1
|
Wu Z, Zhang Y, Wang L, Mei M, Qiu Y, Liu Y, Fu S, Xiong J, Lu Q, Guo P. Genomic and transcriptomics analysis reveal putative secreted proteins expressed of Pasteurella multocida during 18β-glycyrrhetinic acid treatment. Front Vet Sci 2024; 11:1495924. [PMID: 39575438 PMCID: PMC11578946 DOI: 10.3389/fvets.2024.1495924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Pasteurella multocida is a gram-negative opportunistic pathogen that can infect both domestic animals and humans, leading to large economic losses to the livestock industry. 18β-Glycyrrhetinic acid, the main active component of Glycyrrhiza glabra L., has antibacterial properties. However, the virulence factors (especially the secreted proteins with eukaryotic-like domains) and pathogenesis of P. multocida and the regulatory effect of 18β-glycyrrhetinic acid have not been fully elucidated. This study focused on predicting secreted proteins with eukaryotic-like domains in P. multocida and examining the antibacterial effects of 18β-glycyrrhetinic acid on P. multocida. We combined transcriptomics analysis and in silico approaches to explore virulence factors in the P. multocida HB03 genome and identified 40 secreted proteins with eukaryotic-like domains regulated by 18β-glycyrrhetinic acid. Quantitative real-time polymerase chain reaction (qPCR) showed that compared with the P. multocida group, 18β-glycyrrhetinic acid significantly reduced the expression of aceF, gdhA, hpaG, and sel1L and increased the expression of galT and xynC, which was consistent with the transcriptomic data. Combining these qPCR results with the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotation results showed that 18β-glycyrrhetinic acid interfered with bacterial energy metabolism and host interactions by regulating the expression of virulence factors in P. multocida. Moreover, molecular docking revealed that 18β-glycyrrhetinic acid had the potential to target aceF and hpaG, thus regulating the activity of secreted proteins. Our findings indicate that predicting the secreted proteins with eukaryotic-like domains in P. multocida and elucidating the regulatory effect of 18β-glycyrrhetinic acid provides a theoretical basis for the prevention and control of P. multocida infection and the development of alternative antibiotic therapies.
Collapse
Affiliation(s)
- Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuhan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Luyao Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Meng Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jianglin Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Pu Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
2
|
Yuan J, Zhao Q, Li J, Wen Y, Wu R, Zhao S, Lang YF, Yan QG, Huang X, Du S, Cao SJ. CXCL8 Knockout: A Key to Resisting Pasteurella multocida Toxin-Induced Cytotoxicity. Int J Mol Sci 2024; 25:5330. [PMID: 38791369 PMCID: PMC11121343 DOI: 10.3390/ijms25105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Pasteurella multocida, a zoonotic pathogen that produces a 146-kDa modular toxin (PMT), causes progressive atrophic rhinitis with severe turbinate bone degradation in pigs. However, its mechanism of cytotoxicity remains unclear. In this study, we expressed PMT, purified it in a prokaryotic expression system, and found that it killed PK15 cells. The host factor CXCL8 was significantly upregulated among the differentially expressed genes in a transcriptome sequencing analysis and qPCR verification. We constructed a CXCL8-knockout cell line with a CRISPR/Cas9 system and found that CXCL8 knockout significantly increased resistance to PMT-induced cell apoptosis. CXCL8 knockout impaired the cleavage efficiency of apoptosis-related proteins, including Caspase3, Caspase8, and PARP1, as demonstrated with Western blot. In conclusion, these findings establish that CXCL8 facilitates PMT-induced PK15 cell death, which involves apoptotic pathways; this observation documents that CXCL8 plays a key role in PMT-induced PK15 cell death.
Collapse
Affiliation(s)
- Jianlin Yuan
- Research Center for Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Q.Z.); (J.L.); (Y.W.); (R.W.); (S.Z.); (Y.-F.L.); (Q.-G.Y.); (X.H.)
| | - Qin Zhao
- Research Center for Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Q.Z.); (J.L.); (Y.W.); (R.W.); (S.Z.); (Y.-F.L.); (Q.-G.Y.); (X.H.)
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinfeng Li
- Research Center for Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Q.Z.); (J.L.); (Y.W.); (R.W.); (S.Z.); (Y.-F.L.); (Q.-G.Y.); (X.H.)
| | - Yiping Wen
- Research Center for Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Q.Z.); (J.L.); (Y.W.); (R.W.); (S.Z.); (Y.-F.L.); (Q.-G.Y.); (X.H.)
