1
|
Morabbi A, Karimian M. Trace and essential elements as vital components to improve the performance of the male reproductive system: Implications in cell signaling pathways. J Trace Elem Med Biol 2024; 83:127403. [PMID: 38340548 DOI: 10.1016/j.jtemb.2024.127403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Successful male fertilization requires the main processes such as normal spermatogenesis, sperm capacitation, hyperactivation, and acrosome reaction. The progress of these processes depends on some endogenous and exogenous factors. So, the optimal level of ions and essential and rare elements such as selenium, zinc, copper, iron, manganese, calcium, and so on in various types of cells of the reproductive system could affect conception and male fertility rates. The function of trace elements in the male reproductive system could be exerted through some cellular and molecular processes, such as the management of active oxygen species, involvement in the action of membrane channels, regulation of enzyme activity, regulation of gene expression and hormone levels, and modulation of signaling cascades. In this review, we aim to summarize the available evidence on the role of trace elements in improving male reproductive performance. Also, special attention is paid to the cellular aspects and the involved molecular signaling cascades.
Collapse
Affiliation(s)
- Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
2
|
Gardner CC, Abele JA, Winkler TJ, Reckers CN, Anas SA, James PF. Common as well as unique methylation-sensitive DNA regulatory elements in three mammalian SLC9C1 genes. Gene 2024; 893:147897. [PMID: 37832806 PMCID: PMC10841394 DOI: 10.1016/j.gene.2023.147897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The SLC9C1 gene (which encodes the NHE10 protein) is essential for male fertility in both mice and humans, however the epigenetic mechanisms regulating its testis/sperm-specific gene expression have yet to be studied. Here we identify and characterize DNA regulatory elements of the SLC9C1 gene across three mammalian species: mouse, rat, and human. First, in silico analysis of these mammalian SLC9C1 genes identified a CpG island located upstream of the transcription start site in the same relative position in all three genes. Further analysis reveals that this CpG island behaves differently, with respect to gene regulatory activity, in the mouse SLC9C1 gene than it does in the rat and human SLC9C1 gene. The mouse SLC9C1 CpG island displays strong promoter activity by itself and seems to have a stronger gene regulatory effect than either the rat or human SLC9C1 CpG islands. While the function of the upstream SLC9C1 CpG island may be divergent across the three studied species, it appears that the promoters of these three mammalian SLC9C1 genes share similar DNA methylation-sensitive regulatory mechanisms. All three SLC9C1 promoter regions are differentially methylated in lung and testis, being more hypermethylated in lung relative to the testis, and DNA sequence alignments provide strong evidence of primary sequence conservation. Luciferase assays reveal that in vitro methylation of constructs containing different elements of the three SLC9C1 genes largely exhibit methylation-sensitive promoter activity (reduced promoter activity when methylated) in both HEK 293 and GC-1spg cells. In total, our data suggest that the DNA methylation-sensitive elements of the mouse, rat, and human SLC9C1 promoters are largely conserved, while the upstream SLC9C1 CpG island common to all three species seems to perform a different function in mouse than it does in rat and human. This work provides evidence that while homologous genes can all be regulated by DNA methylation-dependent epigenetic mechanisms, the location of the specific cis-regulatory elements responsible for this regulation can differ across species.
Collapse
Affiliation(s)
| | - Jason A Abele
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | | | | - Sydney A Anas
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Paul F James
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
3
|
Deng X, Wang Y, Jiang L, Li J, Chen Q. Updates on immunological mechanistic insights and targeting of the oral lichen planus microenvironment. Front Immunol 2023; 13:1023213. [PMID: 36700192 PMCID: PMC9870618 DOI: 10.3389/fimmu.2022.1023213] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic immune inflammatory disease that is an oral potentially malignant disorder (OPMD), occurs in the oral mucosa and affects approximately 0.5% to 4% of the general population. There are usually five types of OLP: reticular/papular, plaque-like, atrophic/erythematous, erosive/ulcerative, and bullous. Furthermore, the chance of causing oral squamous cell carcinoma (OSCC) is 1.4%. Although the etiology of OLP is still unknown, accumulating evidence supports that immune dysregulation may play a vital role in the pathogenesis of OLP, especially the massive production of various inflammatory cells and inflammatory mediators. In this review, we focus on the relationship between OLP and its immune microenvironment. We summarize current developments in the immunology of OLP, summarizing functional cell types and crucial cytokines in the OLP immune microenvironment and the underlying mechanisms of key signaling pathways in the OLP immune microenvironment. We highlight the application potential of targeted immune microenvironment therapy for OLP.
