1
|
Pan Y, Li S, Zhang Q, Li J, Song C, Kong L, Liu Y, Hou S, Li S, Liu Q, Xia D, Wang Z. Production performance analysis of sheep MSTN gene C2361T locus. J Genet Eng Biotechnol 2024; 22:100372. [PMID: 38797546 PMCID: PMC11156697 DOI: 10.1016/j.jgeb.2024.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 05/29/2024]
Abstract
The myostatin (MSTN) gene exhibits significant nucleotide sequence variations in sheep, impacting growth characteristics and muscular traits of the body. However, its influence on specific growth traits in some sheep remains to be further elucidated. This study utilized single nucleotide polymorphism sequence analysis to investigate the role of the MSTN gene in meat production performance across four sheep breeds: Charolais sheep, Australian White sheep, crossbreeds of Australian White and Small-tailed Han, and crossbreeds of Charolais and Small-tailed Han. At a SNP locus of the MSTN gene, the C2361T site was identified, with three genotypes detected: CC, CT, and TT, among which CC predominated. Gene substitution effect analysis revealed that replacing C with T could elevate the phenotypic value. Comparative analysis of data from different genotypes within the same breed highlighted the superiority of CC and TT genotypes in phenotypic values, underscoring the significance of specific genotypes in influencing key traits. Contrasting the performance of different genotypes across breeds, Charolais sheep and Charolais Han hybrids demonstrated superiority across multiple indicators, offering valuable insights for breeding new sheep varieties. Analysis of gender effects on growth characteristics indicated that ewes exhibited significantly wider chest, waist, and hip widths compared to rams, while rams displayed better skeletal growth and muscle development. Additionally, the MSTN gene also exerted certain effects on lamb growth characteristics, with the CC genotype closely associated with weight. These findings not only contribute crucial insights for sheep breeding but also pave the way for future research exploring the interaction of this gene with others.
Collapse
Affiliation(s)
- Yuan Pan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Siyi Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiaqi Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Chenyu Song
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lingchao Kong
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yining Liu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Sibing Hou
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Shuaitong Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingkun Liu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Decui Xia
- Animal Disease Prevention and Control Center, Fuxin 123006, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
2
|
Liu Z, Qin Q, Zhang C, Xu X, Dai D, Lan M, Wang Y, Zhang J, Zhao D, Kong D, Qin T, Wu D, Gong X, Zhou X, Suhe A, Wang Z, Liu Z. Effects of nonsynonymous single nucleotide polymorphisms of the KIAA1217, SNTA1 and LTBP1 genes on the growth traits of Ujumqin sheep. Front Vet Sci 2024; 11:1382897. [PMID: 38756519 PMCID: PMC11097667 DOI: 10.3389/fvets.2024.1382897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
Sheep body size can directly reflect the growth rates and fattening rates of sheep and is also an important index for measuring the growth performance of meat sheep. In this study, high-resolution resequencing data from four sheep breeds (Dorper sheep, Suffolk sheep, Ouessant sheep, and Shetland sheep) were analyzed. The nonsynonymous single nucleotide polymorphisms of three candidate genes (KIAA1217, SNTA1, and LTBP1) were also genotyped in 642 healthy Ujumqin sheep using MALDI-TOFMS and the genotyping results were associated with growth traits. The results showed that different genotypes of the KIAA1217 g.24429511T>C locus had significant effects on the chest circumferences of Ujumqin sheep. The SNTA1 g.62222626C>A locus had different effects on the chest depths, shoulder widths and rump widths of Ujumqin sheep. This study showed that these two sites can be used for marker-assisted selection, which will be beneficial for future precision molecular breeding.
