1
|
Zhang W, Pang A, Tan B, Xin Y, Liu Y, Xie R, Zhang H, Yang Q, Deng J, Chi S. Tryptophan metabolism and gut flora profile in different soybean protein induced enteritis of pearl gentian groupers. Front Nutr 2022; 9:1014502. [PMID: 36601073 PMCID: PMC9807032 DOI: 10.3389/fnut.2022.1014502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
The substitution of high-level soy meals for fish meal (FM) generally leads to fish enteritis, accompanied by significant variations in gut flora. Relevant studies have pointed out a close relationship between tryptophan metabolism mediated by gut flora and vertebrate inflammatory bowel disease. Present study examines the role of tryptophan metabolism and gut flora profile in fish enteritis caused by different soybean meals. The 960 groupers were randomly assigned into 4 groups (n = 4), which including: (1) FM (the control group, fed with 50% FM feed), (2) SBM40 (replacing 40% FM with soybean meal), (3) SPC40 (replacing 40% FM with soybean protein concentrate), and (4) FSBM40 (replacing 40% FM with fermented soybean meal). Under average temperature and natural light, the groupers were cultivated with feeds of iso-nitrogen and iso-lipid for 10 weeks. The results showed that soybean meal feeds at all experimental levels had negative effects on fish gut physiology and growth performance. Typical enteritis features and fluctuations of immune system occur, which can be observed in the enzyme activities of total superoxide dismutase and lysozyme and in the contents of immunoglobulin M, complement 3 and complement 4. 16SrDNA high-throughput sequencing indicated that it greatly influenced the gut flora with the abundance of maleficent bacteria, like Vibrio, amplified with increasing dietary soybean meals. According to the "3 + 2" full-length transcriptome sequencing, soy meals at the three experimental levels inhibited the key gene expressions of tryptophan metabolic pathway in fish gut, however, there are some differences in the types of key genes that are inhibited. The canonical correlation analysis showed that the changes in key gene expressions in tryptophan metabolic pathway had a positive correlation with the expressions of pro-inflammatory genes (P < 0.05) and negatively correlated with the expression of anti-inflammatory genes (P < 0.05). It is speculated from this study that tryptophan metabolism is closely related to fish soy meal-related enteritis, and the abnormal tryptophan metabolism caused by intestinal flora imbalance may play an important role. In the future research, we can further study the tolerance of fish to soy meals feed from two aspects of tryptophan metabolism and intestinal flora changes.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China,Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, China,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, China
| | - Aobo Pang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China,Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, China,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China,Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, China,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, China,*Correspondence: Beiping Tan,
| | - Yu Xin
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China,Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, China,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, China
| | - Yu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China,Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, China,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, China
| | - Ruitao Xie
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China,Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, China,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, China
| | - Junming Deng
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China,Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, China,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China,Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, China,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, China
| |
Collapse
|
2
|
Jiang Z, Fu M, Zhu D, Wang X, Li N, Ren L, He J, Yang G. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine Growth Factor Rev 2022; 66:53-73. [PMID: 35690567 DOI: 10.1016/j.cytogfr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
To date, the wide application of cell-based biomaterials in tissue engineering and regeneration is remarkably hampered by immune rejection. Reducing the immunogenicity of cell-based biomaterials has become the latest direction in biomaterial research. Recently, genetically modified cell-based biomaterials with immunomodulatory genes have become a feasible solution to the immunogenicity problem. In this review, recent advances and future challenges of genetically modified immunomodulatory cell-based biomaterials are elaborated, including fabrication approaches, mechanisms of common immunomodulatory genes, application and, more importantly, current preclinical and clinical advances. The fabrication approaches can be categorized into commonly used (e.g., virus transfection) and newly developed approaches. The immunomodulatory mechanisms of representative genes involve complicated cell signaling pathways and metabolic activities. Wide application in curing multiple end-term diseases and replacing lifelong immunosuppressive therapy in multiple cell and organ transplantation models is demonstrated. Most significantly, practices of genetically modified organ transplantation have been conducted on brain-dead human decedent and even on living patients after a series of experiments on nonhuman primates. Nevertheless, uncertain biosecurity, nonspecific effects and overlooked personalization of current genetically modified immunomodulatory cell-based biomaterials are shortcomings that remain to be overcome.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
