1
|
Abdollahi S, Hasanpour Ardekanizadeh N, Poorhosseini SM, Gholamalizadeh M, Roumi Z, Goodarzi MO, Doaei S. Unraveling the Complex Interactions between the Fat Mass and Obesity-Associated (FTO) Gene, Lifestyle, and Cancer. Adv Nutr 2022; 13:2406-2419. [PMID: 36104156 PMCID: PMC9776650 DOI: 10.1093/advances/nmac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023] Open
Abstract
Carcinogenesis is a complicated process and originates from genetic, epigenetic, and environmental factors. Recent studies have reported a potential critical role for the fat mass and obesity-associated (FTO) gene in carcinogenesis through different signaling pathways such as mRNA N6-methyladenosine (m6A) demethylation. The most common internal modification in mammalian mRNA is the m6A RNA methylation that has significant biological functioning through regulation of cancer-related cellular processes. Some environmental factors, like physical activity and dietary intake, may influence signaling pathways engaged in carcinogenesis, through regulating FTO gene expression. In addition, people with FTO gene polymorphisms may be differently influenced by cancer risk factors, for example, FTO risk allele carriers may need a higher intake of nutrients to prevent cancer than others. In order to obtain a deeper viewpoint of the FTO, lifestyle, and cancer-related pathway interactions, this review aims to discuss upstream and downstream pathways associated with the FTO gene and cancer. The present study discusses the possible mechanisms of interaction of the FTO gene with various cancers and provides a comprehensive picture of the lifestyle factors affecting the FTO gene as well as the possible downstream pathways that lead to the effect of the FTO gene on cancer.
Collapse
Affiliation(s)
- Sepideh Abdollahi
- Department of Medical Genetics, School of Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Naeemeh Hasanpour Ardekanizadeh
- Department of Clinical Nutrition, School of Nutrition and Food Sciences,
Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical
Sciences, Tehran, Iran
| | - Zahra Roumi
- Department of Nutrition, Science and Research Branch, Islamic Azad
University, Tehran, Iran
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Saeid Doaei
- Department of Community Nutrition, School of Nutrition and Food Sciences,
Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Asuquo EA, Nwodo OFC, Assumpta AC, Orizu UN, Oziamara ON, Solomon OA. FTO gene expression in diet-induced obesity is downregulated by Solanum fruit supplementation. Open Life Sci 2022; 17:641-658. [PMID: 35800074 PMCID: PMC9202533 DOI: 10.1515/biol-2022-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/07/2022] [Accepted: 03/05/2022] [Indexed: 11/15/2022] Open
Abstract
The Fat Mass and Obesity-associated (FTO) gene has been shown to play an important role in developing obesity, manifesting in traits such as increased body mass index, increased waist-to-hip ratio, and the distribution of adipose tissues, which increases the susceptibility to various metabolic syndromes. In this study, we evaluated the impact of fruit-based diets of Solanum melongena (SMF) and Solanum aethiopicum fruits (SAF) on the FTO gene expression levels in a high-fat diet (HFD)-induced obese animals. Our results showed that the mRNA level of the FTO gene was downregulated in the hypothalamus, and white and brown adipose tissue following three and six weeks of treatment with SMF- and SAF-based diets in the HFD-induced obese animals. Additionally, the Solanum fruit supplementation exhibited a curative effect on obesity-associated abrasions on the white adipose tissue (WAT), hypothalamus, and liver. Our findings collectively suggest the anti-obesity potential of SMF and SAF via the downregulation of the FTO gene.
