1
|
Shen CH, Peng LJ, Zhang YX, Zeng HR, Yu HF, Jin L, Li GQ. Reference Genes for Expression Analyses by qRT-PCR in Phthorimaea operculella (Lepidoptera: Gelechiidae). INSECTS 2022; 13:insects13020140. [PMID: 35206714 PMCID: PMC8879603 DOI: 10.3390/insects13020140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022]
Abstract
Due to a lack of effective internal references, studies on functional genes in Phthorimaea operculella, a serious Lepidopteran pest attacking potatoes worldwide, have been greatly limited. To select suitable endogenous controls, ten housekeeping genes of actin (ACT), α-tubulin (α-TUB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), elongation factor 1α (EF1α), 18S and 28S ribosomal RNA (18S, 28S), ribosomal protein genes RPL4, RPL13 and RPL27 and superoxide dismutase (SOD) were tested. Their expression levels were determined under three different experimental conditions (developmental stages, tissues/organs and temperatures) using qRT-PCR technology. The stability was evaluated with five methods (Ct value, geNorm, NormFinder, BestKeeper and RefFinder). The results clarified that RPL13, EF1α and RPL27 are ranked as the best reference gene combination for measuring gene expression levels among different developing stages and under various temperatures; EF1α and RPL13 are recommended to normalize the gene expression levels among diverse tissues. EF1α and RPL13 are the best reference genes in all the experimental conditions. To validate the utility of the selected reference pair, EF1α and RPL13, we estimated the tissue-biased expression level of chitin synthase A gene (PoChSA). As expected, PoChSA was abundantly expressed in ectodermally derived epidermal cells, and lowly transcribed in the midgut. These findings will lay the foundation for future research on the molecular physiology and biochemistry of P. operculella.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Jin
- Correspondence: ; Tel.: +86-25-84395248
| | | |
Collapse
|
2
|
Ponomarenko MG, Omelko MM, Omelko NV. New genus of gelechiid moths (Lepidoptera: Gelechiidae) from Borneo, and its four new species. Zootaxa 2021; 5004:465-480. [PMID: 34811297 DOI: 10.11646/zootaxa.5004.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 11/04/2022]
Abstract
Tawaya gen. n. and its four new species (T. flaventia sp. n., T. rutila sp. n., T. luteola sp. n. and T. armeniaca sp. n.) are described from Borneo. A key to the described species is provided. The taxonomic position of a new genus within the subfamily Dichomeridinae (Gelechiidae) is proposed based on a combination of molecular and morphological analyses.
Collapse
Affiliation(s)
- Margarita G Ponomarenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia .
| | - Michail M Omelko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia .
| | - Natalia V Omelko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia .
| |
Collapse
|
3
|
Fang Y, Park MG, Choi JY, Park DH, Wang M, Kim HJ, Kim WJ, Je YH. Insecticidal and synergistic activity of dsRNAs targeting buprofezin-specific genes against the small brown planthopper, Laodelphax striatellus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21739. [PMID: 32929790 DOI: 10.1002/arch.21739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
The small brown planthopper, Laodelphax striatellus, is a dangerous pest in rice fields. Although buprofezin has been used to control L. striatellus for more than a decade, the occurrence of buprofezin-resistant L. striatellus has been recently reported. To develop an alternative pest control strategy, comparative transcriptome analysis of buprofezin-treated and nontreated L. striatellus was performed to screen the buprofezin-specific target genes for RNA interference (RNAi) application. Among six genes downregulated in the buprofezin-treated L. striatellus, RNAi-based silencing of the lipophorin precursor, endocuticle structure glycoprotein, and chitin synthase significantly induced the lethality of L. striatellus in a concentration-dependent manner. In addition, a cocktail of double-stranded RNAs against these three genes showed synergistic effects with buprofezin. These results provide RNAi-based effective approaches to control L. striatellus as well as an efficient method to identify novel target genes for RNAi application.