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center for Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Q.Z.); (J.L.); (Y.W.); (R.W.); (S.Z.); (Y.-F.L.); (Q.-G.Y.); (X.H.)
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Zhao
- Research Center for Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Q.Z.); (J.L.); (Y.W.); (R.W.); (S.Z.); (Y.-F.L.); (Q.-G.Y.); (X.H.)
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi-Fei Lang
- Research Center for Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Q.Z.); (J.L.); (Y.W.); (R.W.); (S.Z.); (Y.-F.L.); (Q.-G.Y.); (X.H.)
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi-Gui Yan
- Research Center for Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Q.Z.); (J.L.); (Y.W.); (R.W.); (S.Z.); (Y.-F.L.); (Q.-G.Y.); (X.H.)
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center for Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Q.Z.); (J.L.); (Y.W.); (R.W.); (S.Z.); (Y.-F.L.); (Q.-G.Y.); (X.H.)
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Senyan Du
- Research Center for Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Q.Z.); (J.L.); (Y.W.); (R.W.); (S.Z.); (Y.-F.L.); (Q.-G.Y.); (X.H.)
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - San-Jie Cao
- Research Center for Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (Q.Z.); (J.L.); (Y.W.); (R.W.); (S.Z.); (Y.-F.L.); (Q.-G.Y.); (X.H.)
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
- National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Soni S, Chahar M, Priyanka, Chugh P, Sharma A, Narasimhan B, Mohan H. Identification of Aztreonam as a potential antibacterial agent against Pasteurella multocida sialic acid binding protein: A combined in silico and in-vitro analysis. Microb Pathog 2023; 185:106398. [PMID: 37852551 DOI: 10.1016/j.micpath.2023.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Pasteurella multocida, a Gram-negative zoonotic bacterial pathogen, interacts with the host environment, immune response, and infection through outer membrane proteins, adhesins, and sialic acid binding proteins. Sialic acids provide nutrition and mask bacterial identity, hindering the complement system, facilitates tissue access and biofilm formation. Sialic acid binding protein (SAB) enable adhesion to host cells, immune evasion, and nutrient acquisition, making them potential targets for preventing Pasteurella multocida infections. In this study, in silico molecular docking assessed 11 antibiotics targeting SAB (4MMP) comparing their docking scores to Amoxicillin. As SAB (4MMP) exhibits a highly conserved sequence in various Pasteurella multocida strains, including the specific strain PMR212 studied in this article, with a 96.09% similarity score. Aztreonam and Gentamicin displayed the highest docking scores (-6.025 and -5.718), followed by a 100ns molecular dynamics simulation. Aztreonam exhibited stable simulation with protein RMSD fluctuations of 1.8-2.2 Å. The ligand initially had an RMSD of 1.6 Å, stabilizing at 4.8 Å. Antibiotic sensitivity testing confirmed Aztreonam's efficacy with the largest inhibition zone of 42 mm, while Amoxicillin and Gentamicin had inhibition zones of 32 mm and 25 mm, respectively. According to CLSI guidelines, all three antibiotics were effective against Pasteurella multocida. Aztreonam's superior efficacy positions it as a promising candidate for further investigation in targeting Pasteurella multocida.
Collapse
Affiliation(s)
- Subodh Soni
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Manjeet Chahar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Priyanka
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Pooja Chugh
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Aastha Sharma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | | | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
4
|
Mahboob S, Ullah N, Farhan Ul Haque M, Rauf W, Iqbal M, Ali A, Rahman M. Genomic characterization and comparative genomic analysis of HS-associated Pasteurella multocida serotype B:2 strains from Pakistan. BMC Genomics 2023; 24:546. [PMID: 37710174 PMCID: PMC10500850 DOI: 10.1186/s12864-023-09626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/26/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Haemorrhagic septicaemia (HS) is a highly fatal and predominant disease in livestock, particularly cattle and buffalo in the tropical regions of the world. Pasteurella multocida (P. multocida), serotypes B:2 and E:2, are reported to be the main causes of HS wherein serotype B:2 is more common in Asian countries including Pakistan and costs heavy financial losses every year. As yet, very little molecular and genomic information related to the HS-associated serotypes of P. multocida isolated from Pakistan is available. Therefore, this study aimed to explore the characteristics of novel bovine isolates of P. multocida serotype B:2 at the genomic level and perform comparative genomic analysis of various P. multocida strains from Pakistan to better understand the genetic basis of pathogenesis and virulence. RESULTS To understand the genomic variability and pathogenomics, we characterized three HS-associated P. multocida serotype B:2 strains isolated from the Faisalabad (PM1), Peshawar (PM2) and Okara (PM3) districts of Punjab, Pakistan. Together with the other nine publicly available Pakistani-origin P. multocida strains and a reference strain Pm70, a comparative genomic analysis was performed. The sequenced strains were characterized as serotype B and belong to ST-122. The strains contain no plasmids; however, each strain contains at least two complete prophages. The pan-genome analysis revealed a higher number of core genes indicating a close resemblance to the studied genomes and very few genes (1%) of the core genome serve as a part of virulence, disease, and defense mechanisms. We further identified that studied P. multocida B:2 strains harbor common antibiotic resistance genes, specifically PBP3 and EF-Tu. Remarkably, the distribution of virulence factors revealed that OmpH and plpE were not present in any P. multocida B:2 strains while the presence of these antigens was reported uniformly in all serotypes of P. multocida. CONCLUSION This study's findings indicate the absence of OmpH and PlpE in the analyzed P. multocida B:2 strains, which are known surface antigens and provide protective immunity against P. multocida infection. The availability of additional genomic data on P. multocida B:2 strains from Pakistan will facilitate the development of localized therapeutic agents and rapid diagnostic tools specifically targeting HS-associated P. multocida B:2 strains.
