1
|
Grønbæk-Thygesen M, Hartmann-Petersen R. Cellular and molecular mechanisms of aspartoacylase and its role in Canavan disease. Cell Biosci 2024; 14:45. [PMID: 38582917 PMCID: PMC10998430 DOI: 10.1186/s13578-024-01224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Canavan disease is an autosomal recessive and lethal neurological disorder, characterized by the spongy degeneration of the white matter in the brain. The disease is caused by a deficiency of the cytosolic aspartoacylase (ASPA) enzyme, which catalyzes the hydrolysis of N-acetyl-aspartate (NAA), an abundant brain metabolite, into aspartate and acetate. On the physiological level, the mechanism of pathogenicity remains somewhat obscure, with multiple, not mutually exclusive, suggested hypotheses. At the molecular level, recent studies have shown that most disease linked ASPA gene variants lead to a structural destabilization and subsequent proteasomal degradation of the ASPA protein variants, and accordingly Canavan disease should in general be considered a protein misfolding disorder. Here, we comprehensively summarize the molecular and cell biology of ASPA, with a particular focus on disease-linked gene variants and the pathophysiology of Canavan disease. We highlight the importance of high-throughput technologies and computational prediction tools for making genotype-phenotype predictions as we await the results of ongoing trials with gene therapy for Canavan disease.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| |
Collapse
|
2
|
The spectrum of chromosomal translocations in the Arab world: ethnic-specific chromosomal translocations and their relevance to diseases. Chromosoma 2022; 131:127-146. [PMID: 35907041 PMCID: PMC9470631 DOI: 10.1007/s00412-022-00775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
Abstract
Chromosomal translocations (CTs) are the most common type of structural chromosomal abnormalities in humans. CTs have been reported in several studies in the Arab world, but the frequency and spectrum of these translocations are not well characterized. The aim of this study is to conduct a systematic review to estimate the frequency and spectrum of CTs in the 22 Arab countries. Four literature databases were searched: PubMed, Science Direct, Scopus, and Web of Science, from the time of inception until July 2021. A combination of broad search terms was used to collect all possible CTs reported in the Arab world. In addition to the literature databases, all captured CTs were searched in three chromosomal rearrangement databases (Mitelman Database, CytoD 1.0 Database, and the Atlas of Genetics and Cytogenetics in Oncology and Hematology), along with PubMed and Google Scholar, to check whether the CTs are unique to the Arabs or shared between Arabs and non-Arabs. A total of 9,053 titles and abstracts were screened, of which 168 studies met our inclusion criteria, and 378 CTs were identified in 15 Arab countries, of which 57 CTs were unique to Arab patients. Approximately 89% of the identified CTs involved autosomal chromosomes. Three CTs, t(9;22), t(13;14), and t(14;18), showed the highest frequency, which were associated with hematological malignancies, recurrent pregnancy loss, and follicular lymphoma, respectively. Complex CTs were commonly reported among Arabs, with a total of 44 CTs, of which 12 were unique to Arabs. This is the first study to focus on the spectrum of CTs in the Arab world and compressively map the ethnic-specific CTs relevant to cancer. It seems that there is a distinctive genotype of Arabs with CTs, of which some manifested with unique clinical phenotypes. Although ethnic-specific CTs are highly relevant to disease mechanism, they are understudied and need to be thoroughly addressed.
Collapse
|
3
|
Wei H, Moffett JR, Amanat M, Fatemi A, Tsukamoto T, Namboodiri AM, Slusher BS. The pathogenesis of, and pharmacological treatment for, Canavan disease. Drug Discov Today 2022; 27:2467-2483. [DOI: 10.1016/j.drudis.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
|
4
|
Jensen TL, Gøtzsche CR, Woldbye DPD. Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord. Front Mol Neurosci 2021; 14:695937. [PMID: 34690692 PMCID: PMC8527017 DOI: 10.3389/fnmol.2021.695937] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, gene therapy has been raising hopes toward viable treatment strategies for rare genetic diseases for which there has been almost exclusively supportive treatment. We here review this progress at the pre-clinical and clinical trial levels as well as market approvals within diseases that specifically affect the brain and spinal cord, including degenerative, developmental, lysosomal storage, and metabolic disorders. The field reached an unprecedented milestone when Zolgensma® (onasemnogene abeparvovec) was approved by the FDA and EMA for in vivo adeno-associated virus-mediated gene replacement therapy for spinal muscular atrophy. Shortly after EMA approved Libmeldy®, an ex vivo gene therapy with lentivirus vector-transduced autologous CD34-positive stem cells, for treatment of metachromatic leukodystrophy. These successes could be the first of many more new gene therapies in development that mostly target loss-of-function mutation diseases with gene replacement (e.g., Batten disease, mucopolysaccharidoses, gangliosidoses) or, less frequently, gain-of-toxic-function mutation diseases by gene therapeutic silencing of pathologic genes (e.g., amyotrophic lateral sclerosis, Huntington's disease). In addition, the use of genome editing as a gene therapy is being explored for some diseases, but this has so far only reached clinical testing in the treatment of mucopolysaccharidoses. Based on the large number of planned, ongoing, and completed clinical trials for rare genetic central nervous system diseases, it can be expected that several novel gene therapies will be approved and become available within the near future. Essential for this to happen is the in depth characterization of short- and long-term effects, safety aspects, and pharmacodynamics of the applied gene therapy platforms.
