1
|
Wu D, Liu Y, Chen W, Shao J, Zhuoma P, Zhao D, Yu Y, Liu T, Yu R, Gan Y, Yuzheng B, Huang Y, Zhang H, Bi X, Tao C, Lai S, Luo Q, Zhang D, Wang H, Zhaxi P, Zhang J, Qiao J, Zeng C. How placenta promotes the successful reproduction in high-altitude populations: a transcriptome comparison between adaptation and acclimatization. Mol Biol Evol 2022; 39:6596365. [PMID: 35642306 PMCID: PMC9206416 DOI: 10.1093/molbev/msac120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
As the best adapted high altitude population, Tibetans feature a relatively high offspring survival rate. Genome-wide studies have identified hundreds of candidate SNPs related to high altitude adaptation of Tibetans, although most of them have unknown functional relevance. To explore the mechanisms behind successful reproduction at high altitudes, we compared the placental transcriptomes of Tibetans, sea level Hans (SLHan), and Han immigrants (ImHan). Among the three populations, placentas from ImHan showed a hyperactive gene expression pattern. Their increased activation demonstrates a hypoxic stress response similar to sea level individuals experiencing hypoxic conditions. Unlike ImHan, Tibetan placentas were characterized by the significant up-regulation of placenta-specific genes, and the activation of autophagy and the tricarboxylic acid (TCA) cycle. Certain conserved hypoxia response functions, including the antioxidant system and angiogenesis, were activated in both ImHan and Tibetans, but mediated by different genes. The coherence of specific transcriptome features linked to possible genetic contribution was observed in Tibetans. Furthermore, we identified a novel Tibetan-specific EPAS1 isoform with a partial deletion at exon six, which may be involved in the adaption to hypoxia through the EPAS1-centred gene network in the placenta. Overall, our results show that the placenta grants successful pregnancies in Tibetans by strengthening the natural functions of the placenta itself. On the other hand, the placenta of ImHan was in an inhabiting time-dependent acclimatization process representing a common hypoxic stress response pattern.
Collapse
Affiliation(s)
- Deng Wu
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Yunao Liu
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Jianming Shao
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Pubu Zhuoma
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Dexiong Zhao
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Xining, Qinghai China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Tianzi Liu
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Ruoxuan Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yongna Gan
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Xining, Qinghai China
| | - Baima Yuzheng
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Yongshu Huang
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Haikun Zhang
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoman Bi
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Tao
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Shujuan Lai
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoxia Luo
- The Third People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Dake Zhang
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pingcuo Zhaxi
- The Third People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Jianqing Zhang
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Changqing Zeng
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Wu Z, Gong H, Zhang M, Tong X, Ai H, Xiao S, Perez-Enciso M, Yang B, Huang L. A worldwide map of swine short tandem repeats and their associations with evolutionary and environmental adaptations. Genet Sel Evol 2021; 53:39. [PMID: 33892623 PMCID: PMC8063339 DOI: 10.1186/s12711-021-00631-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Short tandem repeats (STRs) are genetic markers with a greater mutation rate than single nucleotide polymorphisms (SNPs) and are widely used in genetic studies and forensics. However, most studies in pigs have focused only on SNPs or on a limited number of STRs. Results This study screened 394 deep-sequenced genomes from 22 domesticated pig breeds/populations worldwide, wild boars from both Europe and Asia, and numerous outgroup Suidaes, and identified a set of 878,967 polymorphic STRs (pSTRs), which represents the largest repository of pSTRs in pigs to date. We found multiple lines of evidence that pSTRs in coding regions were affected by purifying selection. The enrichment of trinucleotide pSTRs in coding sequences (CDS), 5′UTR and H3K4me3 regions suggests that trinucleotide STRs serve as important components in the exons and promoters of the corresponding genes. We demonstrated that, compared to SNPs, pSTRs provide comparable or even greater accuracy in determining the breed identity of individuals. We identified pSTRs that showed significant population differentiation between domestic pigs and wild boars in Asia and Europe. We also observed that some pSTRs were significantly associated with environmental variables, such as average annual temperature or altitude of the originating sites of Chinese indigenous breeds, among which we identified loss-of-function and/or expanded STRs overlapping with genes such as AHR, LAS1L and PDK1. Finally, our results revealed that several pSTRs show stronger signals in domestic pig—wild boar differentiation or association with the analysed environmental variables than the flanking SNPs within a 100-kb window. Conclusions This study provides a genome-wide high-density map of pSTRs in diverse pig populations based on genome sequencing data, enabling a more comprehensive characterization of their roles in evolutionary and environmental adaptation. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00631-4.