Collapse
Affiliation(s)
- Sadia Mahboob
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| | - Nimat Ullah
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | | | - Waqar Rauf
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan.
| | - Amjad Ali
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Moazur Rahman
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan.
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan.
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan.
| |
Collapse
|
5
|
Pasomboon P, Chumnanpuen P, E-Kobon T. Comparison of Hyaluronic Acid Biosynthetic Genes From Different Strains of Pasteurella multocida. Bioinform Biol Insights 2021; 15:11779322211027406. [PMID: 34220200 PMCID: PMC8221702 DOI: 10.1177/11779322211027406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022] Open
Abstract
Pasteurella multocida produces a capsule composed of different polysaccharides according to the capsular serotype (A, B, D, E, and F). Hyaluronic acid (HA) is a component of certain capsular types of this bacterium, especially capsular type A. Previously, 2 HA biosynthetic genes from a capsular type A strain were studied for the industrial-scale improvement of HA production. Molecular comparison of these genes across different capsular serotypes of P multocida has not been reported. This study aimed to compare 8 HA biosynthetic genes (pgi, pgm, galU, hyaC, glmS, glmM, glmU, and hyaD) of 22 P multocida strains (A:B:D:F = 6:6:6:4) with those of other organisms using sequence and structural bioinformatics analyses. These 8 genes showed a high level of within-species similarity (98%-99%) compared with other organisms. Only the last gene of 4 strains with capsular type F (HN07, PM70, HNF01, and HNF02) significantly differed from those of other strains (82%). Analysis of amino acid patterns together with phylogenetic results showed that the HA biosynthetic genes of the type A were closely related within the group. The genes in the capsular type F strain were notably similar to those of the capsular type A strain. Protein structural analysis supported structural similarities of the encoded enzymes between the strains of capsular types A, B, D, and F, except for the Pgm, GlmS, GlmU, and HyaD proteins. Our bioinformatics analytic workflow proposed that variations observed within these genes could be useful for genetic engineering–based improvement of hyaluronic acid–producing enzymes.
Collapse
Affiliation(s)
- Pailin Pasomboon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Pramote Chumnanpuen
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand.,Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Teerasak E-Kobon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
6
|
Li P, He F, Wu C, Zhao G, Hardwidge PR, Li N, Peng Y. Transcriptomic Analysis of Chicken Lungs Infected With Avian and Bovine Pasteurella multocida Serotype A. Front Vet Sci 2020; 7:452. [PMID: 32851030 PMCID: PMC7433353 DOI: 10.3389/fvets.2020.00452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Pasteurella multocida (P. multocida) is a common animal pathogen responsible for many animal diseases. Strains from different hosts exhibit disparate degrees of effect in other species. Here, we characterize an avian P. multocida serogroup A strain (PmQ) showing high lethality to chickens and a bovine P. multocida serogroup A strain (PmCQ2) with no lethality to chickens. We used RNA-seq to profile the transcriptomes of chicken lungs infected with PmQ and PmCQ2. A total of 1,649 differentially expressed genes (DEGs) due to PmQ infection (831 upregulated genes and 818 downregulated genes) and 1427 DEGs (633 upregulated genes and 794 downregulated genes) due to PmCQ2 infection were identified. Functional analysis of these DEGs demonstrated that the TNF signaling pathway, the toll-like receptor signaling pathway, complement and coagulation cascades, and cytokine–cytokine receptor interaction were both enriched in PmQ and PmCQ2 infection. STAT and apoptosis signaling pathways were uniquely enriched by PmQ infection, and the NOD-like receptor signaling pathway was enriched only by PmCQ2 infection. Cell-type enrichment analysis of the transcriptomes showed that immune cells, including macrophages and granulocytes, were enriched in both infection groups. Collectively, our study profiled the transcriptomic response of chicken lungs infected with P. multocida and provided valuable information to understand the chicken responses to P. multocida infection.