Collapse
Affiliation(s)
- Thomas Leth Jensen
- Department of Neurology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | | |
Collapse
|
5
|
Al-Thani HF, Ahmad MN, Younes S, Zayed H. Genetic Variants Associated With Alzheimer Disease in the 22 Arab Countries: A Systematic Review. Alzheimer Dis Assoc Disord 2021; 35:178-186. [PMID: 33769987 DOI: 10.1097/wad.0000000000000447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Alzheimer disease (AD) is a progressive and complex neurodegenerative disease. Approximately 70% of AD risk is attributed to genetic risk factors, including variants in amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) genes. Several studies have revealed a considerable number of candidate loci and genes for AD among different ethnic populations. However, the outcomes of these studies have been inconsistent. In this study, we aimed to investigate the spectrum of variants that are associated with the onset and development of AD among 22 Arab countries. METHODOLOGY We systematically searched 4 literature databases (Science Direct, Scopus, PubMed, and Web of Science) from the date of inception until July 2020 using various search terms to obtain all the reported genetic data on Arab AD cases. RESULTS In total, 18 studies were included, comprising a total of 2173 individuals, of whom 888 were clinically diagnosed AD patients and were genetically tested for genes and variants associated with AD. A total of 27 variants in 8 genes were found to be associated with AD. Of these variants, 17 were unique to the Arab population and 10 were shared with other ethnic groups. CONCLUSIONS There is a dearth of studies on the genetics of AD in the Arab world. There seems to be distinctive genetic and clinical susceptibility profiles for Arab patients with AD.
Collapse
Affiliation(s)
- Hissa F Al-Thani
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | | | | |
Collapse
|
6
|
Thirumal Kumar D, Jerushah Emerald L, George Priya Doss C, Sneha P, Siva R, Charles Emmanuel Jebaraj W, Zayed H. Computational approach to unravel the impact of missense mutations of proteins (D2HGDH and IDH2) causing D-2-hydroxyglutaric aciduria 2. Metab Brain Dis 2018; 33:1699-1710. [PMID: 29987523 DOI: 10.1007/s11011-018-0278-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/20/2018] [Indexed: 01/28/2023]
Abstract
The 2-hydroxyglutaric aciduria (2-HGA) is a rare neurometabolic disorder that leads to the development of brain damage. It is classified into three categories: D-2-HGA, L-2-HGA, and combined D,L-2-HGA. The D-2-HGA includes two subtypes: type I and type II caused by the mutations in D2HGDH and IDH2 proteins, respectively. In this study, we studied six mutations, four in the D2HGDH (I147S, D375Y, N439D, and V444A) and two in the IDH2 proteins (R140G, R140Q). We performed in silico analysis to investigate the pathogenicity and stability changes of the mutant proteins using pathogenicity (PANTHER, PhD-SNP, SIFT, SNAP, and META-SNP) and stability (i-Mutant, MUpro, and iStable) predictors. All the mutations of both D2HGDH and IDH2 proteins were predicted as disease causing except V444A, which was predicted as neutral by SIFT. All the mutants were also predicted to be destabilizing the protein except the mutants D375Y and N439D. DSSP plugin of the PyMOL and Molecular Dynamics Simulations (MDS) were used to study the structural changes in the mutant proteins. In the case of D2HGDH protein, the mutations I147S and V444A that are positioned in the beta sheet region exhibited higher Root Mean Square Deviation (RMSD), decrease in compactness and number of intramolecular hydrogen bonds compared to the mutations N439D and D375Y that are positioned in the turn and loop region, respectively. While the mutants R140Q and R140QG that are positioned in the alpha helix region of the protein. MDS results revealed the mutation R140Q to be more destabilizing (higher RMSD values, decrease in compactness and number of intramolecular hydrogen bonds) compared to the mutation R140G of the IDH2 protein. This study is expected to serve as a platform for drug development against 2-HGA and pave the way for more accurate variant assessment and classification for patients with genetic diseases.