Collapse
Affiliation(s)
- Edeke Affiong Asuquo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | | | - Anosike Chioma Assumpta
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | - Uchendu Nene Orizu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | - Okoro Nkwachukwu Oziamara
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | - Odiba Arome Solomon
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
- Department of Molecular Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| |
Collapse
|
3
|
Franzago M, Fraticelli F, Marchioni M, Di Nicola M, Di Sebastiano F, Liberati M, Stuppia L, Vitacolonna E. Fat mass and obesity-associated (FTO) gene epigenetic modifications in gestational diabetes: new insights and possible pathophysiological connections. Acta Diabetol 2021; 58:997-1007. [PMID: 33743080 PMCID: PMC8272710 DOI: 10.1007/s00592-020-01668-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/26/2020] [Indexed: 12/16/2022]
Abstract
AIMS Gestational diabetes mellitus (GDM) can lead to short- and long-term complications for the child. Epigenetic alterations could contribute to explaining the metabolic disturbances associated with foetal programming. Although the role of the FTO gene remains unclear, it affects metabolic phenotypes probably mediated by epigenetic mechanisms. The aim of this study was to assess whether placental DNA epigenetic modifications at FTO promoter-associated cysteine-phosphate-guanine (CpG) sites are correlated with GDM. A secondary aim was to evaluate the association between the placental FTO DNA methylation and the maternal metabolic traits in women with and without GDM. METHODS Socio-demographic characteristics, clinical parameters at the third trimester of pregnancy, Mediterranean diet adherence, and physical activity were assessed in 33 GDM women and 27 controls. Clinical information about the newborns was registered at birth. The FTO rs9939609 (T > A) was genotyped. RESULTS No association between FTO DNA methylation and GDM was found. DNA methylation on the maternal side at the CpG1 was associated with maternal smoking in GDM (p = 0.034), and DNA methylation at the CpG3 was correlated with smoking or former smoking in controls (p = 0.023). A higher level of TGs was correlated with higher foetal placental DNA methylation at the CpG2 (p = 0.036) in GDM. An inverse association between HDL-C and maternal placental DNA methylation at the CpG3 in controls (p = 0.045) was found. An association between FTO rs9939609 and neonatal birthweight (p = 0.033) was detected. CONCLUSIONS In the awareness that the obesity pathophysiology is complex, the study adds a piece to this intricate mosaic.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Federica Fraticelli
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Michele Marchioni
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, "G.D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, "G.D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Francesca Di Sebastiano
- Department of Obstetric and Gynaecology, SS. Annunziata Hospital, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Marco Liberati
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy.
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
4
|
Zhang H, Lu P, Tang HL, Yan HJ, Jiang W, Shi H, Chen SY, Gao MM, Zeng XD, Long YS. Valproate-Induced Epigenetic Upregulation of Hypothalamic Fto Expression Potentially Linked with Weight Gain. Cell Mol Neurobiol 2021; 41:1257-1269. [PMID: 32500354 DOI: 10.1007/s10571-020-00895-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Valproate (VPA), a widely-used antiepileptic drug, is a selective inhibitor of histone deacetylase (HDAC) that play important roles in epigenetic regulation. The patient with different diseases receiving this drug tend to exhibit weight gain and abnormal metabolic phenotypes, but the underlying mechanisms remain largely unknown. Here we show that VPA increases the Fto mRNA and protein expression in mouse hypothalamic GT1-7 cells. Interestingly, VPA promotes histone H3/H4 acetylation and the FTO expression which could be reversed by C646, an inhibitor for histone acetyltransferase. Furthermore, VPA weakens the FTO's binding and enhances the binding of transcription factor TAF1 to the Fto promoter, and C646 leads to reverse effect of the VPA, suggesting an involvement of the dynamic of histone H3/H4 acetylation in the regulation of FTO expression. In addition, the mice exhibit an increase in the food intake and body weight at the beginning of 2-week treatment with VPA. Simultaneously, in the hypothalamus of the VPA-treated mice, the FTO expression is upregulated and the H3/H4 acetylation is increased; further the FTO's binding to the Fto promoter is decreased and the TAF1's binding to the promoter is enhanced, suggesting that VPA promotes the assembly of the basal transcriptional machinery of the Fto gene. Finally, the inhibitor C646 could restore the effects of VPA on FTO expression, H3/H4 acetylation, body weight, and food intake; and loss of FTO could reverse the VPA-induced increase of body weight and food intake. Taken together, this study suggests an involvement of VPA in the epigenetic upregulation of hypothalamic FTO expression that is potentially associated with the VPA-induced weight gain.
