1
|
Stroke Genomics: Current Knowledge, Clinical Applications and Future Possibilities. Brain Sci 2022; 12:brainsci12030302. [PMID: 35326259 PMCID: PMC8946102 DOI: 10.3390/brainsci12030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/01/2022] Open
Abstract
The pathophysiology of stoke involves many complex pathways and risk factors. Though there are several ongoing studies on stroke, treatment options are limited, and the prevalence of stroke is continuing to increase. Understanding the genomic variants and biological pathways associated with stroke could offer novel therapeutic alternatives in terms of drug targets and receptor modulations for newer treatment methods. It is challenging to identify individual causative mutations in a single gene because many alleles are responsible for minor effects. Therefore, multiple factorial analyses using single nucleotide polymorphisms (SNPs) could be used to gain new insight by identifying potential genetic risk factors. There are many studies, such as Genome-Wide Association Studies (GWAS) and Phenome-Wide Association Studies (PheWAS) which have identified numerous independent loci associated with stroke, which could be instrumental in developing newer drug targets and novel therapies. Additionally, using analytical techniques, such as meta-analysis and Mendelian randomization could help in evaluating stroke risk factors and determining treatment priorities. Combining SNPs into polygenic risk scores and lifestyle risk factors could detect stroke risk at a very young age and help in administering preventive interventions.
Collapse
|
2
|
Influence of the rs6736 Polymorphism on Ischemic Stroke Susceptibility in Han Chinese Individuals via the Disruption of miR-7-1 Binding to the C14orf119 Gene. J Mol Neurosci 2021; 72:459-467. [PMID: 34510374 DOI: 10.1007/s12031-021-01895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
This study investigates the association between the C14orf119 gene rs6736 polymorphism and ischemic stroke (IS) susceptibility, and explores the influence of the rs6736 polymorphism on the binding between miR-7-1 and the C14orf119 gene. mRNA expression levels were determined in 45 IS patients and 45 matched controls via real-time quantitative PCR. A total of 774 IS patients and 793 matched controls were recruited from a Han Chinese population for genotyping, performed with the Sequenom MassARRAY iPLEX platform. A dual-luciferase reporter assay was used for the analysis of miRNA-mRNA binding. The results showed that the mRNA expression of C14orf119 differed significantly between IS patients and controls (t = -2.235, P = 0.030). Significant associations were noted between the C14orf119 gene rs6736 polymorphism and IS susceptibility in Han Chinese individuals under the additive model [ORadj (95% CI) = 0.87 (0.76-1.00) Padj = 0.048] and dominant model [ORadj (95% CI) = 0.76 (0.61-0.94), Padj = 0.014], with adjustment for age and sex. Mutations in the rs6736 polymorphism disrupted the binding of miR-7-1 and the C14orf119 gene. The results of this study show that the rs6736 polymorphism in the 3'-untranslated region of the C14orf119 gene not only is associated with IS but also modifies the binding between miR-7-1 and the C14orf119 gene. The C14orf119 gene may participate in the relationship between IS and miR-7-1.
Collapse
|
3
|
Ching SC, Wen LJ, Ismail NIM, Looi I, Kooi CW, Peng LS, Mui LS, Tamibmaniam J, Muninathan P, Hooi OB, Ali SMM, Hassan MRA, Mohamad MS, Griffiths LR, Wei LK. SLC17A3 rs9379800 and Ischemic Stroke Susceptibility at the Northern Region of Malaysia. J Stroke Cerebrovasc Dis 2021; 30:105908. [PMID: 34384670 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/24/2021] [Accepted: 05/19/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES The relationships of Paired Like Homeodomain 2 (PITX2), Ninjurin 2 (NINJ2), TWIST-Related Protein 1 (TWIST1), Ras Interacting Protein 1 (Rasip1), Solute Carrier Family 17 Member 3 (SLC17A3), Methylmalonyl Co-A Mutase (MUT) and Fer3 Like BHLH Transcription Factor (FERD3L) polymorphisms and gene expression with ischemic stroke have yet to be determined in Malaysia. Hence, this study aimed to explore the associations of single nucleotide polymorphisms (SNPs) and gene expression with ischemic stroke risk among population who resided at the Northern region of Malaysia. MATERIALS AND METHODS Study subjects including 216 ischemic stroke patients and 203 healthy controls were recruited upon obtaining ethical clearance. SNP genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism assays. Gene expression levels were quantified by real-time polymerase chain reaction assays. Statistical and genetic analyses were conducted with SPSS version 22.2, PLINK version 1.07 and multifactor dimensionality reduction software. RESULTS Study subjects with G allele, CG or GG genotypes of SLC17A3 rs9379800 demonstrated increased risk of ischemic stroke with the odds ratios ranging from 1.76-fold to 3.14-fold (p<0.05). When stratified study subjects according to the ethnicity, SLC17A3 rs9379800 G allele and CG genotype contributed to 2.14- and 2.96-fold of ischemic stroke risk among Malay population significantly, in the multivariate analysis (p<0.05). However, no significant associations were observed for PITX2, NINJ2, TWIST1, Rasip1, and MUT polymorphisms with ischemic stroke risk in the multivariate analysis for the pooled cases and controls as well as when stratified them according to the ethnicity. Lower mRNA expression levels of Rasip1, SLC17A3, MUT and FERD3L were observed among cases (p<0.05). After FDR adjustment, the mRNA level of SLC17A3 remained significantly associated with ischemic stroke among Malay population (q=0.034). CONCLUSION In conclusion, this study suggests that SLC17A3 rs9379800 polymorphism and its gene expression contribute to significant ischemic stroke risk among Malaysian population, particularly the Malay who resided at the Northern Region of the country. Our findings can provide useful information for the future diagnosis, management and treatment of ischemic stroke patients.
