1
|
Yesankar PJ, Patil A, Kapley A, Qureshi A. Catalytic resilience of multicomponent aromatic ring-hydroxylating dioxygenases in Pseudomonas for degradation of polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 2023; 39:166. [PMID: 37076735 DOI: 10.1007/s11274-023-03617-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Hydrophobic organic compounds, either natural or introduced through anthropogenic activities, pose a serious threat to all spheres of life, including humankind. These hydrophobic compounds are recalcitrant and difficult to degrade by the microbial system; however, microbes have also evolved their metabolic and degradative potential. Pseudomonas species have been reported to have a multipotential role in the biodegradation of aromatic hydrocarbons through aromatic ring-hydroxylating dioxygenases (ARHDs). The structural complexity of different hydrophobic substrates and their chemically inert nature demands the explicit role of evolutionary conserved multicomponent enzyme ARHDs. These enzymes catalyze ring activation and subsequent oxidation by adding two molecular oxygen atoms onto the vicinal carbon of the aromatic nucleus. This critical metabolic step in the aerobic mode of degradation of polycyclic aromatic hydrocarbons (PAHs) catalyzed by ARHDs can also be explored through protein molecular docking studies. Protein data analysis enables an understanding of molecular processes and monitoring complex biodegradation reactions. This review summarizes the molecular characterization of five ARHDs from Pseudomonas species already reported for PAH degradation. Homology modeling for the amino acid sequences encoding the catalytic α-subunit of ARHDs and their docking analyses with PAHs suggested that the enzyme active sites show flexibility around the catalytic pocket for binding of low molecular weight (LMW) and high molecular weight (HMW) PAH substrates (naphthalene, phenanthrene, pyrene, benzo[α]pyrene). The alpha subunit harbours variable catalytic pockets and broader channels, allowing relaxed enzyme specificity toward PAHs. ARHD's ability to accommodate different LMW and HMW PAHs demonstrates its 'plasticity', meeting the catabolic demand of the PAH degraders.
Collapse
Affiliation(s)
- Prerna J Yesankar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ayurshi Patil
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
2
|
Chlebek D, Płociniczak T, Gobetti S, Kumor A, Hupert-Kocurek K, Pacwa-Płociniczak M. Analysis of the Genome of the Heavy Metal Resistant and Hydrocarbon-Degrading Rhizospheric Pseudomonas qingdaonensis ZCR6 Strain and Assessment of Its Plant-Growth-Promoting Traits. Int J Mol Sci 2021; 23:ijms23010214. [PMID: 35008639 PMCID: PMC8745256 DOI: 10.3390/ijms23010214] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/28/2022] Open
Abstract
The Pseudomonas qingdaonensis ZCR6 strain, isolated from the rhizosphere of Zea mays growing in soil co-contaminated with hydrocarbons and heavy metals, was investigated for its plant growth promotion, hydrocarbon degradation, and heavy metal resistance. In vitro bioassays confirmed all of the abovementioned properties. ZCR6 was able to produce indole acetic acid (IAA), siderophores, and ammonia, solubilized Ca3(PO4)2, and showed surface active properties and activity of cellulase and very high activity of 1-aminocyclopropane-1-carboxylic acid deaminase (297 nmol α-ketobutyrate mg−1 h−1). The strain degraded petroleum hydrocarbons (76.52% of the initial hydrocarbon content was degraded) and was resistant to Cd, Zn, and Cu (minimal inhibitory concentrations reached 5, 15, and 10 mM metal, respectively). The genome of the ZCR6 strain consisted of 5,507,067 bp, and a total of 5055 genes were annotated, of which 4943 were protein-coding sequences. Annotation revealed the presence of genes associated with nitrogen fixation, phosphate solubilization, sulfur metabolism, siderophore biosynthesis and uptake, synthesis of IAA, ethylene modulation, heavy metal resistance, exopolysaccharide biosynthesis, and organic compound degradation. Complete characteristics of the ZCR6 strain showed its potential multiway properties for enhancing the phytoremediation of co-contaminated soils. To our knowledge, this is the first analysis of the biotechnological potential of the species P. qingdaonensis.