Collapse
Affiliation(s)
- Ying Fang
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Min G Park
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Y Choi
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dong H Park
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minghui Wang
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun J Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Woo J Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeon H Je
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Ranganathan S, Ilavarasi AV, Palaka BK, Kuppusamy D, Ampasala DR. Cloning, functional characterization and screening of potential inhibitors for Chilo partellus chitin synthase A using in silico, in vitro and in vivo approaches. J Biomol Struct Dyn 2020; 40:1416-1429. [PMID: 33000693 DOI: 10.1080/07391102.2020.1827034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chitin synthase (CHS) is one of the crucial enzymes that play an essential role in chitin synthesis during the molting process, and it is considered to be the specific target to control insect pests. Currently, there are no potent inhibitors available in the market, which specifically target this enzyme. Pyrimidine nucleoside peptide, nikkomycin Z, binds to nucleotide-binding sites of fungal and insect CHS. But, their mode of action is still fragmentary due to the lack of a 3Dstructure of CHS. Chilo partellus is a severe pest insect of major food crops such as maize and sorghum, in an attempt to target integument expressed cuticular CpCHS. The CpChsA cDNA was cloned, and subsequently, their developmental and tissue-specific expression was studied. The 3D structure of the CHS catalytic domain was modeled, after which natural compounds were screened using a virtual screening workflow and resulted in the identification of five hit molecules. Molecular dynamics simulations were performed to investigate the dynamics and interactions of hits with CpCHS. The obtained results revealed that the compounds kasugamycin, rutin and robinin could act as potent inhibitors of CpCHS. All three molecules were observed to significantly reduce the chitin production as validated using in vitro and in vivo studies. Thus, this study aims to provide a set of novel inhibitor molecules against CpCHS for controlling the pest population. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Bhagath Kumar Palaka
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Dheebika Kuppusamy
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Dinakara Rao Ampasala
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
5
|
Muthukrishnan S, Merzendorfer H, Arakane Y, Yang Q. Chitin Organizing and Modifying Enzymes and Proteins Involved In Remodeling of the Insect Cuticle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:83-114. [DOI: 10.1007/978-981-13-7318-3_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Wang Z, Yang H, Zhou C, Yang WJ, Jin DC, Long GY. Molecular cloning, expression, and functional analysis of the chitin synthase 1 gene and its two alternative splicing variants in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Sci Rep 2019; 9:1087. [PMID: 30705372 PMCID: PMC6355952 DOI: 10.1038/s41598-018-37488-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022] Open
Abstract
Chitin synthase is responsible for chitin synthesis in the cuticles and cuticular linings of other tissues in insects. We cloned two alternative splicing variants of the chitin synthase 1 gene (SfCHS1) from the white-backed planthopper, Sogatella furcifera. The full-length cDNA of the two variants (SfCHS1a and SfCHS1b) consists of 6408 bp, contains a 4719-bp open reading frame encoding 1572 amino acids, and has 5′ and 3′ non-coding regions of 283 and 1406 bp, respectively. The two splicing variants occur at the same position in the cDNA sequence between base pairs 4115 and 4291, and consist of 177 nucleotides that encode 59 amino acids but show 74.6% identity at the amino acid level. Analysis in different developmental stages showed that expression of SfCHS1 and SfCHS1a were highest just after molting, whereas SfCHS1b reached its highest expression level 2 days after molting. Further, SfCHS1 and SfCHS1a were mainly expressed in the integument, whereas SfCHS1b was predominately expressed in the gut and fat body. RNAi-based gene silencing inhibited transcript levels of the corresponding mRNAs in S. furcifera nymphs injected with double-stranded RNA of SfCHS1, SfCHS1a, and SfCHS1b, resulted in malformed phenotypes, and killed most of the treated nymphs. Our results indicate that SfCHS1 may be a potential target gene for RNAi-based S. furcifera control.