Collapse
Affiliation(s)
- Huan Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Ping Lu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Hui-Ling Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Hua-Juan Yan
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Wei Jiang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Hang Shi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Si-Yu Chen
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Mei-Mei Gao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Xiang-Da Zeng
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Yue-Sheng Long
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.
| |
Collapse
|
5
|
Yuzbashian E, Asghari G, Chan CB, Hedayati M, Safarian M, Zarkesh M, Mirmiran P, Khalaj A. The association of dietary and plasma fatty acid composition with FTO gene expression in human visceral and subcutaneous adipose tissues. Eur J Nutr 2021; 60:2485-2494. [PMID: 33159224 DOI: 10.1007/s00394-020-02422-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The human obesity susceptibility gene, FTO, associates with body mass and obesity in humans through regulation of energy expenditure and intake. We aimed to determine how fatty acids in plasma and in diet associate with FTO gene expression in subcutaneous and visceral adipose tissues. METHODS In this study, 97 participants aged ≥ 18 years were selected from patients admitted to the hospital for abdominal surgeries. Habitual dietary intake of participants was collected using a valid and reliable food frequency questionnaire (FFQ), from which the intake of fatty acids was quantified. Plasma fatty acids were assessed by gas-liquid chromatography. The mRNA expression of the FTO gene in visceral and subcutaneous adipose tissues obtained by biopsy was measured by Real-Time Quantitative Reverse Transcription PCR. Standardized β-coefficients were calculated by multivariable linear regression. RESULTS After adjusting for age, homeostasis model insulin resistance index (HOMA-IR), and body mass index, total fatty acid intake was significantly associated with FTO gene expression in visceral (STZβ = 0.208, P = 0.037) and subcutaneous (STZβ = 0.236, P = 0.020) adipose tissues. Dietary intake of monounsaturated fatty acid (MUFA) and polyunsaturated fatty acids (PUFA) had positive significant associations with the expression of FTO in visceral (STZβ = 0.227, P = 0.023; STZβ = 0.346, P < 0.001, respectively) and subcutaneous (STZβ = 0.227, P = 0.026; STZβ = 0.274, P = 0.006, respectively) adipose tissues. There were no associations between plasma fatty acids and FTO mRNA expression in either subcutaneous or visceral adipose tissues. CONCLUSION The weak association of dietary total fatty acids, MUFA, and PUFA with FTO gene expression in both adipose tissues may highlight the importance of dietary fatty acids composition along with total fat intake in relation to FTO gene expression.
Collapse
Affiliation(s)
- Emad Yuzbashian
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golaleh Asghari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4763, Tehran, Iran
| | - Catherine B Chan
- Department of Agricultural, Food and Nutritional Science and Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4763, Tehran, Iran
| | - Mohammad Safarian
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4763, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4763, Tehran, Iran.
| | - Alireza Khalaj
- Department of Surgery, Tehran Obesity Treatment Center, Shahed University, Tehran, Iran
| |
Collapse
|
6
|
Pruszyńska-Oszmałek E, Wojciechowska M, Sassek M, Krauss H, Leciejewska N, Szczepankiewicz D, Ślósarz P, Nogowski L, Kołodziejski PA. The Long-Term Effects of High-Fat and High-Protein Diets on the Metabolic and Endocrine Activity of Adipocytes in Rats. BIOLOGY 2021; 10:biology10040339. [PMID: 33920712 PMCID: PMC8073757 DOI: 10.3390/biology10040339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary The increasing prevalence of worldwide obesity and growing awareness of its negative consequences are forcing scientists to take a new view of nutrition and search for new diets. Therefore, to find some new relationships between diet and metabolism, we analyzed the effects of the long-term (60 and 120 days) use of a high-protein diet (HPD) and of a high-fat diet (HFD) on the metabolic and endocrine functions of fat tissue and on biochemical indices in rat blood in the present study. This research helped us to understand the roles of diet in the metabolic and endocrine functioning of adipocytes. Our study indicated that an HFD has a negative effect on fat tissue function, whereas the HPD showed positive results, such as increased insulin sensitivity and improved glucose and lipid metabolism in isolated adipocytes in vitro. Abstract The increasing prevalence of overweight and obesity and the rising awareness of their negative consequences are forcing researchers to take a new view of nutrition and its consequences for the metabolism of whole organisms as well as the metabolism of their individual systems and cells. Despite studies on nutrition having been carried out for a few decades, not many of them have focused on the impacts of these diets on changes in the metabolism and endocrine functions of isolated adipocytes. Therefore, we decided to investigate the effects of the long-term use (60 and 120 days) of a high-fat diet (HFD) and of a high-protein diet (HPD) on basic metabolic processes in fat cells—lipogenesis, lipolysis, and glucose uptake—and endocrine function, which was determined according to the secretion of adipokines into the incubation medium. Our results proved that the HPD diet improved insulin sensitivity, increased the intracellular uptake of glucose (p < 0.01) and its incorporation into lipids (p < 0.01) and modulated the endocrine function of these cells (decreasing leptin secretion; p < 0.01). The levels of biochemical parameters in the serum blood also changed in the HPD-fed rats. The effects of the HFD were inverse, as expected. We observed a decrease in adiponectin secretion and a diminished rate of lipogenesis (p < 0.01). Simultaneously, the secretion of leptin and resistin (p < 0.01) from isolated adipocytes increased. In conclusion, we noted that the long-term use of HPD and HFD diets modulates the metabolism and endocrine functions of isolated rat adipocytes. We summarize that an HFD had a negative effect on fat tissue functioning, whereas an HPD had positive results, such as increased insulin sensitivity and an improved metabolism of glucose and lipids in fat tissue. Moreover, we noticed that negative metabolic changes are reflected more rapidly in isolated cells than in the metabolism of the whole organism.