Collapse
Affiliation(s)
- Pan Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Fang He
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chenlu Wu
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Guangfu Zhao
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China.,The College of Life Sciences, Sichuan University, Chengdu, China
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Nengzhang Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Hurtado R, Maturrano L, Azevedo V, Aburjaile F. Pathogenomics insights for understanding Pasteurella multocida adaptation. Int J Med Microbiol 2020; 310:151417. [PMID: 32276876 DOI: 10.1016/j.ijmm.2020.151417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/01/2020] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
Pasteurella multocida is an important veterinary pathogen able to infect a wide range of animals in a broad spectrum of diseases. P. multocida is a complex microorganism in relation to its genomic flexibility, host adaptation and pathogenesis. Epidemiological analysis based on multilocus sequence typing, serotyping, genotyping, association with virulence genes and single nucleotide polymorphisms (SNPs), enables assessment of intraspecies diversity, phylogenetic and strain-specific relationships associated with host predilection or disease. A high number of sequenced genomes provides us a more accurate genomic and epidemiological interpretation to determine whether certain lineages can infect a host or produce disease. Comparative genomic analysis and pan-genomic approaches have revealed a flexible genome for hosting mobile genetic elements (MGEs) and therefore significant variation in gene content. Moreover, it was possible to find lineage-specific MGEs from the same niche, showing acquisition probably due to an evolutionary convergence event or to a genetic group with infective capacity. Furthermore, diversification selection analysis exhibits proteins exposed on the surface subject to selection pressures with an interstrain heterogeneity related to their ability to adapt. This article is the first review describing the genomic relationship to elucidate the diversity and evolution of P. multocida.
Collapse
Affiliation(s)
- Raquel Hurtado
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil; Laboratory of Molecular Biology and Genetics, Veterinary Medicine Faculty, San Marcos University, Lima, Peru
| | - Lenin Maturrano
- Laboratory of Molecular Biology and Genetics, Veterinary Medicine Faculty, San Marcos University, Lima, Peru
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Flávia Aburjaile
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil; Laboratory of Plant Genetics and Biotechnology, Federal University of Pernambuco, Recife, 50670-901, Pernambuco, Brazil.
| |
Collapse
|
8
|
Abstract
Pasteurella multocida is a highly versatile pathogen capable of causing infections in a wide range of domestic and wild animals as well as in humans and nonhuman primates. Despite over 135 years of research, the molecular basis for the myriad manifestations of P. multocida pathogenesis and the determinants of P. multocida phylogeny remain poorly defined. The current availability of multiple P. multocida genome sequences now makes it possible to delve into the underlying genetic mechanisms of P. multocida fitness and virulence. Using whole-genome sequences, the genotypes, including the capsular genotypes, lipopolysaccharide (LPS) genotypes, and multilocus sequence types, as well as virulence factor-encoding genes of P. multocida isolates from different clinical presentations can be characterized rapidly and accurately. Putative genetic factors that contribute to virulence, fitness, host specificity, and disease predilection can also be identified through comparative genome analysis of different P. multocida isolates. However, although some knowledge about genotypes, fitness, and pathogenesis has been gained from the recent whole-genome sequencing and comparative analysis studies of P. multocida, there is still a long way to go before we fully understand the pathogenic mechanisms of this important zoonotic pathogen. The quality of several available genome sequences is low, as they are assemblies with relatively low coverage, and genomes of P. multocida isolates from some uncommon host species are still limited or lacking. Here, we review recent advances, as well as continuing knowledge gaps, in our understanding of determinants contributing to virulence, fitness, host specificity, disease predilection, and phylogeny of P. multocida.