Collapse
Affiliation(s)
- D Thirumal Kumar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - L Jerushah Emerald
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - P Sneha
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - R Siva
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - W Charles Emmanuel Jebaraj
- Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, 600116, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
7
|
Abarna R, Dutta D, Sneha P, George Priya Doss C, Anbalagan M. Identification of novel heterozygous Apex 1 gene variant (Glu87Gln) in patients with head and neck cancer of Indian origin. J Cell Biochem 2018; 119:8851-8861. [PMID: 30076617 DOI: 10.1002/jcb.27138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/18/2018] [Indexed: 11/12/2022]
Abstract
Gene polymorphism among humans is one of the factors governing individual's susceptibility and resistance to various diseases including cancer. DNA repair enzymes play an important role in protecting our genome from various mutagens and preventing cancer. The role of DNA repair enzyme Apurinic/Apyrimidinic endodeoxyribonuclease 1 (Apex 1) in cancer has been very well documented. Using genomic DNA, Apex 1 coding region of 76 patients (n = 76) with head and neck cancer were amplified and sequenced to detect variations in the sequence. Of 76 patients, 1 patient with heterozygous novel Apex 1 variant (Glu87Gln) was identified. A comparative analysis of wild type and variant protein using in silico approach was performed to understand the difference in the structure and the function. This further revealed that the variant had a slight impact on the structure, which affected the stability and function of the protein. Using the state-of-the-art Molecular dynamic simulation analysis, we observed a loss in number of hydrogen bonds and salt bridge with a substitution of Gln for Glu at Position 87. This could be a possible reason behind the loss of stability/function of the protein. This study revealed a new variant of the Apex 1 gene; further studies will lead to the novel roles played by the variant Apex 1 protein in cause, disease progression, and response to the treatment in patients with cancer with Glu87Gln variant.
Collapse
Affiliation(s)
- R Abarna
- School of Biosciences, Vellore Institute of Technology (VIT), Vellore, India
| | | | - P Sneha
- School of Biosciences, Vellore Institute of Technology (VIT), Vellore, India
| | - C George Priya Doss
- School of Biosciences, Vellore Institute of Technology (VIT), Vellore, India
| | - M Anbalagan
- School of Biosciences, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
8
|
George Priya Doss C, Zayed H. Comparative computational assessment of the pathogenicity of mutations in the Aspartoacylase enzyme. Metab Brain Dis 2017; 32:2105-2118. [PMID: 28879565 DOI: 10.1007/s11011-017-0090-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/11/2017] [Indexed: 10/18/2022]
Abstract
Aspartoacylase (ASPA) is a zinc-dependent abundant enzyme in the brain, which catalyzes the conversion of N-acetyl aspartate (NAA) into acetate and aspartate. Mutations in the ASPA gene are associated with the development of Canavan disease (CD), leading to the deficiency of ASPA activity. Patients with CD were characterized by degeneration of the white matter of the brain. We reported earlier on two patients with severe form of CD that both had two novel missense mutations in the ASPA: c.427 A > G; p. I143V and c.557 T > A; p. V186D (Zaki et al. 2017a), patient 1 harbored both mutations (p.I143V and p.V186D) in a heterozygous form together with four other mutations, and patient 2 had both mutations in homozygous form. Wijayasinghe et al. (2014) crystallized the 3D structures of four different ASPA mutants (p.K213E, p.Y231C, p.E285A, and p.F295S). In this study, we used in silico prediction methods and molecular dynamics simulation (MDS) to understand the structural impact of all these mutations. Moreover, we used molecular docking (MD) to investigate the binding patterns of the NAA substrate to the native and mutant proteins. Among the mutations, p.E285A (crystallized mutant) was predicted to be the most deleterious for the protein function and the least deleteriousness mutant was the p.I143V (novel mutant). Among the novel mutations, p.V186D was observed to be disruptive for both the zinc binding and NAA binding than the p.I143V. This study provides practical insights on the effect of these mutations on the ASPA function and might serve as a platform for drug design for CD treatment.