Collapse
Affiliation(s)
- Shu Chai Ching
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Lim Jing Wen
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Nor Ismaliza Mohd Ismail
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Irene Looi
- Clinical Research Centre, Seberang Jaya Hospital, Ministry of Health, Penang, Malaysia
| | - Cheah Wee Kooi
- Clinical Research Centre, Taiping Hospital, Jalan Tamingsari, Taiping, Perak, Malaysia
| | - Long Soo Peng
- Clinical Research Centre, Seberang Jaya Hospital, Ministry of Health, Penang, Malaysia
| | - Lee Soon Mui
- Clinical Research Centre, Seberang Jaya Hospital, Ministry of Health, Penang, Malaysia
| | | | - Prema Muninathan
- Clinical Research Centre, Taiping Hospital, Jalan Tamingsari, Taiping, Perak, Malaysia
| | - Ong Beng Hooi
- Clinical Research Centre, Hospital Sultanah Bahiyah, Kedah, Malaysia
| | | | | | - Mohd Saberi Mohamad
- Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Loo Keat Wei
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia.
| |
Collapse
|
4
|
Zhao XY, Hu SY, Yang JL, Chen XM, Huang XL, Tang LJ, Gu L, Su L. A 3' Untranslated Region Polymorphism of CTNNB1 (Rs2953) Alters MiR-3161 Binding and Affects the Risk of Ischemic Stroke and Coronary Artery Disease in Chinese Han Population. Eur Neurol 2021; 84:85-95. [PMID: 33789307 DOI: 10.1159/000514543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND CTNNB1 is reported to be related to the pathological process of ischemic stroke (IS) and coronary artery disease (CAD). Polymorphism located in the 3' untranslated region (3'UTR) of a gene might affect gene expression by modifying binding sites for microRNAs (miRNAs). This study aimed to analyze the association between polymorphism rs2953, which locates in the 3'UTR of CTNNB1, and the risk of IS and CAD. METHODS The CTNNB1 messenger RNA (mRNA) expression level in peripheral venous blood was measured. In total, 533 patients with IS, 500 patients with CAD, and 531 healthy individuals were genotyped by Sequenom Mass-Array technology. The binding of miR-3161 to CTNNB1 was determined by dual-luciferase reporter assay. RESULTS The CTNNB1 mRNA expression level for the IS group was significantly lower than that for the control group. Rs2953 was significantly associated with both IS risk and CAD risk. Significant association was also found between polymorphism rs2953 and many conventional factors, such as serum lipid level, blood coagulation markers, blood glucose level, and homocysteine level in patients. Rs2953 T allele introduced a binding site to miRNA-3161 and thus decreased luciferase activity. CONCLUSION Polymorphism rs2953 is associated with the risk of both IS and CAD. Moreover, polymorphism rs2953 (T) introduces a binding site to miRNA-3161 and thus decreases luciferase activity in cell lines.