Collapse
|
3
|
Pal M, Purohit HJ, Qureshi A. Genomic insight for algicidal activity in Rhizobium strain AQ_MP. Arch Microbiol 2021; 203:5193-5203. [PMID: 34341843 DOI: 10.1007/s00203-021-02496-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/28/2022]
Abstract
Occurrence of Harmful Algal Blooms (HABs) creates a threat to aquatic ecosystem affecting the existing flora and fauna. Hence, the mitigation of HABs through an eco-friendly approach remains a challenge for environmentalists. The present study provides the genomic insights of Rhizobium strain AQ_MP, an environmental isolate that showed the capability of degrading Microcystis aeruginosa (Cyanobacteria) through lytic mechanisms. Genome sequence analysis of Rhizobium strain AQ_MP unraveled the algal lytic features and toxin degradative pathways in it. Functional genes of CAZymes such as glycosyltransferases (GT), glycoside hydrolases (GH), polysaccharide lyases (PL) which supports algal polysaccharide degradation (lysis) were present in Rhizobium strain AQ_MP. Genome analysis also clarified the presence of the glutathione metabolic pathway, which is the biological detoxification pathway responsible for toxin degradation. The conserved region mlrC, a microcystin toxin-degrading gene was also annotated in the genome. The study illustrated that Rhizobium strain AQ_MP harbored a wide range of mechanisms for the lysis of Microcystis aeruginosa cells and its toxin degradation. In future, this study finds promiscuity for employing Rhizobium strain AQ_MP species for bioremediation, based on its physiological and genomic analysis.
Collapse
Affiliation(s)
- Mili Pal
- Environmental Biotechnology and Genomics Division, CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Metagenomic Insight Towards Vanillin-Mediated Membrane Biofouling Prevention: In Silico Docking Validation. Curr Microbiol 2020; 77:2233-2247. [PMID: 32382950 DOI: 10.1007/s00284-020-02003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Biofouling leads to water quality deterioration and higher maintenance cost for cleaning of membranes. The present study has demonstrated the application of a biomolecule (vanillin) in scrubbing and destabilizing biofilms of drinking water reverse osmosis (RO) membrane module in lab scale reactor set-up. Reverse osmosis membrane reactor was connected with tap water supply and subjected with optimal concentration of vanillin. The pressure drop was delayed by 17-20 days as compared to control reactor. Real-time PCR analysis of metagenome indicated the reduced copy number of functional biofilm-associated genes (bdlA, lasI, pgaC) in treated membrane. SEM and metagenome analysis revealed that the sticky biofilm communities shifted to loosely bound emboli after vanillin treatment. Metagenome sequence analysis revealed the inhibitory activity against major biofouling biota like members of Proteobacteria, Acidobacteria, Acnitobacteria, Bacteroidetes, Candidatus, Nitrospira, and Firmicutes. Biofouled membrane metagenome sequence was also compared with real-life (brackish water, waste water, domestic drinking water) biofouled membrane communities. In silico docking of vanillin to receptor proteins and chemical configuration simulation along with other phenolic derivatives were performed, which suggested that the autoiducer signal capability of vanillin was effective against representative broad spectrum biofilm population. Vanillin exhibited the quorum-quenching mode of action by virtue of docking towards similar amino acid (Thr 131, Ilu 214) responsible of autoinducer signal anchoring in the transcriptional regulatory proteins.
Collapse
|
5
|
Tikariha H, Purohit HJ. Unfolding microbial community intelligence in aerobic and anaerobic biodegradation processes using metagenomics. Arch Microbiol 2020; 202:1269-1274. [PMID: 32130435 DOI: 10.1007/s00203-020-01839-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022]
Abstract
Environmental factors and available nutrients influence microbial communities, and with that, there exists a dynamic shift in community structure and hierarchy in wastewater treatment systems. Of the various factors, the availability and gradient of oxygen selectively enrich a typical microbial community and also form the community stratification which could be established through metagenomics studies. In recent years, metagenomics with various sets of bioinformatics tools has assisted in exploration and better insight into the organization and relation of the taxonomical and functional composition and associate physiological intelligence of the microbial communities. The microbial communities, under defined conditions acquire a typical hierarchy with flexible but active network of the metabolic route, which ensures the survival needs of every member residing in that community and their abundance. This knowledge of community functional organization defines the rule in designing and improving biodegradation processes in case of both aerobic and anaerobic systems.
