1
|
Ni B, Tian Z, Chang J, Zhou Y, Li X, Zhang M, Li W, Zhang N, Luo X, Zhang Y, Lu R. AcsS inhibits the hemolytic activity and thermostable direct hemolysin (TDH) gene expression in Vibrio parahaemolyticus. Can J Microbiol 2025; 71:1-6. [PMID: 39536299 DOI: 10.1139/cjm-2024-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vibrio parahaemolyticus produces a key virulent factor known as thermostable direct hemolysin (TDH). TDH exhibits diverse biological activities, including hemolytic activity. The β-type hemolysis observed on Wagatsuma agar due to TDH is recognized as the Kanagawa phenomenon (KP). The tdh2 gene is primarily responsible for TDH production and the associated KP. AcsS was originally identified as an activator of swimming and swarming motility in V. parahaemolyticus. However, its potential roles in other cellular pathways remain unclear. In this study, we investigated the regulatory effects of AcsS on the hemolytic activity and tdh2 expression in V. parahaemolyticus using phenotypic tests for KP, quantitative real-time polymerase chain reaction, LacZ fusion, and electrophoretic mobility shift assays. The data showed that V. parahaemolyticus hemolytic activity and tdh2 transcription were under the negative control of AcsS. Additionally, in-vitro binding assays revealed that His-AcsS could not bind to the regulatory DNA region of tdh2. However, overexpression of AcsS in an Escherichia coli strain suppressed the expression of tdh2. Collectively, these results suggested that AcsS suppresses the hemolytic activity of V. parahaemolyticus through the downregulation of tdh2 transcription. The data enhanced our understanding of the regulatory networks governing tdh2 expression and the roles of AcsS in this bacterium.
Collapse
Affiliation(s)
- Bin Ni
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhukang Tian
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Health Commission of Qinghai Province, Xining 810008, Qinghai, China
| | - Jingyang Chang
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Yining Zhou
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Wanpeng Li
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Health Commission of Qinghai Province, Xining 810008, Qinghai, China
| | - Nan Zhang
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| |
Collapse
|
2
|
Chang J, Zhou Y, Zhang M, Li X, Zhang N, Luo X, Ni B, Wu H, Lu R, Zhang Y. CalR Inhibits the Swimming Motility and Polar Flagellar Gene Expression in Vibrio parahaemolyticus. J Microbiol 2024; 62:1125-1132. [PMID: 39643841 DOI: 10.1007/s12275-024-00179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 12/09/2024]
Abstract
Vibrio parahaemolyticus has two flagellar systems, the polar flagellum and lateral flagella, which are both intricately regulated by a multitude of factors. CalR, a LysR-type transcriptional regulator, is sensitive to calcium (Ca) and plays a crucial role in regulating the virulence and swarming motility of V. parahaemolyticus. In this study, we have demonstrated that the deletion of calR significantly enhances the swimming motility of V. parahaemolyticus under low Ca conditions but not under high Ca conditions or in the absence of Ca. CalR binds to the regulatory DNA regions of flgM, flgA, and flgB, which are located within the polar flagellar gene loci, with the purpose of repressing their transcription. Additionally, it exerts an indirect negative control over the transcription of flgK. The overexpression of CalR in Escherichia coli resulted in a reduction in the expression levels of flgM, flgA, and flgB, while having no impact on the expression of flgK. In summary, this research demonstrates that the negative regulation of V. parahaemolyticus swimming motility by CalR under low Ca conditions is achieved through its regulation on the transcription of polar flagellar genes.
Collapse
Affiliation(s)
- Jingyang Chang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yining Zhou
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
| | - Nan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China
| | - Bin Ni
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai, People's Republic of China
| | - Haisheng Wu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai, People's Republic of China.
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China.
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, People's Republic of China.