Collapse
Affiliation(s)
- Zhichen Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Qing Qin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chongyan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaolong Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongliang Dai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingxi Lan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yichuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jingwen Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dan Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Deqing Kong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Tian Qin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Danni Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xuedan Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xingyu Zhou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Alatan Suhe
- East Ujumqin Banner Hersig Animal Husbandry Development Limited Liability Company, Xilin Gol League, Xilinhot, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Goat Genetics and Breeding Engineering Technology Research Center, Hohhot, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Goat Genetics and Breeding Engineering Technology Research Center, Hohhot, China
| |
Collapse
|
3
|
Sun Y, Wu X, Ma Y, Liu D, Lu X, Zhao T, Yang Z. Molecular Marker-Assisted Selection of ABCG2, CD44, SPP1 Genes Contribute to Milk Production Traits of Chinese Holstein. Animals (Basel) 2022; 13:ani13010089. [PMID: 36611698 PMCID: PMC9817805 DOI: 10.3390/ani13010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Based on our results of genome-wide association analysis, we performed gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis; three candidate genes (ABCG2, CD44, SPP1) were screened in this study for SNPs association analysis with production traits in 999 Holstein cattle. In this research, flight mass spectrometry genotyping was used to detect the polymorphism of SNP seats. It was shown that four, four, and two single nucleotide polymorphisms (SNP) loci were detected for the ABCG2, CD44, and SPP1 genes, respectively, and the different genotypes of these 10 SNPs significantly affected the milk production performance of Chinese Holstein cattle in terms of milk yield, milk fat percentage, milk protein percentage, somatic cell score, and urea nitrogen content. Among them, ABCG2-G.80952G > T locus, ABCG2-G.120017G > A locus and CD44-G.2294G > C locus had significant effects on somatic cell score (p < 0.01). Cows with GG genotypes at ABCG2-G.80952G > T locus, AA and GG genotypes at ABCG2-G.120017G > A locus, and GG genotypes at CD44-G.2294G > C locus had lower somatic cell scores. The present study elucidated that ABCG2, CD44, and SPP1 could be selected for marker-assisted selection and will benefit for future precise molecular breeding.
Collapse
Affiliation(s)
- Yujia Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Xinyi Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Yaoyao Ma
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Dingding Liu
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Tianqi Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Zhangping Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-0514-87979230
| |
Collapse
|
4
|
Sun Y, Zhao T, Ma Y, Wu X, Mao Y, Yang Z, Chen H. New Insight into Muscle-Type Cofilin (CFL2) as an Essential Mediator in Promoting Myogenic Differentiation in Cattle. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120729. [PMID: 36550935 PMCID: PMC9774386 DOI: 10.3390/bioengineering9120729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Meat quality and meat composition are not separated from the influences of animal genetic improvement systems; the growth and development of skeletal muscle are the primary factors in agricultural meat production and meat quality. Though the muscle-type cofilin (CFL2) gene has a crucial influence on skeletal muscle fibers and other related functions, the epigenetic modification mechanism of the CFL2 gene regulating meat quality remains elusive. After exploring the spatiotemporal expression data of CFL2 gene in a group of samples from fetal bovine, calf, and adult cattle, we found that the level of CFL2 gene in muscle tissues increased obviously with cattle age, whereas DNA methylation levels of CFL2 gene in muscle tissues decreased significantly along with cattle age by BSP and COBRA, although DNA methylation levels and mRNA expression levels basically showed an opposite trend. In cell experiments, we found that bta-miR-183 could suppress primary bovine myoblast differentiation by negatively regulated CFL2. In addition, we packaged recombinant adenovirus vectors for CFL2 gene knockout and overexpression and found that the CFL2 gene could promote the differentiation of primary bovine myoblasts by regulating marker genes MYOD, MYOG and MYH3. Therefore, CFL2 is an essential mediator for promoting myogenic differentiation by regulating myogenic marker genes in cattle myoblasts.
Collapse
Affiliation(s)
- Yujia Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Tianqi Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Yaoyao Ma
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Xinyi Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Yongjiang Mao
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Zhangping Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: ; Tel.: +86-029-87092102
| |
Collapse
|
5
|
Yang P, Zhang Z, Xu J, Qu K, Lyv S, Wang X, Cai C, Li Z, Wang E, Xie J, Ru B, Xu Z, Lei C, Chen H, Huang B, Huang Y. The Association of the Copy Number Variation of the MLLT10 Gene with Growth Traits of Chinese Cattle. Animals (Basel) 2020; 10:ani10020250. [PMID: 32033330 PMCID: PMC7070264 DOI: 10.3390/ani10020250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 02/01/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Copy number variation is a common genetic polymorphism, mainly represented by submicroscopic levels of deletion and duplication, caused by rearrangement of the genome. It is well-known that the copy number variation of a gene is associated with growth traits of livestock. In this study, we detected the correlation between the copy number variation of the the MLLT10 gene and the growth traits of Chinese yellow cattle. We found that the copy number variation of the MLLT10 gene has a significant influence on hip width, rump length, hucklebone width, and cannon bone circumference of some Chinese yellow cattle breeds. The results provide preliminary suggestions for Chinese yellow cattle breeding and new insights about the future of copy number variation (CNV) as a new promising molecular marker in animal breeding. Abstract Copy number variation is a part of genomic structural variation and has caused widespread concern. According to the results of high-throughput screening of the MLLT10 gene, we found that the copy number variation region of the MLLT10 gene was correlated with bovine growth traits. We aimed to detect the MLLT10 gene copy number variation and provide materials for the Chinese yellow cattle breed. In this study, the SPSS software was used to analyze the correlation among the copy number type of six different cattle breeds (i.e., Qinchuan, Xianan, Jiaxian, Yanbian, Sinan, Yunling) and the corresponding growth traits. The results showed the following: In Qinchuan cattle, the copy number duplication type was greater than the deletion and normal types; in Xianan cattle, the copy number duplication and normal types were less as compared with the deletion type; and in Yunling cattle, the frequency of the duplication type was dominant among the three types of copy number variants. The correlation analysis result showed that there is a significant correlation between the copy number variation (CNV) of the MLLT10 gene and the growth traits of three cattle breeds. Furthermore, correlation analysis showed that MLLT10 CNV had positive effects on growth traits such as hip width, rump length, hucklebone width, and cannon bone circumference (p < 0.05). This study provides a basis for the molecular-assisted marker breeding of cattle and contributes to the breeding of cattle.