Collapse
Affiliation(s)
- Zhongzi Wu
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huanfa Gong
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingpeng Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xinkai Tong
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huashui Ai
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Miguel Perez-Enciso
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain.,ICREA, Passeig de Lluís Companys 23, Barcelona, Spain
| | - Bin Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
3
|
Feng S, Ma J, Long K, Zhang J, Qiu W, Li Y, Jin L, Wang X, Jiang A, Liu L, Xiao W, Li X, Tang Q, Li M. Comparative microRNA Transcriptomes in Domestic Goats Reveal Acclimatization to High Altitude. Front Genet 2020; 11:809. [PMID: 32849809 PMCID: PMC7411263 DOI: 10.3389/fgene.2020.00809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
High-altitude acclimatization is a representative example of vertebrates' acclimatization to harsh and extreme environments. Previous studies reported sufficient evidence for a molecular genetic basis of high-altitude acclimatization, and genomic patterns of genetic variation among populations and species have been widely elucidated in recent years. However, understanding of the miRNA role in high-altitude acclimatization have lagged behind, especially in non-model species. To investigate miRNA expression alterations of goats that were induced by high-altitude stress, we performed comparative miRNA transcriptome analysis on six hypoxia-sensitive tissues (heart, kidney, liver, lung, skeletal muscle, and spleen) in two goat populations from distinct altitudes (600 and 3000 m). We obtained the expression value of 1391 mature miRNAs and identified 138 differentially expressed (DE) miRNAs between high and low altitudes. Combined with tissue specificity analysis, we illustrated alterations of expression levels among altitudes and tissues, and found that there were coexisting tissue-specific and -conserved mechanisms for hypoxia acclimatization. Notably, the interplay between DE miRNA and DE target genes strongly indicated post-transcriptional regulation in the hypoxia inducible factor 1, insulin, and p53 signaling pathways, which might play significant roles in high-altitude acclimatization in domestic goats. It's also worth noting that we experimentally confirmed miR-106a-5p to have a negative regulation effect on angiogenesis by directly targeting FLT-1. These results provide insight into the complicated miRNA expression patterns and regulatory mechanisms of high-altitude acclimatization in domestic goats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Zhang QL, Li HW, Dong ZX, Yang XJ, Lin LB, Chen JY, Yuan ML. Comparative transcriptomic analysis of fireflies (Coleoptera: Lampyridae) to explore the molecular adaptations to fresh water. Mol Ecol 2020; 29:2676-2691. [PMID: 32512643 DOI: 10.1111/mec.15504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Aquatic insects are well adapted to freshwater environments, but the molecular basis of these adaptations remains largely unknown. Most firefly species (Coleoptera: Lampyridae) are terrestrial, but the larvae of several species are aquatic. Here, larval and adult transcriptomes from Aquatica leii (freshwater) and Lychnuris praetexta (terrestrial) were generated to test whether the genes associated with metabolic efficiency and morphology have undergone adaptive evolution to fresh water. The aquatic fireflies had a significantly lower ratio of nonsynonymous to synonymous substitutions than the terrestrial insects, indicating a genomewide evolutionary constraint in the aquatic fireflies. We identified 341 fast-evolving genes and 116 positively selected genes in the aquatic fireflies. Of these, 76 genes exhibiting both fast evolution and positive selection were primarily involved in ATP production, energy metabolism and the hypoxia response. We identified 7,271 differentially expressed genes (DEGs) in A. leii (adults versus larvae) and 8,309 DEGs in L. praetexta (adults versus larvae). DEGs specific to the aquatic firefly (n = 1,445) were screened via interspecific comparisons (A. leii versus L. praetexta) and were significantly enriched for genes involved in metabolic efficiency (e.g., ATP production, hypoxia, and immune responses) and certain aspects of morphology (e.g., cuticle chitin, tracheal and compound eye morphology). These results indicate that sequence and expression-level changes in genes associated with both metabolic efficiency and morphological attributes related to the freshwater lifestyle contributed to freshwater adaptation in fireflies. This study provides new insights into the molecular mechanisms of aquatic adaptation in insects.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiao-Jie Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jun-Yuan Chen
