1
|
Pezenti LF, Dionisio JF, Sosa-Gómez DR, de Souza RF, da Rosa R. Transposable elements in the transcriptome of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Erebidae). Genome 2023. [DOI: 10.1139/gen-2022-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis ( Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression.
Collapse
|
2
|
Wang J, Itgen MW, Wang H, Gong Y, Jiang J, Li J, Sun C, Sessions SK, Mueller RL. Gigantic Genomes Provide Empirical Tests of Transposable Element Dynamics Models. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:123-139. [PMID: 33677107 PMCID: PMC8498967 DOI: 10.1016/j.gpb.2020.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) are a major determinant of eukaryotic genome size. The collective properties of a genomic TE community reveal the history of TE/host evolutionary dynamics and impact present-day host structure and function, from genome to organism levels. In rare cases, TE community/genome size has greatly expanded in animals, associated with increased cell size and changes to anatomy and physiology. Here, we characterize the TE landscape of the genome and transcriptome in an amphibian with a giant genome — the caecilianIchthyophis bannanicus, which we show has a genome size of 12.2 Gb. Amphibians are an important model system because the clade includes independent cases of genomic gigantism. The I. bannanicus genome differs compositionally from other giant amphibian genomes, but shares a low rate of ectopic recombination-mediated deletion. We examine TE activity using expression and divergence plots; TEs account for 15% of somatic transcription, and most superfamilies appear active. We quantify TE diversity in the caecilian, as well as other vertebrates with a range of genome sizes, using diversity indices commonly applied in community ecology. We synthesize previous models that integrate TE abundance, diversity, and activity, and test whether the caecilian meets model predictions for genomes with high TE abundance. We propose thorough, consistent characterization of TEs to strengthen future comparative analyses. Such analyses will ultimately be required to reveal whether the divergent TE assemblages found across convergent gigantic genomes reflect fundamental shared features of TE/host genome evolutionary dynamics.
Collapse
Affiliation(s)
- Jie Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Michael W Itgen
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Huiju Wang
- School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yuzhou Gong
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jiatang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Cheng Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | | | | |
Collapse
|