Collapse
Affiliation(s)
- Peng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (P.Y.); (J.X.); (C.L.); (H.C.)
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 45002, China; (Z.Z.); (S.L.); (E.W.)
| | - Jiawei Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (P.Y.); (J.X.); (C.L.); (H.C.)
| | - Kaixing Qu
- Yunnan Academy of Grassland Animal Science, Kunming 650212, China;
| | - Shijie Lyv
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 45002, China; (Z.Z.); (S.L.); (E.W.)
| | - Xianwei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou 450008, China; (X.W.); (Z.L.); (B.R.); (Z.X.)
| | - Cuicui Cai
- Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan 756000, China; (C.C.); (J.X.)
| | - Zhiming Li
- Henan Provincial Animal Husbandry General Station, Zhengzhou 450008, China; (X.W.); (Z.L.); (B.R.); (Z.X.)
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 45002, China; (Z.Z.); (S.L.); (E.W.)
| | - Jianliang Xie
- Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan 756000, China; (C.C.); (J.X.)
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou 450008, China; (X.W.); (Z.L.); (B.R.); (Z.X.)
| | - Zejun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou 450008, China; (X.W.); (Z.L.); (B.R.); (Z.X.)
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (P.Y.); (J.X.); (C.L.); (H.C.)
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (P.Y.); (J.X.); (C.L.); (H.C.)
| | - Bizhi Huang
- Yunnan Academy of Grassland Animal Science, Kunming 650212, China;
- Correspondence: (B.H.); (Y.H.)
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (P.Y.); (J.X.); (C.L.); (H.C.)
- Correspondence: (B.H.); (Y.H.)
| |
Collapse
|
6
|
Wu S, Ning Y, Raza SHA, Zhang C, Zhang L, Cheng G, Wang H, Schreurs N, Zan L. Genetic variants and haplotype combination in the bovine CRTC3 affected conformation traits in two Chinese native cattle breeds (Bos Taurus). Genomics 2018; 111:1736-1744. [PMID: 30529539 DOI: 10.1016/j.ygeno.2018.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/12/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
CREB-regulated transcription coactivator 3 (CRTC3) plays an extensive role in glucose and lipid metabolism. This study investigated the genetic variation and haplotype combination in CRTC3 and verified their contribution to bovine growth traits. Firstly, investigated the mRNA expression of CRTC3 in adult Qinchuan cattle and evaluated the effects that genetic variation of CRTC3 had on conformation and carcass traits in two Chinese cattle breeds (Qinchuan and Jiaxian). Four SNPs (single nucleotide polymorphisms) were identified including two in introns (SNP1: g.62652 A > G and SNP4: g.91297C > T) and two in exons (SNP2 g.62730C > T and SNP3: g.66478G > C). The association and haplotype combination results showed that there was an association with some growth and carcass traits(P < 0.05). Individuals with haplotype combination H1H1 (-AACCCCTT-) were associated with a conformation of a larger framed animal and an animal that produced a larger loin area. Variations in the CRTC3 genes and the haplotype combination H1H1 may be considered as molecular markers for carcass traits that are associated with more lean meat yield for use in cattle breeding programs in China.
