1
|
Matosinho CGR, Rosse IC, Fonseca PAS, de Oliveira FS, Dos Santos FG, Araújo FMG, de Matos Salim AC, Lopes BC, Arbex WA, Machado MA, Peixoto MGCD, da Silva Verneque R, Martins MF, da Silva MVGB, Oliveira G, Pires DEV, Carvalho MRS. Identification and in silico characterization of structural and functional impacts of genetic variants in milk protein genes in the Zebu breeds Guzerat and Gyr. Trop Anim Health Prod 2021; 53:524. [PMID: 34705124 DOI: 10.1007/s11250-021-02970-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Whole genome sequencing of bovine breeds has allowed identification of genetic variants in milk protein genes. However, functional repercussion of such variants at a molecular level has seldom been investigated. Here, the results of a multistep Bioinformatic analysis for functional characterization of recently identified genetic variants in Brazilian Gyr and Guzerat breeds is described, including predicted effects on the following: (i) evolutionary conserved nucleotide positions/regions; (ii) protein function, stability, and interactions; (iii) splicing, branching, and miRNA binding sites; (iv) promoters and transcription factor binding sites; and (v) collocation with QTL. Seventy-one genetic variants were identified in the caseins (CSN1S1, CSN2, CSN1S2, and CSN3), LALBA, LGB, and LTF genes. Eleven potentially regulatory variants and two missense mutations were identified. LALBA Ile60Val was predicted to affect protein stability and flexibility, by reducing the number the disulfide bonds established. LTF Thr546Asn is predicted to generate steric clashes, which could mildly affect iron coordination. In addition, LALBA Ile60Val and LTF Thr546Asn affect exonic splicing enhancers and silencers. Consequently, both mutations have the potential of affecting immune response at individual level, not only in the mammary gland. Although laborious, this multistep procedure for classifying variants allowed the identification of potentially functional variants for milk protein genes.
Collapse
Affiliation(s)
- Carolina Guimarães Ramos Matosinho
- Programa de Pós-Graduação Em GenéticaDepartamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31901-207, Brazil
| | - Izinara Cruz Rosse
- Programa de Pós-Graduação Em GenéticaDepartamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31901-207, Brazil
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Pablo Augusto Souza Fonseca
- Programa de Pós-Graduação Em GenéticaDepartamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31901-207, Brazil.
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G2W1, Canada.
| | - Francislon Silva de Oliveira
- Programa de Pós-Graduação Em GenéticaDepartamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31901-207, Brazil
- Grupo de Genômica E Biologia Computacional, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, MG, 30190-00, Brazil
| | - Fausto Gonçalves Dos Santos
- Grupo de Genômica E Biologia Computacional, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, MG, 30190-00, Brazil
| | - Flávio Marcos Gomes Araújo
- Grupo de Genômica E Biologia Computacional, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, MG, 30190-00, Brazil
| | - Anna Christina de Matos Salim
- Grupo de Genômica E Biologia Computacional, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, MG, 30190-00, Brazil
| | | | | | | | | | - Rui da Silva Verneque
- EPAMIG, Belo Horizonte, MG, 31170-495, Brazil
- Embrapa Gado de Leite, Juiz de Fora, MG, 36038-330, Brazil
| | | | | | - Guilherme Oliveira
- Grupo de Genômica E Biologia Computacional, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, MG, 30190-00, Brazil
- Instituto Tecnológico Vale, Belém, PA, 66055-09, Brazil
| | - Douglas Eduardo Valente Pires
- School of Computing and Information Systems, University of Melbourne, Parkville, VIC, 3052, Australia
- Bio21 Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Maria Raquel Santos Carvalho
- Programa de Pós-Graduação Em GenéticaDepartamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31901-207, Brazil
| |
Collapse
|
2
|
Wang X, Li X, Lin F, Sun H, Lin Y, Wang Z, Wang X. The lnc-CTSLP8 upregulates CTSL1 as a competitive endogenous RNA and promotes ovarian cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:151. [PMID: 33933142 PMCID: PMC8088648 DOI: 10.1186/s13046-021-01957-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/20/2021] [Indexed: 01/05/2023]
Abstract