Collapse
Affiliation(s)
- Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (M.S.); (N.L.); (D.S.); (L.N.)
- Correspondence: or (E.P.-O.); or (P.A.K.); Tel.: +48-618-486-084 (E.P.-O.); +48-511-468-396 (P.A.K.)
| | - Małgorzata Wojciechowska
- Department of Mother and Child Health, Poznan University of Medical Sciences, ul. Polna 33, 60-535 Poznań, Poland;
| | - Maciej Sassek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (M.S.); (N.L.); (D.S.); (L.N.)
| | - Hanna Krauss
- Department of Medicine, The President Stanisław Wojciechowski State University of Applied Sciences in Kalisz, Nowy Świat 4, 62-800 Kalisz, Poland;
| | - Natalia Leciejewska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (M.S.); (N.L.); (D.S.); (L.N.)
| | - Dawid Szczepankiewicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (M.S.); (N.L.); (D.S.); (L.N.)
| | - Piotr Ślósarz
- Department of Animal Breeding and Product Quality Assessment, Poznan University of Life Sciences, Sloneczna 1, 62-002 Zlotniki, Poland;
| | - Leszek Nogowski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (M.S.); (N.L.); (D.S.); (L.N.)
| | - Paweł A. Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (M.S.); (N.L.); (D.S.); (L.N.)
- Correspondence: or (E.P.-O.); or (P.A.K.); Tel.: +48-618-486-084 (E.P.-O.); +48-511-468-396 (P.A.K.)
| |
Collapse
|
7
|
Kucher AN. The FTO Gene and Diseases: The Role of Genetic Polymorphism, Epigenetic Modifications, and Environmental Factors. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420090136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Mehrdad M, Doaei S, Gholamalizadeh M, Eftekhari MH. The association between FTO genotype with macronutrients and calorie intake in overweight adults. Lipids Health Dis 2020; 19:197. [PMID: 32843047 PMCID: PMC7449073 DOI: 10.1186/s12944-020-01372-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/13/2020] [Indexed: 01/18/2023] Open
Abstract
Background Dietary macronutrients may indirectly affect body weight through their interactions with the fat mass and obesity associated (FTO) gene. This study aimed to investigate the association between FTO gene rs9939609 polymorphism with macronutrients intake in overweight adults. Methods This study was carried out on 196 overweight adults of Shiraz, Iran. Dietary intake was assessed using a validated 168-item semi-quantitative food frequency questionnaire (FFQ). The FTO gene was genotyped for rs9939609 polymorphism. The association between dietary macronutrients and the FTO genotype were assessed using linear regression after adjustments for sex, age, physical activity, and the serum levels of triglycerides, fasting blood sugar (FBS), and low density lipoprotein (LDL). Results The higher intake of carbohydrates (P < 0.001), fat (P = 0.009), and calorie (P = 0.001) were significantly associated with rs9939609 AA genotype (P = 0.001). Carriers of the AA genotype of rs9939609 had significantly higher calorie, fat, and carbohydrate intake than the carriers of the TT genotype after adjusting for age and sex (P = 0.019, P = 0.010 and P = 0.001, respectively). Further adjustments for physical activity, TG, LDL, and FBS did not change these results. Conclusion The amounts of dietary calorie, carbohydrate, and fat intake were associated with FTO genotype. Further studies are warranted to confirm these associations and to identify the underlying mechanisms.