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai, People's Republic of China.
| |
Collapse
|
3
|
Ni B, Li W, Chang J, Zhou Y, Li X, Tian Z, Zhang M, Zhang N, Luo X, Zhang Y, Lu R. AcsS Negatively Regulates the Transcription of type VI Secretion System 2 Genes in Vibrio parahaemolyticus. Curr Microbiol 2024; 81:330. [PMID: 39196442 DOI: 10.1007/s00284-024-03855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
The type VI secretion system 2 (T6SS2) gene cluster of Vibrio parahaemolyticus comprises three operons: VPA1027-1024, VPA1043-1028, and VPA1044-1046. AcsS is a LysR-like transcriptional regulator that play a role in activating flagella-driven motility in V. parahaemolyticus. However, its potential roles in other cellular pathways remain poorly understood. In this study, we conducted a series of experiments to investigate the regulatory effects of AcsS on the transcription of VPA1027 (hcp2), VPA1043, and VPA1044. The findings revealed that AcsS indirectly inhibits the transcription of these genes. Additionally, deletion of acsS resulted in enhanced adhesion of V. parahaemolyticus to HeLa cells. However, disruption of T6SS2 alone or in conjunction with AcsS significantly diminished the adhesion capacity of V. parahaemolyticus to HeLa cells. Therefore, it is suggested that AcsS suppresses cell adhesion in V. parahaemolyticus by downregulating the transcription of T6SS2 genes.
Collapse
Affiliation(s)
- Bin Ni
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wanpeng Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Health Commission of Qinghai Province, Xining, 810008, Qinghai, China
| | - Jingyang Chang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Yining Zhou
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Zhukang Tian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Health Commission of Qinghai Province, Xining, 810008, Qinghai, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Nan Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
| |
Collapse
|
4
|
Li X, Zhang X, Zhang M, Luo X, Zhang T, Liu X, Lu R, Zhang Y. Environmental magnesium ion affects global gene expression, motility, biofilm formation and virulence of Vibrio parahaemolyticus. Biofilm 2024; 7:100194. [PMID: 38577556 PMCID: PMC10990858 DOI: 10.1016/j.bioflm.2024.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Vibrio parahaemolyticus is widely distributed in marine ecosystems. Magnesium ion (Mg2+) is the second most abundant metal cation in seawater, and plays important roles in the growth and gene expression of V. parahaemolyticus, but lacks the detailed mechanisms. In this study, the RNA sequencing data demonstrated that a total of 1494 genes was significantly regulated by Mg2+. The majority of the genes associated with lateral flagella, exopolysaccharide, type III secretion system 2, type VI secretion system (T6SS) 1, T6SS2, and thermostable direct hemolysin were downregulated. A total of 18 genes that may be involved in c-di-GMP metabolism and more than 80 genes encoding putative regulators were also significantly and differentially expressed in response to Mg2+, indicating that the adaptation process to Mg2+ stress may be strictly regulated by complex regulatory networks. In addition, Mg2+ promoted the proliferative speed, swimming motility and cell adhesion of V. parahaemolyticus, but inhibited the swarming motility, biofilm formation, and c-di-GMP production. However, Mg2+ had no effect on the production of capsular polysaccharide and cytoxicity against HeLa cells. Therefore, Mg2+ had a comprehensive impact on the physiology and gene expression of V. parahaemolyticus.