3
|
Ghorbani F, Abdihaji M, Roudkenar MH, Ebrahimi A. Development of a Cell-Based Biosensor for Residual Detergent Detection in Decellularized Scaffolds. ACS Synth Biol 2021; 10:2715-2724. [PMID: 34550680 DOI: 10.1021/acssynbio.1c00321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ex vivo engineering of organs that uses decellularized whole organs as a scaffold with autologous stem cells is a potential alternative to traditional transplantation. However, one of the main challenges in this approach is preparing cytocompatible scaffolds. So far, high-precision and specific evaluation methods have not been developed for this purpose. Cell-based biosensors (CBBs) are promising tools to measure analytes with high sensitivity and specificity in a cost-effective and noninvasive manner. In this paper, using the NF-κB inducible promoter we developed a CBB for residual detergent detection. Proximal and core sections of the inducible promoter, containing NF-κB binding sequence, are designed and cloned upstream of the reporter gene (secreted alkaline phosphatase (SEAP)). After transfection into HEK293 cells, stable and reliable clones were selected. After confirmation of induction of this gene construct by sodium dodecyl sulfate (SDS), the stability and function of cells treated by qPCR and SEAP activity were measured. This biosensor was also used to evaluate the cytocompatibility of decellularized tissue. Results showed that the developed biosensor could detect very small amounts of SDS detergent (3.467 pM). It has the best performance 8 h after exposure to detergent, and its stability in high passage numbers was not significantly reduced. Applying this biosensor on decellularized tissues showed that SEAP activity higher than 4.36 (U/L) would lead to a viability reduction of transplanted cells below 70%. This paper presents a novel method to evaluate the cytocompatibility of decellularized tissues. The developed CBB can detect residual detergents (such as SDS) in tissues with high sensitivity and efficiency.
Collapse
Affiliation(s)
- Fatemeh Ghorbani
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, 4256 Rasht, Iran
| | - Mohammadreza Abdihaji
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana 47405, United States
| | - Mehryar Habibi Roudkenar
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, 4256 Rasht, Iran
| | - Ammar Ebrahimi
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, 4256 Rasht, Iran
- Department of Biomedical Sciences, University of Lausanne, Lausanne 1005, Switzerland
| |
Collapse
|
4
|
Lassiter R, Merchen TD, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol 2021; 12:671025. [PMID: 34305900 PMCID: PMC8293746 DOI: 10.3389/fimmu.2021.671025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Renal tubular epithelial cells (TECs) are the primary targets of ischemia-reperfusion injury (IRI) and rejection by the recipient's immune response in kidney transplantation (KTx). However, the molecular mechanism of rejection and IRI remains to be identified. Our previous study demonstrated that kynurenine 3-monooxygenase (KMO) and kynureninase were reduced in ischemia-reperfusion procedure and further decreased in rejection allografts among mismatched pig KTx. Herein, we reveal that TEC injury in acutely rejection allografts is associated with alterations of Bcl2 family proteins, reduction of tight junction protein 1 (TJP1), and TEC-specific KMO. Three cytokines, IFN γ , TNFα, and IL1β, reported in our previous investigation were identified as triggers of TEC injury by altering the expression of Bcl2, BID, and TJP1. Allograft rejection and TEC injury were always associated with a dramatic reduction of KMO. 3HK and 3HAA, as direct and downstream products of KMO, effectively protected TEC from injury via increasing expression of Bcl-xL and TJP1. Both 3HK and 3HAA further prevented allograft rejection by inhibiting T cell proliferation and up-regulating aryl hydrocarbon receptor expression. Pig KTx with the administration of DNA nanoparticles (DNP) that induce expression of indoleamine 2,3-dioxygenase (IDO) and KMO to increase 3HK/3HAA showed an improvement of allograft rejection as well as murine skin transplant in IDO knockout mice with the injection of 3HK indicated a dramatic reduction of allograft rejection. Taken together, our data provide strong evidence that reduction of KMO in the graft is a key mediator of allograft rejection and loss. KMO can effectively improve allograft outcome by attenuating allograft rejection and maintaining graft barrier function.