Collapse
Affiliation(s)
- Mahsa Mehrdad
- Department of Clinical Nutrition, School of Nutrition and food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Doaei
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran.
| | - Maryam Gholamalizadeh
- Student research committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Eftekhari
- Department of Clinical Nutrition, School of Nutrition and food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Ferenc K, Pilžys T, Garbicz D, Marcinkowski M, Skorobogatov O, Dylewska M, Gajewski Z, Grzesiuk E, Zabielski R. Intracellular and tissue specific expression of FTO protein in pig: changes with age, energy intake and metabolic status. Sci Rep 2020; 10:13029. [PMID: 32747736 PMCID: PMC7400765 DOI: 10.1038/s41598-020-69856-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
Genome-wide association studies in the FTO gene have identified SNPs correlating with obesity and type 2 diabetes. In mice, lack of Fto function leads to intrauterine growth retardation and lean phenotype, whereas in human it is lethal. The aim of this study in a pig model was to determine the localization of the FTO protein in different tissues and cell compartments, in order to investigate potential targets of FTO action. To better understand physiological role of FTO protein, its expression was studied in pigs of different age, metabolic status and nutrition, using both microscopic methods and Western blot analysis. For the first time, FTO protein was found in vivo in the cytoplasm, of not all, but specific tissues and cells e.g. in the pancreatic β-cells. Abundant FTO protein expression was found in the cerebellum, salivary gland and kidney of adult pigs. No FTO protein expression was detected in blood, saliva, and bile, excluding its role in cell-to-cell communication. In the pancreas, FTO protein expression was positively associated with energy intake, whereas in the muscles it was strictly age-related. In IUGR piglets, FTO protein expression was much higher in the cerebellum and kidneys, as compared to normal birth body weight littermates. In conclusion, our data suggest that FTO protein may play a number of distinct, yet unknown intracellular functions due to its localization. Moreover, it may play a role in animal growth/development and metabolic state, although additional studies are necessary to clarify the detailed mechanism(s) of action.
Collapse
Affiliation(s)
- Karolina Ferenc
- Veterinary Research Centre, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Oleksandr Skorobogatov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Małgorzata Dylewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Zdzisław Gajewski
- Veterinary Research Centre, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| | - Romuald Zabielski
- Veterinary Research Centre, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland.
| |
Collapse
|
10
|
Liu SJ, Tang HL, He Q, Lu P, Fu T, Xu XL, Su T, Gao MM, Duan S, Luo Y, Long YS. FTO is a transcriptional repressor to auto-regulate its own gene and potentially associated with homeostasis of body weight. J Mol Cell Biol 2020; 11:118-132. [PMID: 29771336 DOI: 10.1093/jmcb/mjy028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/26/2018] [Accepted: 05/15/2018] [Indexed: 01/11/2023] Open
Abstract
Fat mass and obesity-associated (FTO) protein is a ferrous ion (Fe2+)/2-oxoglutarate (2-OG)-dependent demethylase preferentially catalyzing m6A sites in RNA. The FTO gene is highly expressed in the hypothalamus with fluctuation in response to various nutritional conditions, which is believed to be involved in the control of whole body metabolism. However, the underlying mechanism in response to different nutritional cues remains poorly understood. Here we show that ketogenic diet-derived ketone body β-hydroxybutyrate (BHB) transiently increases FTO expression in both mouse hypothalamus and cultured cells. Interestingly, the FTO protein represses Fto promoter activity, which can be offset by BHB. We then demonstrate that FTO binds to its own gene promoter, and Fe2+, but not 2-OG, impedes this binding and increases FTO expression. The BHB-induced occupancy of the promoter by FTO influences the assembly of the basal transcriptional machinery. Importantly, a loss-of-function FTO mutant (I367F), which induces a lean phenotype in FTOI367F mice, exhibits augmented binding and elevated potency to repress the promoter. Furthermore, FTO fails to bind to its own promoter that promotes FTO expression in the hypothalamus of high-fat diet-induced obese and 48-h fasting mice, suggesting a disruption of the stable expression of this gene. Taken together, this study uncovers a new function of FTO as a Fe2+-sensitive transcriptional repressor dictating its own gene switch to form an auto-regulatory loop that may link with the hypothalamic control of body weight.