Collapse
Affiliation(s)
- Xin-Yi Zhao
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Shu-Yan Hu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jia-Lei Yang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xing-Mei Chen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Xian-Li Huang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Lue-Jun Tang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Lian Gu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Li Su
- School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, China
| |
Collapse
|
5
|
Chiou HY, Bai CH, Lien LM, Hu CJ, Jeng JS, Tang SC, Lin HJ, Hsieh YC. Interactive Effects of a Combination of the HDAC3 and HDAC9 Genes with Diabetes Mellitus on the Risk of Ischemic Stroke. Thromb Haemost 2020; 121:396-404. [PMID: 32961570 DOI: 10.1055/s-0040-1717116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIM Previous studies indicated that the HDAC3 and HDAC9 genes play critical roles in atherosclerosis and ischemic stroke (IS). The purpose of this study was to investigate the association of combined single-nucleotide polymorphisms in the HDAC3 and HDAC9 genes with the susceptibility to IS. METHODS A case-control study was conducted including 863 IS patients and 863 age- and gender-matched healthy participants. A polygenic score was developed to estimate the contribution of a combination of the HDAC3 and HDAC9 genes to the risk of IS. The interactive effects of traditional risk factors of stroke and the polygenic score on the risk of IS were explored. Additionally, the association between the polygenic score and the progression of atherosclerosis, a potential risk factor of IS, was examined in our healthy controls. RESULTS Subjects with a higher polygenic score had an increased risk of IS (odds ratio: 1.83; 95% confidence interval: 1.38-2.43) after adjusting for covariates compared with individuals with a lower polygenic score. An interactive effect of diabetes mellitus and the polygenic score on the risk of IS was observed. A significant positive correlation between the polygenic score and a change in the plaque score (standardized β = 0.42, p = 0.0235) in healthy controls with diabetes mellitus was found. CONCLUSION Our results suggested that the combination of the HDAC3 and HDAC9 genes with a history of diabetes mellitus could exacerbate the deterioration of atherosclerosis, thereby increasing the risk of IS. Further studies are warranted to explore our results in other populations.
Collapse
Affiliation(s)
- Hung-Yi Chiou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.,Master Program in Applied Molecular Epidemiology, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Li-Ming Lien
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chaur-Jong Hu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Stroke Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Jiann-Shing Jeng
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Chun Tang
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Huey-Juan Lin
- Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yi-Chen Hsieh
- Master Program in Applied Molecular Epidemiology, College of Public Health, Taipei Medical University, Taipei, Taiwan.,PhD Program of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Xu Y, Wang Q, Chen J, Ma Y, Liu X. Updating a Strategy for Histone Deacetylases and Its Inhibitors in the Potential Treatment of Cerebral Ischemic Stroke. DISEASE MARKERS 2020; 2020:8820803. [PMID: 32963637 PMCID: PMC7492879 DOI: 10.1155/2020/8820803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cerebral ischemic stroke is one of the severe diseases with a pathological condition that leads to nerve cell dysfunction with seldom available therapy options. Currently, there are few proven effective treatments available for improving cerebral ischemic stroke outcome. However, recently, there is increasing evidence that inhibition of histone deacetylase (HDAC) activity exerts a strong protective effect in in vivo and vitro models of ischemic stroke. Review Summary. HDAC is a posttranslational modification that is negatively regulated by histone acetyltransferase (HATS) and histone deacetylase. Based on function and DNA sequence similarity, histone deacetylases (HDACs) are organized into four different subclasses (I-IV). Modifications of histones play a crucial role in cerebral ischemic affair development after translation by modulating disrupted acetylation homeostasis. HDAC inhibitors (HDACi) mainly exert neuroprotective effects by enhancing histone and nonhistone acetylation levels and enhancing gene expression and protein modification functions. This article reviews HDAC and its inhibitors, hoping to find meaningful therapeutic targets. CONCLUSIONS HDAC may be a new biological target for cerebral ischemic stroke. Future drug development targeting HDAC may make it a potentially effective anticerebral ischemic stroke drug.