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Hu R, Zou H, Wang Z, Cao B, Peng Q, Jing X, Wang Y, Shao Y, Pei Z, Zhang X, Xue B, Wang L, Zhao S, Zhou Y, Kong X. Nutritional Interventions Improved Rumen Functions and Promoted Compensatory Growth of Growth-Retarded Yaks as Revealed by Integrated Transcripts and Microbiome Analyses. Front Microbiol 2019; 10:318. [PMID: 30846981 PMCID: PMC6393393 DOI: 10.3389/fmicb.2019.00318] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
Growth retardation reduces the incomes of livestock farming. However, effective nutritional interventions to promote compensatory growth and the mechanisms involving digestive tract microbiomes and transcripts have yet to be elucidated. In this study, Qinghai plateau yaks, which frequently suffer from growth retardation due to malnutrition, were used as an experimental model. Young growth-retarded yaks were pastured (GRP), fed basal ration (GRB), fed basal ration addition cysteamine hydrochloride (CSH; GRBC) or active dry yeast (ADY; GRBY). Another group of growth normal yak was pastured as a positive control (GNP). After 60-day nutritional interventions, the results showed that the average daily gain (ADG) of GRB was similar to the level of GNP, and the growth rates of GRBC and GRBY were significantly higher than the level of GNP (P < 0.05). Basal rations addition of CSH or ADY either improved the serum biochemical indexes, decreased serum LPS concentration, facilitated ruminal epithelium development and volatile fatty acids (VFA) fermentation of growth-retarded yaks. Comparative transcriptome in rumen epithelium between growth-retarded and normal yaks identified the differentially expressed genes mainly enriched in immune system, digestive system, extracellular matrix and cell adhesion pathways. CSH addition and ADY addition in basal rations upregulated ruminal VFA absorption (SLC26A3, PAT1, MCT1) and cell junction (CLDN1, CDH1, OCLN) gene expression, and downregulated complement system (C2, C7) gene expression in the growth-retarded yaks. 16S rDNA results showed that CSH addition and ADY addition in basal rations increased the rumen beneficial bacterial populations (Prevotella_1, Butyrivibrio_2, Fibrobacter) of growth-retarded yaks. The correlation analysis identified that ruminal VFAs and beneficial bacteria abundance were significantly positively correlated with cell junction and VFA absorption gene expressions and negatively correlated with complement system gene expressions on the ruminal epithelium. Therefore, CSH addition and ADY addition in basal rations promoted rumen health and body growth of growth-retarded yaks, of which basal ration addition of ADY had the optimal growth-promoting effects. These results suggested that improving nutrition and probiotics addition is a more effective method to improve growth retardation caused by gastrointestinal function deficiencies.
Collapse
Affiliation(s)
- Rui Hu
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huawei Zou
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Binghai Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Quanhui Peng
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Jing
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yixin Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yaqun Shao
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhaoxi Pei
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangfei Zhang
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bai Xue
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lizhi Wang
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Suonan Zhao
- Animal Husbandry and Veterinary Institute, Haibei, China
| | - Yuqing Zhou
- Animal Husbandry and Veterinary Institute, Haibei, China
| | - Xiangying Kong
- Animal Husbandry and Veterinary Institute, Haibei, China
| |
Collapse
|
6
|
Liu R, Jin L, Long K, Tang Q, Ma J, Wang X, Zhu L, Jiang A, Tang G, Jiang Y, Li X, Li M. Analysis of mitochondrial DNA sequence and copy number variation across five high-altitude species and their low-altitude relatives. MITOCHONDRIAL DNA PART B-RESOURCES 2018; 3:847-851. [PMID: 33474342 PMCID: PMC7799994 DOI: 10.1080/23802359.2018.1501285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
High-altitude inhospitable environments impose a formidable life challenge for the local animals. Training and exposure to high-altitude environments produce both distinct physiological and phenotypic characteristics. The mitochondrion, an organelle crucial for the energy production, plays an important role in hypoxia adaptation. In this study, we investigated the mitochondrial DNA (mtDNA) polymorphism and copy number variation between the population pairs from distinct altitudes across the multi-species. Higher mitochondrial DNA control region's genetic diversity is conspicuous in high-altitude animals versus low-altitude relatives. We also found an accordant decrease of mtDNA copy number in most of the tissues from high-altitude animals. Compared to mammals, chickens have significantly distinct mitogenomic characteristics, and more significant changes in the skeletal muscle mtDNA copy number between high- and low-altitude individuals. Our study catches a snapshot of the biological similarities and differences in the mitochondrial high-altitude acclimation across the species.