Collapse
Affiliation(s)
- Randi Lassiter
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Todd D. Merchen
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Xuexiu Fang
- Division of Nephrology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Youli Wang
- Division of Nephrology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
5
|
Tryptophan Metabolism via Kynurenine Pathway: Role in Solid Organ Transplantation. Int J Mol Sci 2021; 22:ijms22041921. [PMID: 33671985 PMCID: PMC7919278 DOI: 10.3390/ijms22041921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023] Open
Abstract
Solid organ transplantation is a gold standard treatment for patients suffering from an end-stage organ disease. Patient and graft survival have vastly improved during the last couple of decades; however, the field of transplantation still encounters several unique challenges, such as a shortage of transplantable organs and increasing pool of extended criteria donor (ECD) organs, which are extremely prone to ischemia-reperfusion injury (IRI), risk of graft rejection and challenges in immune regulation. Moreover, accurate and specific biomarkers, which can timely predict allograft dysfunction and/or rejection, are lacking. The essential amino acid tryptophan and, especially, its metabolites via the kynurenine pathway has been widely studied as a contributor and a therapeutic target in various diseases, such as neuropsychiatric, autoimmune disorders, allergies, infections and malignancies. The tryptophan-kynurenine pathway has also gained interest in solid organ transplantation and a variety of experimental studies investigating its role both in IRI and immune regulation after allograft implantation was first published. In this review, the current evidence regarding the role of tryptophan and its metabolites in solid organ transplantation is presented, giving insights into molecular mechanisms and into therapeutic and diagnostic/prognostic possibilities.
Collapse
|
6
|
Rahim F, Abbasi Pashaki P, Jafarisani M, Ghorbani F, Ebrahimi A. Runx2 silencing promotes adipogenesis via down-regulation of DLK1 in chondrogenic differentiating MSCs. J Gene Med 2020; 22:e3244. [PMID: 32559818 DOI: 10.1002/jgm.3244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND For cartilage regeneration, stem cells are a promising cell source; however, even the advances made in the differentiation of stem cells into precursor-differentiated cartilage cells have not been successful with respect to reprograming these cells to achieve complete differentiation and fully functioning cells until now. Previous findings suggest that Runx2 plays a major role in chondrocyte differentiation and maturation. Although targeting Runx2 has enhanced some chondrocyte properties, the adipogenic lineage shift has eventually occurred in these cells. The present study mainly aimed to reveal the mechanism of this adipogenesis. METHODS To create inducible artificial shRNA-miR expressing vectors, the designed short hairpin RNAs (shRNAs) were inserted into the pri-mir-30 backbone, cloned into lentiviral pLVET-Tet-on, and transducted into mesenchymal stem cells (MSCs). Runx2 gene was silenced in MSCs either for 1 week or 4 weeks and cultured in the chondrogenic medium. At days 7, 14 and 28, cells were harvested, and chondrogenesis, adipogenesis and hypertrophic states were examined using histochemical staining and a real-time polymerase chain reaction assay. RESULTS The results showed that the designed shRNA-miR effectively targeted Runx2 in mRNA and protein levels. Chondrogenic markers were up-regulated in constantly silenced Runx2 group; however, adipogenic markers and fat droplets appeared gradually. DLK1 gene was also significantly down-regulated in this group, and overexpression of DLK1 abrogated adipogenesis in the Runx2 targeted group. CONCLUSIONS Based on these results, it can be concluded that DLK1 is responsible for the lineage shift in Runx2 targeted chondrogenic differentiating MSCs.
