri) and free-living (Rhabditophanes sp. KR3021). A significant paralogous expansion of key gene families--families encoding astacin-like and SCP/TAPS proteins--is associated with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle, we compare the transcriptomes of the parasitic and free-living stages and find that these same gene families are upregulated in the parasitic stages, underscoring their role in nematode parasitism.
Collapse
Affiliation(s)
- Vicky L. Hunt
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Isheng J. Tsai
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Avril Coghlan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Adam J. Reid
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Bernardo J. Foth
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Alan Tracey
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - James A. Cotton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Eleanor J. Stanley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Helen Beasley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Hayley M. Bennett
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Karen Brooks
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Bhavana Harsha
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Rei Kajitani
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Arpita Kulkarni
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Eiji Nagayasu
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sarah Nichol
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michael A. Quail
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nadine Randle
- Department of Infection Biology, Institute of Infection and Global Health and School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Dong Xia
- Department of Infection Biology, Institute of Infection and Global Health and School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Norbert W. Brattig
- Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanns Soblik
- Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Diogo M. Ribeiro
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Alejandro Sanchez-Flores
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Unidad de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México, 62210
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiko Itoh
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Dee R. Denver
- Department of Intergrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Warwick Grant
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Jonathan D. Stoltzfus
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia 19104, PA, USA
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia 19104, PA, USA
| | - Haruhiko Murayama
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Jonathan Wastling
- Department of Infection Biology, Institute of Infection and Global Health and School of Veterinary Science, University of Liverpool, Liverpool, UK
- Faculty of Natural Sciences, University of Keele, Keele, Staffordshire, ST5 5BG, UK
| | - Adrian Streit
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mark Viney
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| |
Collapse
|