Hepatic Synaptotagmin 1 is involved in the remodelling of liver plasma- membrane lipid composition and gene expression in male Apoe-deficient mice consuming a Western diet.
Biochim Biophys Acta Mol Cell Biol Lipids 2020;
1865:158790. [PMID:
32771460 DOI:
10.1016/j.bbalip.2020.158790]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS
The molecular mechanisms by which the liver develops steatotic disease still remain unclear. Previous studies using nutritional and genetic models of hepatic steatosis in mice showed that liver synaptotagmin 1 (Syt1) expression was associated with lipid droplet area. Hepatic Syt1 overexpression was used as a tool to explore its effect on hepatic and plasma lipids.
METHODS AND RESULTS
To find out a cause-effect, hepatic mouse Syt1 mRNA was cloned into a vector driving hepatocyte-specific expression and administered by hydrodynamic injection to male Apoe-deficient mice fed on a Western diet, the latter as a model of rapid spontaneous steatosis development. Hepatic microsomal, large vesicle, lysosomal and plasma membrane fractions were enriched in SYT1 protein following gene overexpression. In these conditions, very low density lipoprotein esterified cholesterol increased. Likewise, the transgene caused an alteration in lipid droplet surface and a positive correlation between Syt1 expression and hepatic total cholesterol content. A lipidomic approach evidenced a decrease in lysophosphatidylcholine, phosphatidylcholine and triglycerides in isolated plasma membrane fraction. Expressions of genes involved in biosynthesis of bile acids, fatty acid metabolism, lipoprotein dynamics and vesicular transport were modified by the increased SYT1 expression.
CONCLUSIONS
These results indicate that this protein is involved in hepatic management of lipids and in the regulation of genes involved in lipid metabolism.
Collapse