Collapse
|
9
|
Zhu D, He J, Yang Z, Wang M, Jia R, Chen S, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, You Y, Chen X, Cheng A. Comparative analysis reveals the Genomic Islands in Pasteurella multocida population genetics: on Symbiosis and adaptability. BMC Genomics 2019; 20:63. [PMID: 30658579 PMCID: PMC6339346 DOI: 10.1186/s12864-018-5366-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pasteurella multocida (P. multocida) is a widespread opportunistic pathogen that infects human and various animals. Genomic Islands (GIs) are one of the most important mobile components that quickly help bacteria acquire large fragments of foreign genes. However, the effects of GIs on P. multocida are unknown in the evolution of bacterial populations. RESULTS Ten avian-sourced P. multocida obtained through high-throughput sequencing together with 104 publicly available P. multocida genomes were used to analyse their population genetics, thus constructed a pan-genome containing 3948 protein-coding genes. Through the pan-genome, the open evolutionary pattern of P. multocida was revealed, and the functional components of 944 core genes, 2439 accessory genes and 565 unique genes were analysed. In addition, a total of 280 GIs were predicted in all strains. Combined with the pan-genome of P. multocida, the GIs accounted for 5.8% of the core genes in the pan-genome, mainly related to functional metabolic activities; the accessory genes accounted for 42.3%, mainly for the enrichment of adaptive genes; and the unique genes accounted for 35.4%, containing some defence mechanism-related genes. CONCLUSIONS The effects of GIs on the population genetics of P. multocida evolution and adaptation to the environment are reflected by the proportion and function of the pan-genome acquired from GIs, and the large quantities of GI data will aid in additional population genetics studies.
Collapse
Affiliation(s)
- Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Jiao He
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Zhishuang Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Yunya Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Ling Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Yanling Yu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Yu You
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Xiaoyue Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan China
| |
Collapse
|
10
|
Iron-associated protein interaction networks reveal the key functional modules related to survival and virulence of Pasteurella multocida. Microb Pathog 2018; 127:257-266. [PMID: 30550841 DOI: 10.1016/j.micpath.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022]
Abstract
Pasteurella multocida causes respiratory infectious diseases in a multitude of birds and mammals. A number of virulence-associated genes were reported across different strains of P. multocida, including those involved in the iron transport and metabolism. Comparative iron-associated genes of P. multocida among different animal hosts towards their interaction networks have not been fully revealed. Therefore, this study aimed to identify the iron-associated genes from core- and pan-genomes of fourteen P. multocida strains and to construct iron-associated protein interaction networks using genome-scale network analysis which might be associated with the virulence. Results showed that these fourteen strains had 1587 genes in the core-genome and 3400 genes constituting their pan-genome. Out of these, 2651 genes associated with iron transport and metabolism were selected to construct the protein interaction networks and 361 genes were incorporated into the iron-associated protein interaction network (iPIN) consisting of nine different iron-associated functional modules. After comparing with the virulence factor database (VFDB), 21 virulence-associated proteins were determined and 11 of these belonged to the heme biosynthesis module. From this study, the core heme biosynthesis module and the core outer membrane hemoglobin receptor HgbA were proposed as candidate targets to design novel antibiotics and vaccines for preventing pasteurellosis across the serotypes or animal hosts for enhanced precision agriculture to ensure sustainability in food security.
Collapse
|
11
|
Abbas AM, Abd El-Moaty DAM, Zaki ESA, El-Sergany EF, El-Sebay NA, Fadl HA, Samy AA. Use of molecular biology tools for rapid identification and characterization of Pasteurella spp. Vet World 2018; 11:1006-1014. [PMID: 30147273 PMCID: PMC6097567 DOI: 10.14202/vetworld.2018.1006-1014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/07/2018] [Indexed: 11/20/2022] Open
Abstract
Aim: This study aimed to create rapid characterization and genotyping of Pasteurella multocida (PM) protocol using modern molecular biology techniques. Materials and Methods: Thirty bacterial isolates were characterized by capsular and somatic identification using conventional procedure followed by multiplex polymerase chain reaction (PCR), restriction endonucleases analysis (REA), and finally confirmed by sequence analysis. Two local vaccine strains and two field isolates were identified as PM Type A and B. Results: A total of 30 isolates were found positive for PM either morphologically and biochemically; however, multiplex PCR technique identified only 22 isolates as Pasteurella species using universal primers while 8 isolates were found negative for PM. 12 of 22 isolates (54%) were characterized at the same reaction into PM Type A, five isolates (23%) were Type B and the rest five isolates (23%) of tested isolates were negative for Types A, B, and D. Hemorrhagic septicemia Type B: 2 or B: 5 could be identified somatically within PM capsular serogroup B using PCR technique. Somatic characterization of PM was done using REA that could identify all PM Type A into A:1 and all PM Type B into B: 2. These protocols were verified for its accuracy and reliability by sequence analysis of two vaccine strains of PM Type A and B that were characterized previously by biochemical and serological methods as well as two selected isolates from the 22 positive isolates representing PM Type A and B. Conclusion: PCR and REA could confirm the identity of PM and provide a rapid and reliable characterization in comparison with biochemical analysis and conventional serotyping that may take up to 2 weeks. Hence, they can reduce the time needed for polyvalent vaccine production and when the reference antisera are unavailable. Moreover, the identity of Omp-H for vaccine and field strains may provide better data to control Pasteurellosis in Egypt.