Collapse
Affiliation(s)
- Hitesh Tikariha
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
| |
Collapse
|
6
|
Mapping Microbial Capacities for Bioremediation: Genes to Genomics. Indian J Microbiol 2019; 60:45-53. [PMID: 32089573 DOI: 10.1007/s12088-019-00842-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Bioremediation is a process wherein the decontamination strategies are designed so that a site could achieve the environmental abiotic and biotic parameters close to its baseline. In the process, the driving force is the available microbial genetic degradative capabilities, which are supported by required nutrients so that the desired expression of these capabilities could be exploited in favour of removal of pollutants. With genomics tools not only the available abilities could be estimated but their dynamic performance could also be established. These tools are now playing important role in bioprocess optimization, which not only derive the bio-stimulation plans but also could suggest possible genetic bio-augmentation options.
Collapse
|
7
|
Tikariha H, Purohit HJ. Assembling a genome for novel nitrogen-fixing bacteria with capabilities for utilization of aromatic hydrocarbons. Genomics 2018; 111:1824-1830. [PMID: 30552976 DOI: 10.1016/j.ygeno.2018.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/08/2018] [Accepted: 12/07/2018] [Indexed: 11/28/2022]
Abstract
Metagenome from refinery wastewater treatment plant running under nitrogen stress was analyzed for mining of novel aromatic hydrocarbon-degrading bacteria. The sequence data were assembled using metaspade followed by binning using the Metabat tool to assemble genome; where coverage and depth were calculated using bowtie and samtools. The analysis picked a novel genome belonging to family Bradyrhizobiaceae, identified based on 16S rDNA gene which was supported by CheckM and Kraken analysis. Using RAST, the assembled genome showed the capabilities for nitrogen fixation with the utilization of multiple hydrocarbon substrates with 14 different types of oxygenases as mapped by Minpath. An additional genetic feature like genes for stress and resistance towards heavy metals and antibiotic suggested that the genome has gone through the rigorous process of adaptation. If such bacteria could be cultivated then it will open the broad window of bioremediation strategies under nitrogen stress environment.
Collapse
Affiliation(s)
- Hitesh Tikariha
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
8
|
Zhai L, Yang S, Lai Y, Meng D, Tian Q, Guan Z, Cai Y, Liao X. Mining of aminotransferase gene ota3 from Bacillus pumilus W3 via genome analysis, gene cloning and expressing for compound bioamination. Gene 2018; 686:21-28. [PMID: 30408548 DOI: 10.1016/j.gene.2018.10.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/16/2018] [Accepted: 10/28/2018] [Indexed: 12/18/2022]
Abstract
Aminotransferases are widely employed as biocatalysts to produce chiral amines and biologically active pharmaceuticals via asymmetric synthesis. In this study, transaminase genes in the Bacillus pumilus W3 genome were analysed, and gene ota3 encoding a putative (R)-selective transaminase was identified. The sequence of ota3 shares highest sequence identity (24.7%) with the first (R)-selective aminotransferase from Arthrobacter sp. KNK 168. Amino acid sequence and conserved domains analyses indicated that ω-BPAT encoded by ota3 belonged to the pyridoxal 5'-phosphate-dependent class IV (PLPDE_IV) superfamily. Both native and codon-optimised ω-BPAT genes were recombinantly expressed, and the purified proteins had a molecular mass of ~33.4 kDa. Furthermore, enantioselectivity tests with (S)- and (R)-α-phenethylamine revealed its (R)-selectivity. The optimal conditions for catalytic reaction were 45 °C and pH 7.0, and ω-BPAT retained stability at 20 °C and pH 7.0. Thus, ω-BPAT is a novel (R)-selective aminotransferase with great potential as a universal biocatalyst.