Background Ovarian cancer is highly lethal and has a poor prognosis due to metastasis. Long non-coding RNAs (lncRNAs) are key regulators of tumor development, but their role in ovarian cancer metastasis remains unclear. Methods The expression of lnc-CTSLP8 in ovarian cancer was analyzed in public databases (TCGA and GEO) and validated via qRT-PCR. Lnc-CTSLP8 overexpression and knockout cell lines were constructed using a lentiviral vector and the CRISP/Cas9 system. Cell proliferation, colony formation, migration, and invasion were analyzed. An ovarian orthotopic tumor mouse model was used for the in vivo study. Changes in autophagosomes, autolysosomes, and mitochondria in ovarian cancer cells were observed via transmission electron microscopy. EMT markers were detected by immunoblotting and immunofluorescence assays. RNA immunoprecipitation, RNA pull-down, and dual luciferase reporter assays were performed to confirm the interaction between lnc-CTSLP8 and miR-199a-5p. Results A novel pseudogene, lnc-CTSLP8, was identified in ovarian cancer, with significantly elevated expression in metastatic tumor tissues compared to primary ovarian tumors. When overexpressed, lnc-CTSLP8 promoted ovarian cancer in vitro and in vivo by acting as a sponge for miR-199a-5p. Autophagy and EMT in ovarian cancer were also enhanced by lnc-CTSLP8. Mechanistically, lnc-CTSLP8 upregulated CTSL1 as a competitive endogenous RNA and exhibited oncogenic effects. Moreover, CTSL1 inhibitor treatment and miR-199a-5p overexpression abrogated the effects of lnc-CTSLP8 overexpression. Conclusions lnc-CTSLP8 acts as a ceRNA in ovarian cancer and represents a potential therapeutic target for metastatic ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01957-z.
Collapse
Affiliation(s)
- Xinjing Wang
- Department of Gynecology and Obstetrics, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Xiaoduan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feikai Lin
- Department of Gynecology and Obstetrics, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Huizhen Sun
- Department of Gynecology and Obstetrics, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Yingying Lin
- Department of Neurosurgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ziliang Wang
- Department of Gynecology and Obstetrics, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China.
| | - Xipeng Wang
- Department of Gynecology and Obstetrics, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
3
|
Cannavicci A, Zhang Q, Kutryk MJB. Non-Coding RNAs and Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:jcm9103333. [PMID: 33080889 PMCID: PMC7603193 DOI: 10.3390/jcm9103333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are functional ribonucleic acid (RNA) species that include microRNAs (miRs), a class of short non-coding RNAs (∼21–25 nucleotides), and long non-coding RNAs (lncRNAs) consisting of more than 200 nucleotides. They regulate gene expression post-transcriptionally and are involved in a wide range of pathophysiological processes. Hereditary hemorrhagic telangiectasia (HHT) is a rare disorder inherited in an autosomal dominant fashion characterized by vascular dysplasia. Patients can develop life-threatening vascular malformations and experience severe hemorrhaging. Effective pharmacological therapies are limited. The study of ncRNAs in HHT is an emerging field with great promise. This review will explore the current literature on the involvement of ncRNAs in HHT as diagnostic and pathogenic factors.
Collapse
Affiliation(s)
- Anthony Cannavicci
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada;
| | - Qiuwang Zhang
- Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada;
| | - Michael J. B. Kutryk
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada;
- Correspondence: ; Tel.: +1-(416)-360-4000 (ext. 6155)
| |
Collapse
|
4
|
Cannavicci A, Zhang Q, Dai SC, Faughnan ME, Kutryk MJB. Decreased levels of miR-28-5p and miR-361-3p and increased levels of insulin-like growth factor 1 mRNA in mononuclear cells from patients with hereditary hemorrhagic telangiectasia 1. Can J Physiol Pharmacol 2018; 97:562-569. [PMID: 30512964 DOI: 10.1139/cjpp-2018-0508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a rare vascular disorder inherited in an autosomal dominant manner. Patients with HHT can develop vascular dysplasias called telangiectasias and arteriovenous malformations (AVMs). Our objective was to profile and characterize micro-RNAs (miRNAs), short noncoding RNAs that regulate gene expression posttranscriptionally, in HHT patient-derived peripheral blood mononuclear cells (PBMCs). PBMCs, comprised mostly of lymphocytes and monocytes, have been reported to be dysfunctional in HHT. A total of 40 clinically confirmed HHT patients and 22 controls were enrolled in this study. PBMCs were isolated from 16 mL of peripheral blood and purified for total RNA. MiRNA expression profiling was conducted with a human miRNA array analysis. Select dysregulated miRNAs and miRNA targets were validated with reverse transcription-quantitative polymerase chain reaction. Of the 377 miRNAs screened, 41 dysregulated miRNAs were identified. Both miR-28-5p and miR-361-3p, known to target insulin-like growth factor 1 (IGF1), a potent angiogenic growth factor, were found to be significantly downregulated in HHT patients. Consequently, IGF1 mRNA levels were found to be significantly elevated. Our research successfully identified miRNA dysregulation and elevated IGF1 mRNA levels in PBMCs from HHT patients. This novel discovery represents a potential pathogenic mechanism that could be targeted to alleviate clinical manifestations of HHT.