Collapse
Affiliation(s)
- Ashraf M Abbas
- Genetic Engineering Research Department, Veterinary Serum and Vaccine Research Institute, Cairo Egypt
| | - Dalia A M Abd El-Moaty
- Genetic Engineering Research Department, Veterinary Serum and Vaccine Research Institute, Cairo Egypt
| | - Eman S A Zaki
- Aerobic Bacterial Vaccine Research Department, Veterinary Serum and Vaccine Research Institute, Cairo Egypt
| | - Elham F El-Sergany
- Anaerobic Bacterial Vaccine Research Department, Veterinary Serum and Vaccine Research Institute, Cairo Egypt
| | - Nadine A El-Sebay
- Genetic Engineering Research Department, Veterinary Serum and Vaccine Research Institute, Cairo Egypt
| | - Hala A Fadl
- Genetic Engineering Research Department, Veterinary Serum and Vaccine Research Institute, Cairo Egypt
| | - A A Samy
- Department of Microbiology and Immunology, Veterinary Division, National Research Center, Dokki, Egypt
| |
Collapse
|
12
|
Chitarra CS, Oliveira Filho JXD, Morés N, Silva MIVD, Cândido SL, Cezarino PG, Nakazato L, Dutra V. Identification of Pasteurella multocida transcribed genes in porcine lungs through RNAseq. Microb Pathog 2018; 122:180-183. [PMID: 29890333 DOI: 10.1016/j.micpath.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 05/11/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022]
Abstract
Pasteurella multocida is one of the most important pathogen that causes pneumonia in swine. Although several virulence factors are known, the pathogenesis of this bacterium is not well-studied. Therefore, to study the pathogenesis of P. multocida infection in porcine lung, next-generation RNA sequencing was used to compare the transcriptomes of P. multocida grown in vivo and in vitro, respectively. After P. multocida infection a total of 704 genes were expressed in vitro, 1422 genes were expressed in vivo, and 237 genes were differentially expressed based on statistical analyses, padj of ≤0.1. Genes encoding ribosomal proteins or other products that function in the regulation of transcription and translation were downregulated, whereas genes whose products affected cellular processes (protein transport and RNA degradation) and metabolic pathways, such as those of amino acid metabolism and nucleotide metabolism, were upregulated in vitro compared with in vivo. This study shows that differentially expressed genes in P. multocida regulate pathways that operate during stress, iron capture, heat shock, and nitrogen regulation. However, extensive investigation of the pathogenic mechanism of P. multocida is still required.
Collapse
Affiliation(s)
- Cristiane Silva Chitarra
- Avenida Fernando Corrêa da Costa, nº 2367 - Bairro Boa Esperança, Cuiabá, Mato Grosso, CEP: 78060-900, Brazil.
| | | | - Nelson Morés
- Rodovia BR-153, Km 110, Distrito de Tamanduá Caixa Postal: 321, Concórdia, Santa Catarina, CEP: 89715-899, Brazil
| | | | - Stefhano Luis Cândido
- Avenida Fernando Corrêa da Costa, nº 2367 - Bairro Boa Esperança, Cuiabá, Mato Grosso, CEP: 78060-900, Brazil
| | - Paula Gabriela Cezarino
- Avenida Fernando Corrêa da Costa, nº 2367 - Bairro Boa Esperança, Cuiabá, Mato Grosso, CEP: 78060-900, Brazil
| | - Luciano Nakazato
- Avenida Fernando Corrêa da Costa, nº 2367 - Bairro Boa Esperança, Cuiabá, Mato Grosso, CEP: 78060-900, Brazil
| | - Valéria Dutra
- Avenida Fernando Corrêa da Costa, nº 2367 - Bairro Boa Esperança, Cuiabá, Mato Grosso, CEP: 78060-900, Brazil
| |
Collapse
|
13
|
Hurtado R, Carhuaricra D, Soares S, Viana MVC, Azevedo V, Maturrano L, Aburjaile F. Pan-genomic approach shows insight of genetic divergence and pathogenic-adaptation of Pasteurella multocida. Gene 2018; 670:193-206. [PMID: 29802996 DOI: 10.1016/j.gene.2018.05.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/06/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
Abstract