Collapse
Affiliation(s)
- Lixin Zhai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shaolan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yingjie Lai
- Chem-Stone (Guangzhou) Co. Ltd., Scientific and Technological Enterprise Accelerator, 11 Kaiyuan Avenue, Guangzhou 510530, China
| | - Di Meng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qiaopeng Tian
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhengbing Guan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yujie Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Xiangru Liao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Zhang X, Qu Y, Ma Q, Li S, Dai C, Lian S, Zhou J. Performance and Microbial Community Analysis of Bioaugmented Activated Sludge System for Indigo Production from Indole. Appl Biochem Biotechnol 2018; 187:1437-1447. [DOI: 10.1007/s12010-018-2879-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/09/2018] [Indexed: 11/29/2022]
|
10
|
An Approach to In Silico Dissection of Bacterial Intelligence Through Selective Genomic Tools. Indian J Microbiol 2018; 58:278-286. [PMID: 30013271 DOI: 10.1007/s12088-018-0726-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 01/31/2023] Open
Abstract
All the genetic potential and the intelligence a bacteria can showcase in a given environment are embedded in its genome. In this study, we have presented systematic guidelines to understand a bacterial genome with the relevant set of in silico tools using a novel bacteria as an example. This study presents a multi-dimensional approach from genome annotation to tracing genes and their network of metabolism operating in an organism. It also shows how the sequence can be used to mine the enzymes and construction of its 3-dimensional structure so that its functional behavior can be predicted and compared. The discriminating algorithm allows analysis of the promoter region and provides the insight in the regulation of genes in spite of the similarity in its sequences. The ecological niche specific bacterial behavior and adapted altered physiology can be understood through the presence of secondary metabolite, antibiotic resistance genes, and viral genes; and it helps in the valorization of genetic information for developing new biological application/processes. This study provides an in silico work plan and necessary steps for genome analysis of novel bacteria without any rigorous wet lab experiments.
Collapse
|
11
|
Genomically Defined Paenibacillus polymyxa ND24 for Efficient Cellulase Production Utilizing Sugarcane Bagasse as a Substrate. Appl Biochem Biotechnol 2018; 187:266-281. [PMID: 29926286 DOI: 10.1007/s12010-018-2820-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/11/2018] [Indexed: 12/29/2022]
Abstract
Cellulolytic bacteria from cattle rumen with ability to hydrolyze cellulose rich biomass were explored. The study selected Paenibacillus polymyxa ND24 from 847 isolates as the most potent strain, which can efficiently produce cellulase by utilizing sugarcane bagasse, rice straw, corn starch, CMC, and avicel as a sole carbon source. On annotation of P. polymyxa ND24 genome, 116 members of glycoside hydrolase (GH) family from CAZy clusters were identified and the presence of 10 potential cellulases was validated using protein folding information. Cellulase production was further demonstrated at lab-scale 5-L bioreactor exhibiting maximum endoglucanase activity up to 0.72 U/mL when cultivated in the medium containing bagasse (2% w/v) after 72 h. The bagasse hydrolysate so produced was further utilized for efficient biogas production. The presence of diverse hydrolytic enzymes and formidable cellulase activity supports the use of P. polymyxa ND24 for cost-effective bioprocessing of cellulosic biomass.
Collapse
|
12
|
Fuke P, Pal RR, Khardenavis AA, Purohit HJ. In silico
characterization of broad range proteases produced by Serratia marcescens
EGD-HP20. J Basic Microbiol 2018; 58:492-500. [DOI: 10.1002/jobm.201700474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/01/2018] [Accepted: 02/22/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Priya Fuke
- Environmental Biotechnology and Genomics Division; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI); Nagpur Maharashtra India
| | - Rajesh R. Pal
- Environmental Biotechnology and Genomics Division; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI); Nagpur Maharashtra India
| | - Anshuman A. Khardenavis
- Environmental Biotechnology and Genomics Division; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI); Nagpur Maharashtra India
| | - Hemant J. Purohit
- Environmental Biotechnology and Genomics Division; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI); Nagpur Maharashtra India
| |
Collapse
|