1
|
Cai QC, Chen CX, Liu HY, Zhang W, Han YF, Zhang Q, Zhou GF, Xu S, Liu T, Xiao W, Zhu QS, Luo KJ. Interactions of Vank proteins from Microplitis bicoloratus bracovirus with host Dip3 suppress eIF4E expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103994. [PMID: 33417999 DOI: 10.1016/j.dci.2021.103994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Microplitis bicoloratus bracovirus (MbBV) inhibits the immune response of the host Spodoptera litura by disrupting nuclear factor (NF)-κB signaling and downstream gene expression. However, the underlying molecular mechanisms are not well understood. Herein, we report that viral ankyrin (Vank) proteins interacted with host dorsal-interacting protein 3 (Dip3) to selectively inhibit the transcription of eukaryotic translation initiation factor 4 E (eIF4E). Dip3 and Vank proteins were co-expressed and colocalized in the nucleus. Furthermore, ectopic expression of Dip3 rescued the transcription of some NF-κB-dependent genes suppressed by Vank proteins, including eIF4E. Co-immunoprecipitation and pull-down assays confirmed that Vank proteins interacted with and bound to full-length Dip3, which including MADF, DNA-binding protein, BESS, and protein-protein interaction motifs as well as non-motif sequences. In vivo, RNAi-mediated dip3 silencing decreased eIF4E levels and was accompanied by an immunosuppressive phenotype in S. litura. Our results provided novel insights into the regulation of host transcription during immune suppression by viral proteins that modulate nuclear NF-κB signaling.
Collapse
Affiliation(s)
- Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Hong-Yu Liu
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Wei Zhang
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Yun-Feng Han
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Qi Zhang
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Gui-Fang Zhou
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Sha Xu
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China
| | - Tian Liu
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China
| | - Wei Xiao
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China
| | - Qi-Shun Zhu
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China.
| |
Collapse
|