Collapse
Affiliation(s)
- Rui Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Long Jin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Keren Long
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qianzi Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jideng Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xun Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - An'an Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yanzhi Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Zhang QL, Zhang L, Yang XZ, Wang XT, Li XP, Wang J, Chen JY, Yuan ML. Comparative transcriptomic analysis of Tibetan Gynaephora to explore the genetic basis of insect adaptation to divergent altitude environments. Sci Rep 2017; 7:16972. [PMID: 29208990 PMCID: PMC5717227 DOI: 10.1038/s41598-017-17051-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023] Open
Abstract
Adaptation of insects to different altitudes remain largely unknown, especially those endemic to the Tibetan Plateau (TP). Here, we generated the transcriptomes of Gynaephora menyuanensis and G. alpherakii, inhabiting different high altitudes on the TP, and used these and the previously available transcriptomic and genomic sequences from low-altitude insects to explore potential genetic basis for divergent high-altitude adaptation in Gynaephora. An analysis of 5,869 orthologous genes among Gynaephora and other three low-altitude insects uncovered that fast-evolving genes and positively selected genes (PSGs) in the two Gynaephora species were enriched in energy metabolism and hypoxia response categories (e.g. mitochondrion, oxidation-reduction process, and response to oxidative stress). Particularly, mTOR signaling pathway involving hypoxia was enriched by PSGs, indicating this well-known pathway in mammal hypoxia adaptation may be an important signaling system in Gynaephora. Furthermore, some PSGs were associated with response to hypoxia (e.g. cytochrome proteins), cold (e.g. dehydrogenase) and DNA repair (e.g. DNA repair proteins). Interestingly, several insect-specific genes that were associated with exoskeleton and cuticle development (e.g. chitinase and ecdysteroids) had experienced positive selection, suggesting the specific adaptive mechanisms in insects. This study is favourable for understanding the adaptive evolution of Gynaephora and even TP insects to divergent altitudes.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China.,Evo-devo Institute, School of Life Science, Nanjing University, Nanjing 210023, China; Nanjing Institute of Geology and Paleontology, Nanjing, 210008, China
| | - Li Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of, Agriculture, China
| | - Xing-Zhuo Yang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China.,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of, Agriculture, China
| | - Xiao-Tong Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiao-Peng Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Juan Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jun-Yuan Chen
- Evo-devo Institute, School of Life Science, Nanjing University, Nanjing 210023, China; Nanjing Institute of Geology and Paleontology, Nanjing, 210008, China.
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China. .,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of, Agriculture, China.
| |
Collapse
|
8
|
Zhang L, Zhang QL, Wang XT, Yang XZ, Li XP, Yuan ML. Selection of reference genes for qRT-PCR and expression analysis of high-altitude-related genes in grassland caterpillars (Lepidoptera: Erebidae: Gynaephora) along an altitude gradient. Ecol Evol 2017; 7:9054-9065. [PMID: 29152197 PMCID: PMC5677504 DOI: 10.1002/ece3.3431] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/19/2017] [Accepted: 08/31/2017] [Indexed: 12/19/2022] Open
Abstract
Changes in gene expression patterns can reflect the adaptation of organisms to divergent environments. Quantitative real‐time PCR (qRT‐PCR) is an important tool for ecological adaptation studies at the gene expression level. The quality of the results of qRT‐PCR analysis largely depends on the availability of reliable reference genes (RGs). To date, reliable RGs have not been determined for adaptive evolution studies in insects using a standard approach. Here, we evaluated the reliability of 17 candidate RGs for five Gynaephora populations inhabiting various altitudes of the Tibetan Plateau (TP) using four independent (geNorm, NormFinder, BestKeeper, and the deltaCt method) and one comprehensive (RefFinder) algorithms. Our results showed that EF1‐α, RPS15, and RPS13 were the top three most suitable RGs, and a combination of these three RGs was the most optimal for normalization. Conversely, RPS2,ACT, and RPL27 were the most unstable RGs. The expression profiles of two target genes (HSP70 and HSP90) were used to confirm the reliability of the chosen RGs. Additionally, the expression patterns of four other genes (GPI,HIF1A,HSP20, and USP) associated with adaptation to extreme environments were assessed to explore the adaptive mechanisms of TP Gynaephora species to divergent environments. Each of these six target genes showed discrepant expression patterns among the five populations, suggesting that the observed expression differences may be associated with the local adaptation of Gynaephora to divergent altitudinal environments. This study is a useful resource for studying the adaptive evolution of TP Gynaephora to divergent environments using qRT‐PCR, and it also acts as a guide for selecting suitable RGs for ecological and evolutionary studies in insects.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Grassland Agro-Ecosystems College of Pastoral Agricultural Science and Technology Lanzhou University Lanzhou China
