1
|
Koufi FD, Neri I, Ramazzotti G, Rusciano I, Mongiorgi S, Marvi MV, Fazio A, Shin M, Kosodo Y, Cani I, Giorgio E, Cortelli P, Manzoli L, Ratti S. Lamin B1 as a key modulator of the developing and aging brain. Front Cell Neurosci 2023; 17:1263310. [PMID: 37720548 PMCID: PMC10501396 DOI: 10.3389/fncel.2023.1263310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Lamin B1 is an essential protein of the nuclear lamina that plays a crucial role in nuclear function and organization. It has been demonstrated that lamin B1 is essential for organogenesis and particularly brain development. The important role of lamin B1 in physiological brain development and aging has only recently been at the epicenter of attention and is yet to be fully elucidated. Regarding the development of brain, glial cells that have long been considered as supporting cells to neurons have overturned this representation and current findings have displayed their active roles in neurogenesis and cerebral development. Although lamin B1 has increased levels during the differentiation of the brain cells, during aging these levels drop leading to senescent phenotypes and inciting neurodegenerative disorders such as Alzheimer's and Parkinson's disease. On the other hand, overexpression of lamin B1 leads to the adult-onset neurodegenerative disease known as Autosomal Dominant Leukodystrophy. This review aims at highlighting the importance of balancing lamin B1 levels in glial cells and neurons from brain development to aging.
Collapse
Affiliation(s)
- Foteini-Dionysia Koufi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Irene Neri
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Antonietta Fazio
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Minkyung Shin
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Yoichi Kosodo
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Ilaria Cani
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Medical Genetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Pan Z, Wang X, Di R, Liu Q, Hu W, Cao X, Guo X, He X, Lv S, Li F, Wang H, Chu M. A 5-Methylcytosine Site of Growth Differentiation Factor 9 (GDF9) Gene Affects Its Tissue-Specific Expression in Sheep. Animals (Basel) 2018; 8:ani8110200. [PMID: 30405007 PMCID: PMC6262488 DOI: 10.3390/ani8110200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Growth differentiation factor 9 (GDF9) is an important gene for ovine fertility. GDF9 is highly expressed in the ovary as opposed to other tissues, but the reason for this is unknown. Our study found this can be caused by the methylation level of the promoter CpG island mC-4 site. This finding contributes to the understanding of the regulatory mechanism of GDF9 gene in reproduction. Abstract Growth differentiation factor 9 (GDF9) plays an important role in the early folliculogenesis of sheep. This study investigated the mRNA expression of ovine GDF9 in different tissues by real-time PCR. GDF9 exhibits significantly higher levels of expression (p < 0.01) in the ovary, relative to other tissues, indicating that its expression is tissue specific. To explore the regulatory mechanism of this tissue-specific expression, the methylation level of one CpG island (−1453 to −1854) of GDF9 promoter in ovary and heart was determined. In this region (−1987 to −1750), only the mC-4 site was present in the Sp4 binding site showed differential methylation between the heart and ovary; with increased (p < 0.01) methylation being observed in the heart. Additionally, the methylation level was negatively correlated with GDF9 mRNA expression (R = −0.75, p = 0.012), indicating that the methylation of this site plays an important role in transcriptional regulation of GDF9. The methylation effect of the mC-4 site was confirmed by using dual-luciferase. Site-directed mutation (methylation) of mC-4 site significantly reduced (p < 0.05) basal transcriptional activity of GDF9 promoter in oocytes. These results imply that methylation of GDF9 promoter CpG island mC-4 site may affect the binding of the Sp4 transcription factor to the GDF9 promoter region in sheep, thereby regulating GDF9 expression and resulting in a tissue-specific expression.
Collapse
Affiliation(s)
- Zhangyuan Pan
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China.
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaohan Cao
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaofei Guo
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shengjin Lv
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China.
| | - Fukuan Li
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China.
| | - Hui Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Sarasamma S, Varikkodan MM, Liang ST, Lin YC, Wang WP, Hsiao CD. Zebrafish: A Premier Vertebrate Model for Biomedical Research in Indian Scenario. Zebrafish 2017; 14:589-605. [PMID: 29023224 DOI: 10.1089/zeb.2017.1447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The zebrafish (Danio rerio) is a versatile model organism that has been used in biomedical research for several decades to study a wide range of biological phenomena. There are many technical advantages of using zebrafish over other vertebrate models. They are readily available, hardy, easy, and inexpensive to maintain in the laboratory, have a short life cycle, and have excellent fecundity. Due to its optical clarity and reproducible capabilities, it has become one of the predominant models of human genetic diseases. Zebrafish research has made rapid strides in the United States and Europe, but in India the field is at an early stage and many researchers still remain unaware of the full research potential of this tiny fish. The zebrafish model system was introduced into India in the early 2000s. Up to now, more than 200 scientific referred articles have been published by Indian researchers. This review gives an overview of the current state of knowledge for zebrafish research in India, with the aim of promoting wider utilization of zebrafish for high level biological studies.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,2 Department of Bioscience Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,3 Department of Chemical Biology, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram, Kerala, India
| | - Muhammed Muhsin Varikkodan
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,2 Department of Bioscience Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,4 Department of Biotechnology and Genetic Engineering, Bharathidasan University , Tiruchirapalli, India
| | - Sung-Tzu Liang
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan
| | - Yen-Chang Lin
- 5 Graduate Institute of Biotechnology, Chinese Culture University , Taipei, Taiwan
| | - Wen-Pin Wang
- 6 Institute of Medical Sciences, Tzu-Chi University , Hualien, Taiwan .,7 Department of Molecular Biology and Human Genetics, Tzu-Chi University , Hualien, Taiwan
| | - Chung-Der Hsiao
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,8 Center for Biomedical Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,9 Center for Nanotechnology, Chung Yuan Christian University , Chung-Li, Taiwan
| |
Collapse
|
4
|
Verma AD, Parnaik VK. Heart-specific expression of laminopathic mutations in transgenic zebrafish. Cell Biol Int 2017; 41:809-819. [DOI: 10.1002/cbin.10784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/28/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Ajay D. Verma
- CSIR-Centre for Cellular and Molecular Biology; Uppal Road Hyderabad 500007 India
| | - Veena K. Parnaik
- CSIR-Centre for Cellular and Molecular Biology; Uppal Road Hyderabad 500007 India
| |
Collapse
|