Collapse
Affiliation(s)
- Zhao Wang
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, 550025, P. R. China.,College of Environment and Life Sciences, Kaili University, Kaili, 556011, P. R. China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, 550025, P. R. China. .,College of Tobacco Science of Guizhou University, Guiyang, 550025, P. R. China.
| | - Cao Zhou
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, 550025, P. R. China
| | - Wen-Jia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, 550005, P. R. China
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, 550025, P. R. China.
| | - Gui-Yun Long
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, 550025, P. R. China
| |
Collapse
|
7
|
Liu X, Zhang J, Zhu KY. Chitin in Arthropods: Biosynthesis, Modification, and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:169-207. [PMID: 31102247 DOI: 10.1007/978-981-13-7318-3_9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chitin is a structural constituent of extracellular matrices including the cuticle of the exoskeleton and the peritrophic matrix (PM) of the midgut in arthropods. Chitin chains are synthesized through multiple biochemical reactions, organized in several hierarchical levels and associated with various proteins that give their unique physicochemical characteristics of the cuticle and PM. Because, arthropod growth and morphogenesis are dependent on the capability of remodeling chitin-containing structures, chitin biosynthesis and degradation are highly regulated, allowing ecdysis and regeneration of the cuticle and PM. Over the past 20 years, much progress has been made in understanding the physiological functions of chitinous matrices. In this chapter, we mainly discussed the biochemical processes of chitin biosynthesis, modification and degradation, and various enzymes involved in these processes. We also discussed cuticular proteins and PM proteins, which largely determine the physicochemical properties of the cuticle and PM. Although rapid advances in genomics, proteomics, RNA interference, and other technologies have considerably facilitated our research in chitin biosynthesis, modification, and metabolism in recent years, many aspects of these processes are still partially understood. Further research is needed in understanding how the structural organization of chitin synthase in plasma membrane accommodate chitin biosynthesis, transport of chitin chain across the plasma membrane, and release of the chitin chain from the enzyme. Other research is also needed in elucidating the roles of chitin deacetylases in chitin organization and the mechanism controlling the formation of different types of chitin in arthropods.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
8
|
Shi JF, Mu LL, Chen X, Guo WC, Li GQ. RNA interference of chitin synthase genes inhibits chitin biosynthesis and affects larval performance in Leptinotarsa decemlineata (Say). Int J Biol Sci 2016; 12:1319-1331. [PMID: 27877084 PMCID: PMC5118778 DOI: 10.7150/ijbs.14464] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 09/10/2016] [Indexed: 01/28/2023] Open
Abstract
Dietary introduction of bacterially expressed double-stranded RNA (dsRNA) has great potential for management of Leptinotarsa decemlineata. Identification of the most attractive candidate genes for RNA interference (RNAi) is the first step. In the present paper, three complete chitin synthase cDNA sequences (LdChSAa, LdChSAb and LdChSB) were cloned. LdChSAa and LdChSAb, two splicing variants of LdChSA gene, were highly expressed in ectodermally-derived epidermal cells forming epidermis, trachea, foregut and hindgut, whereas LdChSB was mainly transcribed in midgut cells. Feeding bacterially expressed dsChSA (derived from a common fragment of LdChSAa and LdChSAb), dsChSAa, dsChSAb and dsChSB in the second- and fourth-instar larvae specifically knocked down their target mRNAs. RNAi of LdChSAa+LdChSAb and LdChSAa lowered chitin contents in whole body and integument samples, and thinned tracheal taenidia. The resulting larvae failed to ecdyse, pupate, or emerge as adults. Comparably, knockdown of LdChSAb mainly affected pupal-adult molting. The LdChSAb RNAi pupae did not completely shed the old larval exuviae, which caused failure of adult emergence. In contrast, silencing of LdChSB significantly reduced foliage consumption, decreased chitin content in midgut sample, damaged midgut peritrophic matrix, and retarded larval growth. As a result, the development of the LdChSB RNAi hypomorphs was arrested. Our data reveal that these LdChSs are among the effective candidate genes for an RNAi-based control strategy against L. decemlineata.
Collapse
Affiliation(s)
- Ji-Feng Shi
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Li-Li Mu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu Chen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|