Pasteurella multocida is a gram-negative, non-motile bacterial pathogen, which is associated with chronic and acute infections as snuffles, pneumonia, atrophic rhinitis, fowl cholera and hemorrhagic septicemia. These diseases affect a wide range of domestic animals, leading to significant morbidity and mortality and causing significant economic losses worldwide. Due to the interest in deciphering the genetic diversity and process adaptive between P. multocida strains, this work aimed was to perform a pan-genome analysis to evidence horizontal gene transfer and positive selection among 23 P. multocida strains isolated from distinct diseases and hosts. The results revealed an open pan-genome containing 3585 genes and an accessory genome presenting 1200 genes. The phylogenomic analysis based on the presence/absence of genes and islands exhibit high levels of plasticity, which reflects a high intraspecific diversity and a possible adaptive mechanism responsible for the specific disease manifestation between the established groups (pneumonia, fowl cholera, hemorrhagic septicemia and snuffles). Additionally, we identified differences in accessory genes among groups, which are involved in sugar metabolism and transport systems, virulence-related genes and a high concentration of hypothetical proteins. However, there was no specific indispensable functional mechanism to decisively correlate the presence of genes and their adaptation to a specific host/disease. Also, positive selection was found only for two genes from sub-group hemorrhagic septicemia, serotype B. This comprehensive comparative genome analysis will provide new insights of horizontal gene transfers that play an essential role in the diversification and adaptation mechanism into P. multocida species to a specific disease.
Collapse
Affiliation(s)
- Raquel Hurtado
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dennis Carhuaricra
- Laboratory of Molecular Biology and Genetics, Veterinary Medicine Faculty, San Marcos University, Lima, Peru
| | - Siomar Soares
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcus Vinicius Canário Viana
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lenin Maturrano
- Laboratory of Molecular Biology and Genetics, Veterinary Medicine Faculty, San Marcos University, Lima, Peru
| | - Flávia Aburjaile
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratory of Plant Genetics and Biotechnology, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
14
|
LeCount KJ, Schlater LK, Stuber T, Robbe Austerman S, Frana TS, Griffith RW, Erdman MM. Comparison of whole genome sequencing to restriction endonuclease analysis and gel diffusion precipitin-based serotyping of Pasteurella multocida. J Vet Diagn Invest 2018; 30:42-55. [PMID: 28906178 PMCID: PMC6504148 DOI: 10.1177/1040638717732371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The gel diffusion precipitin test (GDPT) and restriction endonuclease analysis (REA) have commonly been used in the serotyping and genotyping of Pasteurella multocida. Whole genome sequencing (WGS) and single nucleotide polymorphism (SNP) analysis has become the gold standard for other organisms, offering higher resolution than previously available methods. We compared WGS to REA and GDPT on 163 isolates of P. multocida to determine if WGS produced more precise results. The isolates used represented the 16 reference serovars, isolates with REA profiles matching an attenuated fowl cholera vaccine strain, and isolates from 10 different animal species. Isolates originated from across the United States and from Chile. Identical REA profiles clustered together in the phylogenetic tree. REA profiles that differed by only a few bands had fewer SNP differences than REA profiles with more differences, as expected. The GDPT results were diverse but it was common to see a single serovar show up repeatedly within clusters. Several errors were found when examining the REA profiles. WGS was able to confirm these errors and compensate for the subjectivity in analysis of REA. Also, results of WGS and SNP analysis correlated more closely with the epidemiologic data than GDPT. In silico results were also compared to a lipopolysaccharide rapid multiplex PCR test. From the data produced in our study, WGS and SNP analysis was superior to REA and GDPT and highlighted some of the issues with the older tests.
Collapse
Affiliation(s)
- Karen J. LeCount
- Karen J. LeCount, Diagnostic
Bacteriology Laboratory, National Veterinary Services Laboratories, U.S.
Department of Agriculture, Animal and Plant Health Inspection Service,
Veterinary Service, 1920 Dayton Avenue, Ames, IA 50010.