Collapse
Affiliation(s)
- Yuzhen Xu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Jianxin Chen
- Department of Neurology, Jinan First People's Hospital, Shandong Traditional Chinese Medicine University, Jinan, Shandong Province, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| |
Collapse
|
7
|
Grbić E, Gorkič N, Pleskovič A, Zorc M, Ljuca F, Gasparini M, Mrđa B, Cilenšek I, Mankoč S, Banach M, Petrovič D, Fras Z. Association between rs2107595 HDAC9 gene polymorphism and advanced carotid atherosclerosis in the Slovenian cohort. Lipids Health Dis 2020; 19:71. [PMID: 32284067 PMCID: PMC7155263 DOI: 10.1186/s12944-020-01255-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Background Histone deacetylase 9 (HDAC9) plays an important role in transcriptional regulation, cell cycle progression and developmental events; moreover, it has been investigated as a candidate gene in a number of conditions, including the onset and progression of atherosclerosis. We hypothesized that the rs2107595 HDAC9 gene polymorphism may be associated with advanced carotid artery disease in a Slovenian cohort. We also investigated the effect of this polymorphism on HDAC9 receptor expression in the internal carotid artery (ICA) specimens obtained by endarterectomy. Methods This case-control study enrolled 619 unrelated Slovenian patients: 311 patients with ICA stenosis > 75% as the study group and 308 patients with ICA stenosis < 50% as the control group. Patient laboratory and clinical data were obtained from the medical records. The rs2107595 polymorphisms were genotyped using TaqMan SNP Genotyping assay. HDAC9 expression was assessed by immunohistochemistry in 30 ICA specimens from patients with ICA atherosclerosis > 75%, and the numerical areal density of HDAC9 positive cells was calculated. Results The occurrence of advanced ICA atherosclerosis in the Slovenian cohort was 3.81 times higher in the codominant genetic model (OR = 3.81, 95%CI = 1.06–13.77, p = 0.04), and 3.10 times higher in the recessive genetic model (OR = 3.10, 95%CI = 1.16–8.27, p = 0.02). In addition, the A allele of rs2107595 was associated with increased HDAC9 expression in the ICA specimens obtained by endarterectomy. Conclusions We observed a significant association between the AA genotype of rs2107595 with the advanced carotid artery disease in our Slovenian cohort, indicating that this polymorphism may be a genetic risk factor for ICA atherosclerosis.
Collapse
Affiliation(s)
- Emin Grbić
- Department of Physiology, Faculty of Medicine, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Nataša Gorkič
- International Center for Cardiovascular Diseases MC Medicor d.d, Izola, Slovenia
| | - Aleš Pleskovič
- Department of Cardiology, Division of Medicine, University Medical Centre of Ljubljana, Ljubljana, Slovenia
| | - Marjeta Zorc
- International Center for Cardiovascular Diseases MC Medicor d.d, Izola, Slovenia
| | - Farid Ljuca
- Department of Physiology, Faculty of Medicine, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Mladen Gasparini
- Department of Vascular Surgery, General Hospital Izola, Izola, Slovenia
| | - Božidar Mrđa
- Department of Vascular Surgery, University Medical Centre Maribor, Maribor, Slovenia
| | - Ines Cilenšek
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Sara Mankoč
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Maciej Banach
- Cardiovascular Research Centre, University of Zielona-Gora, Zielona Gora, Poland.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Daniel Petrovič
- International Center for Cardiovascular Diseases MC Medicor d.d, Izola, Slovenia. .,Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia.
| | - Zlatko Fras
- Department of Cardiology, Division of Medicine, University Medical Centre of Ljubljana, Ljubljana, Slovenia. .,Division of Medicine, Centre for Preventive Cardiology, Division of Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, SI-1525, Ljubljana, Slovenia. .,Chair of Internal Medicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Zhou X, Guan T, Li S, Jiao Z, Lu X, Huang X, Ji Y, Ji Q. The association between HDAC9 gene polymorphisms and stroke risk in the Chinese population: A meta-analysis. Sci Rep 2017; 7:41538. [PMID: 28145521 PMCID: PMC5286403 DOI: 10.1038/srep41538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/22/2016] [Indexed: 01/11/2023] Open
Abstract
Several recent genome-wide association studies (GWASs) have suggested that the histone deacetylase 9 (HDAC9) gene is associated with stroke, but the reliability of these findings remains controversial, particularly for the data derived from different ethnicities and geographical locations. Therefore, we performed a meta-analysis to explore the associations between HDAC9 polymorphisms and the risk of stroke in the Chinese population. All eligible case-control studies that met the search criteria were retrieved from multiple databases, and six case-control studies with a total of 2,356 stroke patients and 3,420 healthy controls were included. The pooled odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated to assess the strengths of the associations of 3 HDAC9 gene polymorphisms with stroke risk. Our results revealed statistically significant associations of the rs2107595 (T/C) polymorphism with an increased risk of stroke in the allele, codominant and dominant models. Additionally, the rs2389995 (G/A) polymorphism was found to be significantly associated with a decreased risk of stroke in all genetic models. In conclusion, this meta-analysis suggested that the T allele of rs2107595 in HDAC9 increases the risk of stroke but that the G allele of rs2389995 decreases the risk of stroke in the Chinese population.