Collapse
Affiliation(s)
- Fakher Rahim
- Thalassemia and Hemoglobinopathy Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Moslem Jafarisani
- Department of Biochemistry, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Ghorbani
- Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Ammar Ebrahimi
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
Sounidaki M, Pissas G, Eleftheriadis T, Antoniadi G, Golfinopoulos S, Liakopoulos V, Stefanidis I. Indoleamine 2,3-dioxygenase suppresses humoral alloimmunity via pathways that different to those associated with its effects on T cells. Biomed Rep 2019; 1:1-5. [PMID: 31258898 DOI: 10.3892/br.2019.1212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic antibody-mediated rejection remains a major cause of late graft loss. Regarding cellular alloimmunity, the immunosuppressive properties of indoleamine 2,3-dioxygenase (IDO) have been well investigated; however, little is known of its effects on humoral alloimmunity. Therefore, the present study aimed to evaluate the effects of IDO on humoral alloimmunity. We developed a method for the induction of humoral alloimmunity in a one-way mixed lymphocyte reaction (MLR), which was measured with an antibody-mediated complement-dependent cytotoxicity assay using resting cells, which are similar to the stimulator cells of the aforementioned MLR. In parallel, cellular alloimmunity was assessed in two-way MLRs. The IDO inhibitor 1-methyl-DL-tryptophan was used for evaluating the role of IDO. In order to investigate whether the pathways known to serve a role in the effects of IDO on T cells are applied in humoral alloimmunity, the general control nonderepressible-2 (GCN-2) kinase activator tryptophanol and the aryl hydrocarbon receptor (AhR) inhibitor CH223191 were employed. The IDO inhibitor was revealed to increased cellular autoimmunity, but was decreased by the GCN-2 kinase activator. Unexpectedly, the AhR inhibitor decreased cellular alloimmunity. In addition, the IDO inhibitor was observed to suppress humoral alloimmunity, which may occur in manners independent of GCN-2 kinase AhR. The present study proposed that IDO may decrease humoral alloimmunity in primary human peripheral blood mononuclear cells via pathways that differ to those associated with its effect on T cells.
Collapse
Affiliation(s)
- Maria Sounidaki
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Georgia Antoniadi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Spyridon Golfinopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| |
Collapse
|
8
|
Wang Y, Merchen TD, Fang X, Lassiter R, Ho CS, Jajosky R, Kleven D, Thompson T, Mohamed E, Yu M, Waller JL, Nahman NS. Regulation of indoleamine 2,3 dioxygenase and its role in a porcine model of acute kidney allograft rejection. J Investig Med 2018; 66:1109-1117. [PMID: 30006478 DOI: 10.1136/jim-2018-000742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
Abstract
In kidney transplantation acute allograft rejection is the most common cause of late allograft loss. Changes in indoleamine 2,3 dioxygenase (IDO) activity, which catabolizes the degradation of tryptophan to kynurenine, may predict rejection. However, exogenous IDO is immunosuppressive in rodent kidney transplantation. Thus, the increase in IDO activity observed in acute allograft rejection is insufficient to prevent rejection. To address this question, we assessed the regulation of IDO and its role in acute rejection in a porcine model of kidney transplant. In tissue samples from rejecting kidney allografts, we showed a 13-fold increase in IDO gene transcription and 20-fold increase in IDO enzyme activity when compared with autotransplanted kidneys. Allografts also demonstrated an over fourfold increase in tissue interferon (IFN)-γ, with marked increases in tumor necrosis factor (TNF)-α, TNF-β and interleukin 1β. Gene transcription and protein levels of kynurenine 3-monooxygenase (KMO) were decreased. KMO generates the immunosuppressive kynurenine, 3-hydroxykynurenine. The results of these studies demonstrate a clear association between rejection and increased allograft IDO expression, likely driven in part by IFN-γ and facilitated by other cytokines of the allogeneic response. Moreover, the loss of downstream enzymatic activity in the IDO metabolic pathway may suggest novel mechanisms for the perpetuation of rejection.