Collapse
Affiliation(s)
| | | | - Lu Jiang
- *Correspondence: Jing Li, ; Lu Jiang,
| | - Jing Li
- *Correspondence: Jing Li, ; Lu Jiang,
| | | |
Collapse
|
4
|
Watanabe Y, Abe H, Nakajima K, Ideta-Otsuka M, Igarashi K, Woo GH, Yoshida T, Shibutani M. Aberrant Epigenetic Gene Regulation in GABAergic Interneuron Subpopulations in the Hippocampal Dentate Gyrus of Mouse Offspring Following Developmental Exposure to Hexachlorophene. Toxicol Sci 2019; 163:13-25. [PMID: 29301063 PMCID: PMC5917777 DOI: 10.1093/toxsci/kfx291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal hexachlorophene (HCP) exposure causes transient disruption of hippocampal neurogenesis in mouse offspring. We examined epigenetically hypermethylated and downregulated genes related to this HCP-induced disrupted neurogenesis. Mated female mice were dietary exposed to 0 or 100 ppm HCP from gestational day 6 to postnatal day (PND) 21 on weaning. The hippocampal dentate gyrus of male offspring was subjected to methyl-capture sequencing and real-time reverse transcription-polymerase chain reaction analyses on PND 21. Validation analyses on methylation identified three genes, Dlx4, Dmrt1, and Plcb4, showing promoter-region hypermethylation. Immunohistochemically, DLX4+, DMRT1+, and PLCB4+ cells in the dentate hilus co-expressed GAD67, a γ-aminobutyric acid (GABA)ergic neuron marker. HCP decreased all of three subpopulations as well as GAD67+ cells on PND 21. PLCB4+ cells also co-expressed the metabotropic glutamate receptor, GRM1. HCP also decreased transcript level of synaptic plasticity-related genes in the dentate gyrus and immunoreactive granule cells for synaptic plasticity-related ARC. On PND 77, all immunohistochemical cellular density changes were reversed, whereas the transcript expression of the synaptic plasticity-related genes fluctuated. Thus, HCP-exposed offspring transiently reduced the number of GABAergic interneurons. Among them, subpopulations expressing DLX4, DMRT1, or PLCB4 were transiently reduced in number through an epigenetic mechanism. Considering the role of the Dlx gene family in GABAergic interneuron migration and differentiation, the decreased number of DLX4+ cells may be responsible for reducing those GABAergic interneurons regulating neurogenesis. The effect on granule cell synaptic plasticity was sustained until the adult stage, and reduced GABAergic interneurons active in GRM1–PLCB4 signaling may be responsible for the suppression on weaning.
Collapse
Affiliation(s)
- Yousuke Watanabe
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu 501-1193, Japan
| | - Hajime Abe
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu 501-1193, Japan
| | - Maky Ideta-Otsuka
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Katsuhide Igarashi
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Jecheon-si, Chungbuk 27136, Republic of Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
5
|
Molecular cloning and characterization of porcine Na⁺/K⁺-ATPase isoform α4. Biochimie 2019; 158:149-155. [PMID: 30633937 DOI: 10.1016/j.biochi.2019.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/05/2019] [Indexed: 11/23/2022]
Abstract
Na+/K+-ATPase is responsible for maintaining electrochemical gradients of Na+ and K+, which is essential for a variety of cellular functions including neuronal activity. The α-subunit of the Na+/K+-ATPase is composed of four different polypeptides (α1-α4) encoded by different genes. Na,K-ATPase α4, encoded by the ATP1A4 gene, is expressed in testis and in male germ cells of humans, rats and mice. The α4 polypeptide has an important role in sperm motility, and is essential for male fertility. Here we present the RT-PCR cloning and characterization of the porcine ATP1A4 cDNA coding for Na⁺/K⁺-ATPase polypeptide α4. The Na⁺/K⁺-ATPase polypeptide α4, consisting of 1030 amino acids, displays a high homology with its human counterpart (86%). Phylogenetic analysis demonstrated that porcine Na⁺/K⁺-ATPase polypeptide α4 is closely related to other mammalian counterparts. In addition, the genomic structure of the porcine ATP1A4 gene was determined, and the intron-exon organization was found to be similar to that of the human ATP1A4 gene. The promoter sequence for the porcine ATP1A4 gene was also identified. Investigation of the genetic variation in the porcine ATP1A4 gene revealed a missense A/G SNP in exon 18. This A/G polymorphism results in a substitution of a methionine to a glycine residue (M888G). A very high overall DNA methylation rate of the ATP1A4 gene, 70-80%, was observed in both brain and liver. Expression analysis demonstrated that the porcine ATP1A4 gene is predominantly expressed in testis. The sequence of the porcine ATP1A4 cDNA encoding the Na⁺/K⁺-ATPase α4 protein has been submitted to GenBank under the accession number GenBank Accession No. MG587082.
Collapse
|
6
|
Pirkmajer S, Chibalin AV. Na,K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab 2016; 311:E1-E31. [PMID: 27166285 DOI: 10.1152/ajpendo.00539.2015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
Abstract
Skeletal muscle contains one of the largest and the most dynamic pools of Na,K-ATPase (NKA) in the body. Under resting conditions, NKA in skeletal muscle operates at only a fraction of maximal pumping capacity, but it can be markedly activated when demands for ion transport increase, such as during exercise or following food intake. Given the size, capacity, and dynamic range of the NKA pool in skeletal muscle, its tight regulation is essential to maintain whole body homeostasis as well as muscle function. To reconcile functional needs of systemic homeostasis with those of skeletal muscle, NKA is regulated in a coordinated manner by extrinsic stimuli, such as hormones and nerve-derived factors, as well as by local stimuli arising in skeletal muscle fibers, such as contractions and muscle energy status. These stimuli regulate NKA acutely by controlling its enzymatic activity and/or its distribution between the plasma membrane and the intracellular storage compartment. They also regulate NKA chronically by controlling NKA gene expression, thus determining total NKA content in skeletal muscle and its maximal pumping capacity. This review focuses on molecular mechanisms that underlie regulation of NKA in skeletal muscle by major extrinsic and local stimuli. Special emphasis is given to stimuli and mechanisms linking regulation of NKA and energy metabolism in skeletal muscle, such as insulin and the energy-sensing AMP-activated protein kinase. Finally, the recently uncovered roles for glutathionylation, nitric oxide, and extracellular K(+) in the regulation of NKA in skeletal muscle are highlighted.
Collapse
Affiliation(s)
- Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; and
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|