Collapse
Affiliation(s)
- Anthony Cannavicci
- a Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Qiuwang Zhang
- b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Si-Cheng Dai
- b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Marie E Faughnan
- c Division of Respirology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael J B Kutryk
- a Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
5
|
Schlosser K, Taha M, Deng Y, McIntyre LA, Mei SHJ, Stewart DJ. High circulating angiopoietin-2 levels exacerbate pulmonary inflammation but not vascular leak or mortality in endotoxin-induced lung injury in mice. Thorax 2017; 73:248-261. [PMID: 28947667 PMCID: PMC5870448 DOI: 10.1136/thoraxjnl-2017-210413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/03/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
Abstract
Background Elevated plasma levels of angiopoietin-2 (ANGPT2) have been reported in patients with acute lung injury (ALI); however, it remains unclear whether this increase contributes to, or just marks, the underlying vasculopathic inflammation and leak associated with ALI. Here we investigated the biological consequences of inducing high circulating levels of ANGPT2 in a mouse model of endotoxin-induced ALI. Methods Transgenic mice (ANGPT2OVR) with elevated circulating levels of ANGPT2, achieved through conditional hepatocyte-specific overexpression, were examined from 3 to 72 hours following lipopolysaccharide (LPS)-induced ALI. An aptamer-based inhibitor was used to neutralise the effects of circulating ANGPT2 in LPS-exposed ANGPT2OVR mice. Results Total cells, neutrophils and macrophages, as well as inflammatory cytokines, were significantly higher in bronchoalveolar lavage (BAL) of ANGPT2OVR versus littermate controltTA mice at 48 hours and 6 hours post-LPS, respectively. In contrast, LPS-induced vascular leak, evidenced by total BAL protein levels and lung wet/dry ratio, was unchanged between ANGPT2OVR and controlstTA, while BAL levels of IgM and albumin were decreased in ANGPT2OVR mice between 24 hours and 48 hours suggesting a partial attenuation of vascular leak. There was no significant difference in LPS-induced mortality between ANGPT2OVR and controlstTA. An ANGPT2-neutralising aptamer partially attenuated alveolar cell infiltration while exacerbating vascular leak in LPS-exposed ANGPT2OVR mice, supported by underlying time-dependent changes in the lung transcriptional profiles of multiple genes linked to neutrophil recruitment/adhesion and endothelial integrity. Conclusions Our findings suggest that high circulating ANGPT2 potentiates endotoxin-induced lung inflammation but may also exert other pleiotropic effects to help fine-tune the vascular response to lung injury.