Collapse
Affiliation(s)
- Xin Zhou
- Institute of Immunology, College of Life Science and Technology, Jinan University, Guangdong 510630, China
| | - Tangming Guan
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Shuyuan Li
- Institute of Immunology, College of Life Science and Technology, Jinan University, Guangdong 510630, China
| | - Zinan Jiao
- Institute of Immunology, College of Life Science and Technology, Jinan University, Guangdong 510630, China
| | - Xiaoshuang Lu
- Institute of Immunology, College of Life Science and Technology, Jinan University, Guangdong 510630, China
| | - Xiaodi Huang
- Institute of Immunology, College of Life Science and Technology, Jinan University, Guangdong 510630, China
| | - Yuhua Ji
- Institute of Immunology, College of Life Science and Technology, Jinan University, Guangdong 510630, China
| | - Qiuhong Ji
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226002, China
| |
Collapse
|
9
|
Polymorphism of HDAC9 Gene Is Associated with Increased Risk of Acute Coronary Syndrome in Chinese Han Population. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3746276. [PMID: 27642596 PMCID: PMC5013224 DOI: 10.1155/2016/3746276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023]
Abstract
Recent genome-wide association studies (GWAS) have indicated an association of histone deacetylase 9 (HDAC9) genetic variant with large-vessel stroke and coronary artery disease, among the European population. However, whether HDAC9 gene is associated with an increased susceptibility to acute coronary syndrome (ACS) in Chinese Han population is not known. A total of 472 patients, including patients with ACS (N = 309), and those with chest pain syndrome (controls, N = 163) were enrolled. Genotyping for HDAC9 gene was performed using the ligation detection reaction assay. A series of statistical analyses were performed to investigate the correlation between HDAC9 gene SNPs and the susceptibility to ACS. The results revealed a significant association of rs2240419 with ACS risk in which the A allele (P = 0.047) and the A allele carriers (AA + AG) (P = 0.037) were more likely to be in ACS group as compared to those in the control group. None of two other SNPs, rs2389995 and rs2107595, were significantly associated with ACS risk (P > 0.05). Logistic regression analyses further revealed an increased risk for ACS in A allele carrier among rs2240419 genotypes, as compared to those with GG homozygotes (odds ratio: 1.869, 95% CI 1.143, 3.056, P = 0.013). A significant correlation between rs2240419 polymorphism of HDAC9 gene and the susceptibility to ACS in Chinese Han population was observed in this study.
Collapse
|
10
|
Wang XB, Han YD, Sabina S, Cui NH, Zhang S, Liu ZJ, Li C, Zheng F. HDAC9 Variant Rs2107595 Modifies Susceptibility to Coronary Artery Disease and the Severity of Coronary Atherosclerosis in a Chinese Han Population. PLoS One 2016; 11:e0160449. [PMID: 27494404 PMCID: PMC4975504 DOI: 10.1371/journal.pone.0160449] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/19/2016] [Indexed: 01/08/2023] Open
Abstract
A previous genome-wide association study showed that a single nucleotide polymorphism (SNP) rs2107595 in histone deacetylase 9 (HDAC9) gene was associated with large artery stroke (LAS) in Caucasians. Based on the similar atherosclerotic pathogenesis between LAS and coronary artery disease (CAD), we aimed to evaluate the associations of SNP rs2107595 with CAD risk and the severity of coronary atherosclerosis in a Chinese Han population, and explore the potential gene-environment interactions among SNP rs2107595 and conventional CAD risk factors. In a two-stage case-control study with a total of 2317 CAD patients and 2404 controls, the AG + AA genotypes of SNP rs2107595 were significantly associated with increased CAD risk (Adjusted odds ratio (OR) = 1.23, Padj = 0.001) and higher modified Gensini scores (Adjusted OR = 1.38, Padj < 0.001). These associations remained significant in subtype analyses for unstable angina pectoris (UAP), non-ST-segment elevation myocardial infarction (NSTEMI) and ST-segment elevation myocardial infarction (STEMI). Subgroup and multifactor dimensionality reduction analyses (MDR) further found the gene-environment interactions among SNP rs2107595, body mass index, type 2 diabetes and hyperlipidemia in CAD risk and the severity of coronary atherosclerosis. Moreover, patients with CAD had higher levels of HDAC9 mRNA expression and plasma HDAC9 than controls. Subsequent genotype-phenotype analyses observed the significant correlations of SNP rs2107595 with HDAC9 mRNA expression and plasma HDAC9 levels in controls and patients with NSTEMI and STEMI. Taken together, our data suggest that SNP rs2107595 may contribute to coronary atherosclerosis and CAD risk through a possible mechanism of regulating HDAC9 expression and gene-environment interactions.
Collapse
Affiliation(s)
- Xue-bin Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ya-di Han
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shrestha Sabina
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ning-hua Cui
- Department of Clinical Laboratory, Children's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Shuai Zhang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-jin Liu
- Center of Clinical Laboratory, Wuhan Asia Heart Hospital, Wuhan, Hubei, China
| | - Cong Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|