Collapse
Affiliation(s)
- Shu-Jing Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui-Ling Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian He
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Ping Lu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Fu
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Xu-Ling Xu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mei-Mei Gao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shumin Duan
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Luo
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Yue-Sheng Long
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Doaei S, Kalantari N, Izadi P, Salonurmi T, Jarrahi AM, Rafieifar S, Azizi Tabesh G, Rahimzadeh G, Gholamalizadeh M, Goodarzi MO. Interactions between macro-nutrients' intake, FTO and IRX3 gene expression, and FTO genotype in obese and overweight male adolescents. Adipocyte 2019; 8:386-391. [PMID: 31771407 PMCID: PMC6948981 DOI: 10.1080/21623945.2019.1693745] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/10/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022] Open
Abstract
This study is the first to identify the effects of FTO genotype on the interactions between the level of macro-nutrients intake and the expression level of fat mass and obesity associated (FTO) and homeobox transcription factor iriquois-3 (IRX3) genes This longitudinal study was carried out on 84 overweight and obese adolescent boys in Tehran, Iran. The rs9930506 SNP in FTO was genotyped at baseline and the level of FTO and IRX3 expression in PBMCs and macro-nutrients' intake were assessed at baseline and after 18 weeks of the intervention. The results identified that the higher carbohydrates intake significantly up-regulated the FTO gene (P = 0.001) and down-regulated the IRX3 gene (P = 0.01). Protein intake up-regulated the FTO gene (P = 0.001). In carriers of GG genotype of FTO gene, the amount of dietary carbohydrate had a positive association with FTO gene expression (p = 0.001, and p = 0.04, respectively). In AA/AG carriers, dietary protein was positively associated with FTO gene expression (p = 0.001) and dietary carbohydrate was negatively associated with IRX3 gene expression (P = 0.04). Therefore, dietary carbohydrateseems to be associated with FTO and IRX3 genes expression. These associations are influenced by FTO genotype.
Collapse
Affiliation(s)
- Saeid Doaei
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naser Kalantari
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tuire Salonurmi
- Department of Internal Medicine, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | - Shahram Rafieifar
- Health Promotion and Education Department, Ministry of Health, Tehran, Iran
| | - Ghasem Azizi Tabesh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Rahimzadeh
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong Waurn Ponds, Australia
| | - Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
12
|
Gholamalizadeh M, Jarrahi AM, Akbari ME, Rezaei S, Doaei S, Mokhtari Z, Torki A. The possible mechanisms of the effects of IRX3 gene on body weight: an overview. Arch Med Sci Atheroscler Dis 2019; 4:e225-e230. [PMID: 31538128 PMCID: PMC6749179 DOI: 10.5114/amsad.2019.87545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Recent studies reported that FTO exert its effects on body weight through change the expression IRX3. The aim of this study was investigation of the possible mechanisms of the effects of IRX3 gene on obesity. MATERIAL AND METHODS The present review was carried out using keywords such as polymorphism and/or obesity and/or BMI and/or IRX3 gene and/or Iroquois homeobox protein 3. Databases including PubMed, Science Direct, web of sciences, Scopus, and Cochran databases were used to collect all related articles published from 2000 to 2019. RESULTS Based on this review, there are some evidences on the association between the IRX3 polymorphisms and the IRX3 expression level with body weight. In some studies, the up-regulation of IRX3 expression was related to increased body weight, while in some other studies down-regulation of IRX3 expression was related to obesity. CONCLUSIONS This review investigated the probable mechanisms of the effects of the IRX3 gene on obesity. Studies in this are limited and reported contradictory results. Further studies are required to evaluate the role of IRX3 gene in the associations between genes, diet, and obesity.