Collapse
Affiliation(s)
- Youli Wang
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Todd D Merchen
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Xuexiu Fang
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Randi Lassiter
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Chak-Sum Ho
- Gift of Life Michigan, Ann Arbor, Michigan, USA
| | - Ryan Jajosky
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Daniel Kleven
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Thomas Thompson
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Eslam Mohamed
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Miao Yu
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Jennifer L Waller
- Department of Population Health Sciences, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - N Stanley Nahman
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Medicine, Charlie Norwood VAMC, Augusta, Georgia, USA
| |
Collapse
|
9
|
Zheng G, Qiu G, Ge M, He J, Huang L, Chen P, Wang W, Xu Q, Hu Y, Shu Q, Xu J. Human adipose-derived mesenchymal stem cells alleviate obliterative bronchiolitis in a murine model via IDO. Respir Res 2017; 18:119. [PMID: 28619045 PMCID: PMC5472885 DOI: 10.1186/s12931-017-0599-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/26/2017] [Indexed: 02/08/2023] Open
Abstract
Background Long-term survival of lung transplantation is hindered by the development of obliterative bronchiolitis (OB). Adipose-derived stem cells (ASCs) were documented to have more potent immunosuppressive ability than mesenchymal stem cells (MSCs) from bone marrow and placenta. The goal of our study is to evaluate the effect of repeated administration of ASCs on OB and the involvement of indoleamine 2,3-dioxygenase (IDO) mediating the protective effect of ASCs in a heterotopic tracheal transplantation (HTT) model. Methods For studies in vitro, ASCs were treated with interferon-γ (IFN-γ). For in vivo study, tracheas from BALB/c or C57BL/6 donors were transplanted into C57BL/6 recipients to create a HTT model. On days 0, 1, 3, 5, 8, 12, 15, 20 and 25 post-transplant, the allogeneic recipient mice were administered intravenously with phosphate buffered saline, 1 × 106 human ASCs, or 1 × 106 human ASCs plus 1-methyltryptophan (1-MT), an IDO inhibitor. On days 3, 7, 14 and 28, serum, trachea and spleen samples were harvested for analysis. Results ASCs homed to heterotopic tracheal grafts after infusion. Multiple doses of ASCs significantly increased tracheal IDO levels in allografts. There were significant increases in graft and serum IFN-γ levels in allografts compared with isografts. IFN-γ elevated IDO expression and activity in ASCs in vitro. ASCs alleviated OB in allografts as evidenced by reduced epithelial loss, epithelial apoptosis, and intraluminal obstruction. The effects of ASCs on OB were blocked by 1-MT. 1-MT also blocked the alterations in pro and anti-inflammatory cytokines as well as CD3+ T cell infiltration induced by ASCs. ASCs induced not only splenic levels of CD4+CD25+Foxp3+ regulatory T cells (Treg) but also IL-10 and TGF-β-producing Treg. Furthermore, IDO inhibition abolished the changes of splenic Treg induced by ASCs. In addition, Treg reduction by cyclophosphamide treatment did not alter the effects of ASCs on tracheal IDO expression in allografts confirming Treg induction is downstream of IDO. Conclusions Repeated doses of ASCs are capable of ameliorating OB. ASCs act at least in part via elevating IDO expression. ASCs promote the generation of Treg and suppress T cell infiltration via an IDO-dependent mechanism.