Collapse
Affiliation(s)
- C George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, India.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
9
|
Jurdáková H, Górová R, Addová G, Behúlová D, Ostrovský I. The state of treatment approach and diagnostics in Canavan disease with focus on the determination of N-acetylasparic acid. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-016-0033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Roscoe RB, Elliott C, Zarros A, Baillie GS. Non-genetic therapeutic approaches to Canavan disease. J Neurol Sci 2016; 366:116-124. [DOI: 10.1016/j.jns.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 01/30/2023]
|
11
|
Zaki OK, El Abd HS, Mohamed SA, Zayed H. Novel mutation in an Egyptian patient with infantile Canavan disease. Metab Brain Dis 2016; 31:573-7. [PMID: 26613958 DOI: 10.1007/s11011-015-9772-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/23/2015] [Indexed: 11/29/2022]
Abstract
Canavan disease (CD) is a rare fatal childhood neurological autosomal recessive genetic disease caused by mutations in the ASPA gene, which lead to catalytic deficiency of the ASPA enzyme that catalyzes the deacetylation of NAA. It is a severe progressive leukodystrophy characterized by spongiform degeneration of the white matter of the brain. CD occurs frequently among Ashkenazi Jewish population, however it has been reported in many other ethnic groups with significantly lower frequency. Here, we report on a 2 year-old Egyptian child with severe CD who harbors a novel homozygous missense variant (c.91G > T, p.V31F) in the ASPA gene. The clinical, radiological, and molecular genetic profiles are reviewed in details.
Collapse
Affiliation(s)
- Osama K Zaki
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain-Shams University, Cairo, 11665, Egypt.
| | - Heba S El Abd
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain-Shams University, Cairo, 11665, Egypt
| | - Shaimaa A Mohamed
- Department of Radiodiagnosis, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Hatem Zayed
- Department of Health Sciences, Biomedical Program, Qatar University, Doha, Qatar.
| |
Collapse
|
12
|
Krishnamoorthy N, Zayed H. Structural modeling of p.V31F variant in the aspartoacylase gene. Metab Brain Dis 2016; 31:723-6. [PMID: 26797702 DOI: 10.1007/s11011-016-9796-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
Aspartoacylase (ASPA) is an abundant enzyme in the brain, which catalyzes the conversion of N-acetylaspartate into acetate and aspartate, deficiency in its activity leads to degeneration of the white matter of the brain and is a recognized cause of Canavan disease (CD), which affect children. Although genotype-phenotype correlation have been reported for Canavan disease patients, this relationships is still not straightforward. In this communication, we use molecular modeling to address the structural consequences resulting from the missense variant p.V31F in the ASPA enzyme, which we previously reported in a homozygous form in an Egyptian patient with infantile CD. This modeling suggests that this variant brings significant changes to the catalytic core by introducing structural flexibility through neighbouring key residues. In particular, it provides a molecular explanation for the pathogenic effect of this variant and provides a meaningful genotype-phonotype relationships. The mutational impact appears to have an influence on the function of the protein and initiates molecular event for the mechanism of the disease.
Collapse
Affiliation(s)
- Navaneethakrishnan Krishnamoorthy
- Cardiovascular Research Division, Sidra Medical and Research Centre, Qatar Foundation, Doha, Qatar
- Heart Science Centre, National Heart and Lung Institute, Imperial College London, Harefield, UK
| | - Hatem Zayed
- College of Health Sciences, Biomedical Program, Qatar University, Doha, Qatar.
| |
Collapse
|
13
|
Kots ED, Khrenova MG, Lushchekina SV, Varfolomeev SD, Grigorenko BL, Nemukhin AV. Modeling the Complete Catalytic Cycle of Aspartoacylase. J Phys Chem B 2016; 120:4221-31. [DOI: 10.1021/acs.jpcb.6b02542] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ekaterina D. Kots
- Chemistry
Department, M.V. Lomonosov Moscow State University, Leninskie
Gory 1/3, Moscow 119991, Russian Federation
- N.M.
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russian Federation
| | - Maria G. Khrenova
- Chemistry
Department, M.V. Lomonosov Moscow State University, Leninskie
Gory 1/3, Moscow 119991, Russian Federation
| | - Sofya V. Lushchekina
- N.M.
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russian Federation
| | - Sergei D. Varfolomeev
- Chemistry
Department, M.V. Lomonosov Moscow State University, Leninskie
Gory 1/3, Moscow 119991, Russian Federation
- N.M.
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russian Federation
| | - Bella L. Grigorenko
- Chemistry
Department, M.V. Lomonosov Moscow State University, Leninskie
Gory 1/3, Moscow 119991, Russian Federation
- N.M.
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russian Federation
| | - Alexander V. Nemukhin
- Chemistry
Department, M.V. Lomonosov Moscow State University, Leninskie
Gory 1/3, Moscow 119991, Russian Federation
- N.M.
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russian Federation
| |
Collapse
|