| | - Linda K. Schlater
- Diagnostic Bacteriology Laboratory, National
Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and
Plant Health Inspection Service, Veterinary Service, Ames, IA (LeCount,
Schlater, Stuber, Robbe Austerman, Erdman)
- Department of Veterinary Microbiology and Preventive
Medicine, Iowa State University, Ames, IA (Frana, Griffith)
| | - Tod Stuber
- Diagnostic Bacteriology Laboratory, National
Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and
Plant Health Inspection Service, Veterinary Service, Ames, IA (LeCount,
Schlater, Stuber, Robbe Austerman, Erdman)
- Department of Veterinary Microbiology and Preventive
Medicine, Iowa State University, Ames, IA (Frana, Griffith)
| | - Suelee Robbe Austerman
- Diagnostic Bacteriology Laboratory, National
Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and
Plant Health Inspection Service, Veterinary Service, Ames, IA (LeCount,
Schlater, Stuber, Robbe Austerman, Erdman)
- Department of Veterinary Microbiology and Preventive
Medicine, Iowa State University, Ames, IA (Frana, Griffith)
| | - Timothy S. Frana
- Diagnostic Bacteriology Laboratory, National
Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and
Plant Health Inspection Service, Veterinary Service, Ames, IA (LeCount,
Schlater, Stuber, Robbe Austerman, Erdman)
- Department of Veterinary Microbiology and Preventive
Medicine, Iowa State University, Ames, IA (Frana, Griffith)
| | - Ronald W. Griffith
- Diagnostic Bacteriology Laboratory, National
Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and
Plant Health Inspection Service, Veterinary Service, Ames, IA (LeCount,
Schlater, Stuber, Robbe Austerman, Erdman)
- Department of Veterinary Microbiology and Preventive
Medicine, Iowa State University, Ames, IA (Frana, Griffith)
| | - Matthew M. Erdman
- Diagnostic Bacteriology Laboratory, National
Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and
Plant Health Inspection Service, Veterinary Service, Ames, IA (LeCount,
Schlater, Stuber, Robbe Austerman, Erdman)
- Department of Veterinary Microbiology and Preventive
Medicine, Iowa State University, Ames, IA (Frana, Griffith)
| |
Collapse
|
15
|
García-Alvarez A, Vela AI, San Martín E, Chaves F, Fernández-Garayzábal JF, Lucas D, Cid D. Characterization of Pasteurella multocida associated with ovine pneumonia using multi-locus sequence typing (MLST) and virulence-associated gene profile analysis and comparison with porcine isolates. Vet Microbiol 2017; 204:180-187. [DOI: 10.1016/j.vetmic.2017.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 11/24/2022]
|
16
|
Genome characterization of Pasteurella multocida subspecies septica and comparison with Pasteurella multocida subspecies multocida and gallicida. Arch Microbiol 2017; 199:635-640. [DOI: 10.1007/s00203-017-1341-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/07/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
|
17
|
Zhao X, Liu Q, Xiao K, Hu Y, Liu X, Li Y, Kong Q. Identification of the crp gene in avian Pasteurella multocida and evaluation of the effects of crp deletion on its phenotype, virulence and immunogenicity. BMC Microbiol 2016; 16:125. [PMID: 27343075 PMCID: PMC4921010 DOI: 10.1186/s12866-016-0739-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 06/09/2016] [Indexed: 12/14/2022] Open
Abstract
Background Pasteurella multocida (P. multocida) is an important veterinary pathogen that can cause severe diseases in a wide range of mammals and birds. The global regulator crp gene has been found to regulate the virulence of some bacteria, and crp mutants have been demonstrated to be effective attenuated vaccines against Salmonella enterica and Yersinia enterocolitica. Here, we first characterized the crp gene in P. multocida, and we report the effects of a crp deletion. Results The P. multocida crp mutant exhibited a similar lipopolysaccharide and outer membrane protein profile but displayed defective growth and serum complement resistance in vitro compared with the parent strain. Furthermore, crp deletion decreased virulence but did not result in full attenuation. The 50 % lethal dose (LD50) of the Δcrp mutant was 85-fold higher than that of the parent strain for intranasal infection. Transcriptome sequencing analysis showed that 92 genes were up-regulated and 94 genes were down-regulated in the absence of the crp gene. Finally, we found that intranasal immunization with the Δcrp mutant triggered both systematic and mucosal antibody responses and conferred 60 % protection against virulent P. multocida challenge in ducks. Conclusion The deletion of the crp gene has an inhibitory effect on bacterial growth and bacterial resistance to serum complement in vitro. The P. multocida crp mutant was attenuated and conferred moderate protection in ducks. This work affords a platform for analyzing the function of crp and aiding the formulation of a novel vaccine against P. multocida. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0739-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinxin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Wenjiang, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Wenjiang, Sichuan, 611130, China
| | - Qing Liu
- Department of Bioengineering, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Wenjiang, 611130, China.
| | - Kangpeng Xiao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunlong Hu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xueyan Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanyan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Wenjiang, Sichuan, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Wenjiang, Sichuan, 611130, China.
| |
Collapse
|