Collapse
Affiliation(s)
- Kenny Schlosser
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Mohamad Taha
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yupu Deng
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Lauralyn A McIntyre
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Shirley H J Mei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Wang X, Zhu Q, Lin Y, Wu L, Wu X, Wang K, He Q, Xu C, Wan X, Wang X. Crosstalk between TEMs and endothelial cells modulates angiogenesis and metastasis via IGF1-IGF1R signalling in epithelial ovarian cancer. Br J Cancer 2017; 117:1371-1382. [PMID: 28898232 PMCID: PMC5672923 DOI: 10.1038/bjc.2017.297] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is the leading cause of death from gynaecologic malignancies and has a poor prognosis due to metastasis. Drugs targeting the angiogenesis pathway significantly improve patient outcome. However, the key factors linking angiogenesis and metastasis have not been elucidated. In this study, we found Tie2 expressing monocytes (CD14+Tie2+, TEMs) as key contributors to angiogenesis and metastasis of EOC. METHODS Tissue slides were evaluated by immunofluorescence for the presence of total tissue macrophages and TEMs. The correlation between microvascular density (MVD) values and the TEMs number or ratio was calculated in both ovarian cancer tissues and peritoneum. The rate of TEMs in monocytes was evaluated in the peripheral blood of female healthy donors, benign cysts patients, and EOC patients using flow cytometry. The TEMs rate in ascites from EOC patients was also evaluated by flow cytometry. The concentration of Ang2, as the ligand of Tie2, was examined by ELISA in serum samples of EOC patients, benign cysts patients, and ascites samples of EOC patients. The effects of Ang2 on the migration and the cytokine expression of TEMs were further examined. The pro- angiogenesis activity of TEMs via IGF1 was performed in both in vivo and in vitro. And the IGF1 blocking test was performed using neutralising antibody. RESULTS TEMs were significantly higher in tumour foci, peripheral blood and ascites in EOC patients. The proportion of TEMs among total tissue macrophages was positively correlated with tumour MVD. In vivo animal results showed that TEMs promoted EOC angiogenesis and metastasis. Further functional and mechanisms studies revealed that concentration of angiopoietin 2 (Ang2), a ligand of Tie2, was elevated in EOC ascites which further recruit TEMs in a dose-dependent manner as a powerful chemokine to TEMs. Recruited TEMs promoted endothelial cell function through IGF1-activated downstream signalling. Blocking secreted IGF1 using inhibiting antibody reduced TEMs mediated angiogenesis and metastasis. CONCLUSIONS TEMs significantly increased in EOC patients and were recruited to tumour loci by the increased Ang2. The increased TEMs have diagnostic value in ovarian cancer and were positively correlated with the MVD in ovarian cancer tissue. Furthermore, TEMs promote angiogenesis via IGF1 in both in vivo and in vitro experimental systems after stimulation by Ang2. Altogether, this study paves the way to develop novel therapy targets as the axis of Ang2-TEMs-IGF1 in EOC.
Collapse
Affiliation(s)
- Xinjing Wang
- Department of Gynecology and Obstetrics, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| | - Qinyi Zhu
- Department of Gynecology and Obstetrics, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| | - Yingying Lin
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200127, China
| | - Li Wu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200126, China
| | - Xiaoli Wu
- Department of Gynecology and Obstetrics, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| | - Kai Wang
- Central Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200126, China
| | - Qizhi He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200126, China
| | - Congjian Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200126, China
| | - Xipeng Wang
- Department of Gynecology and Obstetrics, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
7
|
Elliott LA, Doherty GA, Sheahan K, Ryan EJ. Human Tumor-Infiltrating Myeloid Cells: Phenotypic and Functional Diversity. Front Immunol 2017; 8:86. [PMID: 28220123 PMCID: PMC5292650 DOI: 10.3389/fimmu.2017.00086] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Our current understanding of human tumor-resident myeloid cells is, for the most part, based on a large body of work in murine models or studies enumerating myeloid cells in patient tumor samples using immunohistochemistry (IHC). This has led to the establishment of the theory that, by and large, tumor-resident myeloid cells are either “protumor” M2 macrophages or myeloid-derived suppressor cells (MDSC). This concept has accelerated our understanding of myeloid cells in tumor progression and enabled the elucidation of many key regulatory mechanisms involved in cell recruitment, polarization, and activation. On the other hand, this paradigm does not embrace the complexity of the tumor-resident myeloid cell phenotype (IHC can only measure 1 or 2 markers per sample) and their possible divergent function in the hostile tumor microenvironment. Here, we examine the criteria that define human tumor-infiltrating myeloid cell subsets and provide a comprehensive and critical review of human myeloid cell nomenclature in cancer. We also highlight new evidence characterizing their contribution to cancer pathogenesis based on evidence derived from clinical studies drawing comparisons with murine studies where necessary. We then review the mechanisms in which myeloid cells are regulated by tumors in humans and how these are being targeted therapeutically.
Collapse
Affiliation(s)
- Louise A Elliott
- Centre for Colorectal Disease, St. Vincent's University Hospital, School of Medicine, University College Dublin , Dublin , Ireland
| | - Glen A Doherty
- Centre for Colorectal Disease, St. Vincent's University Hospital, School of Medicine, University College Dublin , Dublin , Ireland
| | - Kieran Sheahan
- Centre for Colorectal Disease, St. Vincent's University Hospital, School of Medicine, University College Dublin , Dublin , Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, St. Vincent's University Hospital, School of Medicine, University College Dublin , Dublin , Ireland
| |
Collapse
|