| | - Qi-Lin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Sciences Nanjing University Nanjing China
| | - Xiao-Tong Wang
- State Key Laboratory of Grassland Agro-Ecosystems College of Pastoral Agricultural Science and Technology Lanzhou University Lanzhou China
| | - Xing-Zhuo Yang
- State Key Laboratory of Grassland Agro-Ecosystems College of Pastoral Agricultural Science and Technology Lanzhou University Lanzhou China
| | - Xiao-Peng Li
- State Key Laboratory of Grassland Agro-Ecosystems College of Pastoral Agricultural Science and Technology Lanzhou University Lanzhou China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems College of Pastoral Agricultural Science and Technology Lanzhou University Lanzhou China
| |
Collapse
|
9
|
Comparative Transcriptome Analysis Reveals Adaptive Evolution of Notopterygium incisum and Notopterygium franchetii, Two High-Alpine Herbal Species Endemic to China. Molecules 2017; 22:molecules22071158. [PMID: 28696392 PMCID: PMC6152189 DOI: 10.3390/molecules22071158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 02/04/2023] Open
Abstract
The extreme conditions (e.g., cold, low oxygen, and strong ultraviolet radiation) of the high mountains provide an ideal natural laboratory for studies on speciation and the adaptive evolution of organisms. Up to now, few genome/transcriptome-based studies have been carried out on how plants adapt to conditions at extremely high altitudes. Notopterygium incisum and Notopterygiumfranchetii (Notopterygium, Apiaceae) are two endangered high-alpine herbal plants endemic to China. To explore the molecular genetic mechanisms of adaptation to high altitudes, we performed high-throughput RNA sequencing (RNA-seq) to characterize the transcriptomes of the two species. In total, more than 130 million sequence reads, 81,446 and 63,153 unigenes with total lengths of 86,924,837 and 62,615,693 bp, were generated for the two herbal species, respectively. OrthoMCL analysis identified 6375 single-copy orthologous genes between N. incisum and N. franchetii. In total, 381 positively-selected candidate genes were identified for both plants by using estimations of the non-synonymous to synonymous substitution rate. At least 18 of these genes potentially participate in RNA splicing, DNA repair, glutathione metabolism and the plant–pathogen interaction pathway, which were further enriched in various functional gene categories possibly responsible for environment adaptation in high mountains. Meanwhile, we detected various transcription factors that regulated the material and energy metabolism in N. incisum and N. franchetii, which probably play vital roles in the tolerance to stress in surroundings. In addition, 60 primer pairs based on orthologous microsatellite-containing sequences between the both Notopterygium species were determined. Finally, 17 polymorphic microsatellite markers (SSR) were successfully characterized for the two endangered species. Based on these candidate orthologous and SSR markers, we detected that the adaptive evolution and species divergence of N. incisum and N. franchetii were significantly associated with the extremely heterogeneous environments and climatic oscillations in high-altitude areas. This work provides important insights into the molecular mechanisms of adaptation to high-altitudes in alpine herbal plants.
Collapse
|
10
|
Leroy G, Besbes B, Boettcher P, Hoffmann I, Capitan A, Baumung R. Rare phenotypes in domestic animals: unique resources for multiple applications. Anim Genet 2015; 47:141-53. [PMID: 26662214 DOI: 10.1111/age.12393] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 12/26/2022]
Abstract
Preservation of specific and inheritable phenotypes of current or potential future importance is one of the main purposes of conservation of animal genetic resources. In this review, we investigate the issues behind the characterisation, utilisation and conservation of rare phenotypes, considering their multiple paths of relevance, variable levels of complexity and mode of inheritance. Accurately assessing the rarity of a given phenotype, especially a complex one, is not a simple task, because it requires the phenotypic and genetic characterisation of a large number of animals and populations and remains dependent of the scale of the study. Once characterised, specific phenotypes may contribute to various purposes (adaptedness, production, biological model, aesthetics, etc.) with adequate introgression programmes, which justifies the consideration of (real or potential) existence of such characteristics in in situ or ex situ conservation strategies. Recent biotechnological developments (genomic and genetic engineering) will undoubtedly bring important changes to the way phenotypes are characterised, introgressed and managed.
Collapse
Affiliation(s)
- G Leroy
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - B Besbes
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - P Boettcher
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - I Hoffmann
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - A Capitan
- INRA, UMR 1313 Génétique Animale et Biologie Intégrative, Domaine de Vilvert, F-78352, Jouy-en-Josas, France.,ALLICE, 149 rue de Bercy, F-75012, Paris, France
| | - R Baumung
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| |
Collapse
|