Collapse
Affiliation(s)
- Sen Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai 810016, PR China
| | - Yue Ning
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chengtu Zhang
- Animal Husbandry and Veterinary Station in Xining City, Xining, Qinghai 810003, PR China
| | - Le Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center of Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center of Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Nicola Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center of Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
7
|
Gui LS, Raza SHA, Jia J. Analysis of the oxidized low density lipoprotein receptor 1 gene as a potential marker for carcass quality traits in Qinchuan cattle. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:58-62. [PMID: 30056655 PMCID: PMC6325395 DOI: 10.5713/ajas.18.0079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022]
Abstract
Objective The oxidized low density lipoprotein receptor 1 (OLR1) gene plays an important role in the degradation of oxidized low-density lipoprotein and adipocyte proliferation in mammals. For this reason, we aimed at investigating the association of OLR1 gene polymorphisms with carcass quality traits in Chinese Qinchuan cattle. Methods The single nucleotide polymorphism (SNP) was identified in the 3′ untranslated region of bovine OLR1 gene by DNA sequencing. In addition, the haplotype frequency and linkage disequilibrium estimates of three SNPs were evaluated in 520 individuals. Results Results indicated that the studied three SNPs were within the range of moderate genetic diversity (0.25< polymorphism information content<0.5). Haplotype analysis of three SNPs showed that ten different haplotypes were identified, but only five haplotypes were listed as those with a frequency of <0.05 were excluded. The Hap3 (-G1T2C3-) had the highest haplotype frequency (42.10%). Linkage disequilibrium analysis showed that the three SNPs had a low linkage (r2<0.001). The T10588C and C10647T were significantly associated with backfat thickness and intramuscular fat content in Qinchuan cattle. Conclusion Based on our results, we believe that the OLR1 gene could be a strong candidate gene for influencing carcass quality traits in Qinchuan cattle.
Collapse
Affiliation(s)
- Lin-Sheng Gui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, China.,College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlei Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, China.,College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China
| |
Collapse
|
8
|
Kusza S, Cziszter LT, Ilie DE, Sauer M, Padeanu I, Gavojdian D. Kompetitive Allele Specific PCR (KASP™) genotyping of 48 polymorphisms at different caprine loci in French Alpine and Saanen goat breeds and their association with milk composition. PeerJ 2018; 6:e4416. [PMID: 29492347 PMCID: PMC5827040 DOI: 10.7717/peerj.4416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/05/2018] [Indexed: 11/20/2022] Open
Abstract
Using a novel and fast genotyping method called Kompetitive Allele Specific PCR (KASP™), we carried out a pilot study on 48 single nucleotide polymorphisms (SNPs) belonging to 40 genes in French Alpine (n = 24) and Saanen (n = 25) goats reared in Romania. Furthermore, the associations of the 13 polymorphic genetic variants with milk production and composition were investigated. Thirty-five SNPs did not show polymorphism in the studied populations. Polymorphic SNPs were detected in the following genes: CAST, CLEC4E, DES, GHRHR, HSP90AA1, IL15RA, IL1RN, IL8, MITF, PPRC1, SOCS3, TNF and TNFSF13. The studied Alpine population was in Hardy-Weinberg disequilibrium at the g.62894878A>G locus (rs671391101) (P < 0.05). The results showed that four SNPs rs671391101 (GHRHR), rs640582069 (IL1RN) rs635583012 (SOCS3) and rs635969404 (IL15RA) out of the 13 polymorphic markers were significantly associated with milk production, protein, fat and lactose content in the Alpine breed. However, no significant effect was recorded in the Saanen population regarding milk yield or milk chemical composition. The current results provide new insights for the development of SNP marker-assisted selection technology in the goat industry and confirm the potential of using SNPs for the GHRHR, IL1RN, SOCS3, and IL15RA genes as candidate genes for selection, highlighting the direct implications of such genes for farm production outputs. The results from this study are relevant for future goat genomic studies and the inclusion of the associated traits into up-to-date selection schemes.
Collapse
Affiliation(s)
- Szilvia Kusza
- Research and Development Station for Sheep and Goats Caransebes, Academy for Agricultural and Forestry Sciences, Caransebes, Romania.,Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, Hungary
| | - Ludovic Toma Cziszter
- Banat's University of Agricultural Sciences and Veterinary Medicine 'King Michael I' from Timisoara, Timisoara, Romania
| | - Daniela Elena Ilie
- Research and Development Station for Bovine Arad, Academy for Agricultural and Forestry Sciences, Arad, Romania
| | - Maria Sauer
- Research and Development Station for Sheep and Goats Caransebes, Academy for Agricultural and Forestry Sciences, Caransebes, Romania
| | - Ioan Padeanu
- Banat's University of Agricultural Sciences and Veterinary Medicine 'King Michael I' from Timisoara, Timisoara, Romania
| | - Dinu Gavojdian
- Research and Development Station for Sheep and Goats Caransebes, Academy for Agricultural and Forestry Sciences, Caransebes, Romania
| |
Collapse
|