Collapse
Affiliation(s)
- Maryam Gholamalizadeh
- Students’ Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alirea Mosavi Jarrahi
- Faculty of Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Esmail Akbari
- Cancer Research Center (CRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahla Rezaei
- Students’ Research Committee, PhD student in Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Doaei
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
| | - Zohreh Mokhtari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Torki
- Department of Nutrition, Faculty of Nutrition Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
The association of dietary carbohydrate with FTO gene expression in visceral and subcutaneous adipose tissue of adults without diabetes. Nutrition 2019; 63-64:92-97. [DOI: 10.1016/j.nut.2018.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/24/2018] [Accepted: 12/29/2018] [Indexed: 11/19/2022]
|
14
|
Doaei S, Kalantari N, Izadi P, Salonurmi T, Mosavi Jarrahi A, Rafieifar S, Azizi Tabesh G, Rahimzadeh G, Gholamalizadeh M, Goodarzi MO. Changes in FTO and IRX3 gene expression in obese and overweight male adolescents undergoing an intensive lifestyle intervention and the role of FTO genotype in this interaction. J Transl Med 2019; 17:176. [PMID: 31126299 PMCID: PMC6534854 DOI: 10.1186/s12967-019-1921-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/15/2019] [Indexed: 01/31/2023] Open
Abstract
Background Lifestyle intervention may have a critical effect on the association between genetics and obesity. This study aimed to investigate changes in FTO and IRX3 gene expression in obese and overweight male adolescents undergoing a lifestyle intervention and the role of FTO genotype in this interaction. Methods This study was a field trial of 62 adolescents from boys’ high schools in Tehran, Iran. Two schools were randomly allocated as the intervention (n = 30) and control (n = 32) schools. The rs9930506 SNP in FTO was genotyped at baseline and the level of FTO and IRX3 expression in peripheral blood mononuclear cells (PBMCs). Anthropometric measurements were assessed at baseline and after 18 weeks of intensive lifestyle intervention. Results Our results showed that IRX3 expression in the intervention group was significantly up-regulated compared to baseline (P = 0.007) and compared to the control group (P = 0.011).The intervention group had significantly up-regulated transcripts of IRX3 only in rs9930506 risk allele carriers of the intervention group compared to risk allele carriers of the control group (P = 0.017). Moreover, our data showed that the FTO expression was up-regulated in AA genotype carriers and down-regulated in AG/GG genotype carriers (P = 0.017). Conclusion Lifestyle modification may exert its effects on obesity through changes in the expression level of the FTO and IRX3 genes. However, FTO genotype plays a role in the extent of the effect of lifestyle changes on gene expression. Further studies are crucial to have a better understanding of the interaction between lifestyle, genetics and anthropometric measurements. Trial registration This paper reports a comprehensive intervention study (Interactions of Genetics, Lifestyle and Anthropometrics study or IGLA study), which is retrospectively registered in the Iranian Registry of Clinical Trials as IRCT2016020925699N2. Date registered: April 24, 2016. (https://www.irct.ir/searchresult.php?id=25699&number=2) Electronic supplementary material The online version of this article (10.1186/s12967-019-1921-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saeid Doaei
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran.,Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naser Kalantari
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tuire Salonurmi
- Department of Internal Medicine, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | - Shahram Rafieifar
- Health Promotion and Education Department, Ministry of Health, Tehran, Iran
| | - Ghasem Azizi Tabesh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Rahimzadeh
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong Waurn Ponds, Australia
| | - Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
15
|
Ferrari A, Longo R, Silva R, Mitro N, Caruso D, De Fabiani E, Crestani M. Epigenome modifiers and metabolic rewiring: New frontiers in therapeutics. Pharmacol Ther 2019; 193:178-193. [DOI: 10.1016/j.pharmthera.2018.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
The impact of probiotic supplementation during pregnancy on DNA methylation of obesity-related genes in mothers and their children. Eur J Nutr 2018; 58:367-377. [PMID: 29299736 DOI: 10.1007/s00394-017-1601-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE Dietary supplementation with probiotics during pregnancy has been suggested to decrease the risk for obesity in women after delivery and to minimize excessive weight gain in their children. Epigenetic DNA methylation has been proposed to impact on gene activity, thereby providing a plausible molecular mechanism for a broad range of biological processes and diseases. This pilot study aimed to evaluate whether probiotic supplementation during pregnancy could modify the DNA methylation status of the promoters of obesity and weight gain-related genes in mothers and their children. METHODS A sample of 15 pregnant women was taken from a prospective, randomized mother and infant nutrition and probiotic study. Seven women received the probiotic supplementation and eight served as controls. The women's and their children's DNA methylation status of obesity (623 genes) and weight gain-related (433) gene promoters were analyzed from blood samples at the mean of 9.8 months (range 6.1-12.7 months) postpartum. RESULTS Probiotic supplementation led to significantly decreased levels of DNA methylation in 37 gene promoters and increased levels of DNA methylation in one gene promoter in women. In their children, 68 gene promoters were significantly affected consistently with a lower level of DNA methylation in the probiotic group. CONCLUSIONS On the basis of our pilot study, we suggest that probiotic supplementation during pregnancy may affect the DNA methylation status of certain promoters of obesity and weight gain-related genes both in mothers and their children, thereby providing a potential mechanism for long-lasting health effects.
Collapse
|