Collapse
Affiliation(s)
- Guoping Zheng
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, Zhejiang, 312000, China
| | - Guanguan Qiu
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, Zhejiang, 312000, China
| | - Menghua Ge
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, Zhejiang, 312000, China
| | - Jianping He
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, Zhejiang, 312000, China
| | - Lanfang Huang
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, Zhejiang, 312000, China
| | - Ping Chen
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, Zhejiang, 312000, China
| | - Wei Wang
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, Zhejiang, 312000, China
| | - Qi Xu
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310051, China
| | - Yaoqin Hu
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310051, China
| | - Qiang Shu
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310051, China.
| | - Jianguo Xu
- Shaoxing Second Hospital, 123 Yanan Road, Shaoxing, Zhejiang, 312000, China. .,The First Affiliated Hospital of Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
10
|
Indoleamine 2,3-Dioxygenase Is Not a Pivotal Regulator Responsible for Suppressing Allergic Airway Inflammation through Adipose-Derived Stem Cells. PLoS One 2016; 11:e0165661. [PMID: 27812173 PMCID: PMC5094728 DOI: 10.1371/journal.pone.0165661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022] Open
Abstract
Background Although indoleamine 2,3-dioxygenase (IDO)-mediated immune suppression of mesenchymal stem cells (MSCs) has been revealed in septic and tumor microenvironments, the role of IDO in suppressing allergic airway inflammation by MSCs is not well documented. We evaluated the effects of adipose-derived stem cells (ASCs) on allergic inflammation in IDO-knockout (KO) asthmatic mice or asthmatic mice treated with ASCs derived from IDO-KO mice. Methods and Findings ASCs were injected intravenously in wild-type (WT) and IDO-KO asthmatic mice. Furthermore, asthmatic mice were injected with ASCs derived from IDO-KO mice. We investigated the immunomodulatory effects of ASCs between WT and IDO-KO mice or IDO-KO ASCs in asthmatic mice. In asthmatic mice, ASCs significantly reduced airway hyperresponsiveness, the number of total inflammatory cells and eosinophils in bronchoalveolar lavage fluid (BALF), eosinophilic inflammation, goblet hyperplasia, and serum concentrations of total and allergen-specific IgE and IgG1. ASCs significantly inhibited Th2 cytokines, such as interleukin (IL)-4, IL-5, and IL-13, and enhanced Th1 cytokine (interferon-γ) and regulatory cytokines (IL-10, TGF-β) in BALF and lung draining lymph nodes (LLNs). ASCs led to significant increases in regulatory T-cells (Tregs) and IL-10+ T cell populations in LLNs. However, the immunosuppressive effects of ASCs did not significantly differ between WT and IDO-KO mice. Moreover, ASCs derived from IDO-KO mice showed immunosuppressive effects in allergic airway inflammation. Conclusions IDO did not play a pivotal role in the suppression of allergic airway inflammation through ASCs, suggesting that it is not the major regulator responsible for suppressing allergic airway inflammation.
Collapse
|
11
|
Local gene therapy with indoleamine 2,3-dioxygenase protects against development of transplant vasculopathy in chronic kidney transplant dysfunction. Gene Ther 2016; 23:797-806. [PMID: 27454318 DOI: 10.1038/gt.2016.59] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023]
Abstract
Chronic transplant dysfunction (CTD) is the primary cause of late allograft loss in kidney transplantation. Indoleamine 2,3-dioxygenase (IDO) is involved in fetomaternal tolerance and IDO gene therapy inhibits acute rejection following kidney transplantation. The aim of this study is to investigate whether gene therapy with IDO is able to attenuate CTD. Transplantation was performed in a rat Dark-Agouti to Wistar-Furth CTD model. Donor kidneys were incubated either with an adenovirus carrying IDO gene, a control adenovirus or saline. During the first 10 days recipients received low-dose cyclosporine. Body weight, blood pressure, serum creatinine and proteinuria were measured every 2 weeks. Rats were killed after 12 weeks. IDO had a striking beneficial effect on transplant vasculopathy at week 12. It also significantly improved body weight gain; it reduced blood pressure and decreased proteinuria during the follow-up. However, it did not affect the kidney function. In addition, IDO therapy significantly decreased the number of graft-infiltrating macrophages at week 12. The messenger RNA levels of forkhead box p3 and transforming grow factor-β were elevated in the IDO treated group at week 12. Here we show for first time a clear beneficial effect of local IDO gene therapy especially on transplant vasculopathy in a rat model of renal CTD.
Collapse
|