Collapse
Affiliation(s)
- Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Xiaobai Zhang
- Department of Respiratory Medicine, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Xianjin Liu
- Department of Infection, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| |
Collapse
|
5
|
Li X, Chang J, Zhang M, Zhou Y, Zhang T, Zhang Y, Lu R. The effect of environmental calcium on gene expression, biofilm formation and virulence of Vibrio parahaemolyticus. Front Microbiol 2024; 15:1340429. [PMID: 38881663 PMCID: PMC11176486 DOI: 10.3389/fmicb.2024.1340429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Calcium (Ca2+) can regulate the swarming motility and virulence of Vibrio parahaemolyticus BB22. However, the effects of Ca2+ on the physiology of V. parahaemolyticus RIMD2210633, whose genomic composition is quite different with that of BB22, have not been investigated. In this study, the results of phenotypic assays showed that the biofilm formation, c-di-GMP production, swimming motility, zebrafish survival rate, cytoxicity against HeLa cells, and adherence activity to HeLa cells of V. parahaemolyticus RIMD2210633 were significantly enhanced by Ca2+. However, Ca2+ had no effect on the growth, swarming motility, capsular polysaccharide (CPS) phase variation and hemolytic activity. The RNA sequencing (RNA-seq) assay disclosed 459 significantly differentially expressed genes (DEGs) in response to Ca2+, including biofilm formation-associated genes and those encode virulence factors and putative regulators. DEGs involved in polar flagellum and T3SS1 were upregulated, whereas majority of those involved in regulatory functions and c-di-GMP metabolism were downregulated. The work helps us understand how Ca2+ affects the behavior and gene expression of V. parahaemolyticus RIMD2210633.
Collapse
Affiliation(s)
- Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
| | - Jingyang Chang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
| | - Yining Zhou
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
| |
Collapse
|
6
|
Zhang X, Shangguan W, Wang J, Liao Z, Fang X, Zhong Q. Transcriptomic analysis reveals the antibiofilm mechanism of Lacticaseibacillus rhamnosus MS1 against Vibrio parahaemolyticus. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Bai X, Hu C, Wang J, Li Y, Xin W, Kang L, Jin Z, Wan W, Li Y, Yang H, Wang J, Gao S. A lanthanide-based high-sensitivity fluorescence method for the on-site rapid detection of thermostable direct hemolysin of Vibrio parahaemolyticus. J Food Prot 2023; 86:100005. [PMID: 36916582 DOI: 10.1016/j.jfp.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 12/23/2022]
Abstract
Vibrio parahaemolyticus is a common foodborne pathogen in seafood, which often causes seafood borne bacterial gastroenteritis or food poisoning. Thermostable direct hemolysin (TDH) is considered to be one of the main virulence factors involved in this pathogen. The most clinical V. parahaemolyticus isolates produce TDH. Therefore, high sensitivity and specificity detection of TDH are of great significance for food safety and early diagnosis of diseases caused by V. parahaemolyticus. In this study, we developed a rapid, sensitive immunochromatographic test paper assay for the quantitative detection of TDH in seafood samples using time-resolved fluorescence techniques. First, we completed the preparation of fluorescent detection antibodies by coupling lanthanide fluorescent nanospheres with homemade high-affinity polyclonal antibodies based on the principle of the double-antibody sandwich. The lanthanide fluorescent nanospheres used in this study are characterized by a large stokes shift and a long fluorescence lifetime, which effectively reduces background noise and improves detection sensitivity. In addition, the method can be completed within 15 min for the detection of TDH, has a detection limit below 50 ng/mL and good linearity in the range of 50-5000 ng/mL. Moreover, it has good specificity and no cross-reactivity with Vibrio vulnificus hemolysin (VVH), Clostridium perfringens α toxin (CPA) or C. perfringens ε toxin (ETX). Finally, the sensitivity of this method was unchanged when the three simulated samples of Patinopecten yessoensis, Ruditapes philippinarum, and Scapharca broughtonii tested, indicating that the method is not affected by samples in a complex matrix. In conclusion, this study establishes a practical new method for on-site rapid detection of TDH, which is easy to operate, fast response, easy to carry and can be implemented under the field conditions without expensive equipment and professional person.
Collapse
Affiliation(s)
- Xuexin Bai
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chenyi Hu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Zhiying Jin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Wei Wan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Yue Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Hao Yang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China.
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China.
| |
Collapse
|
8
|
Verma P, Chattopadhyay K. Current Perspective on the Membrane-Damaging Action of Thermostable Direct Hemolysin, an Atypical Bacterial Pore-forming Toxin. Front Mol Biosci 2021; 8:717147. [PMID: 34368235 PMCID: PMC8343067 DOI: 10.3389/fmolb.2021.717147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Thermostable direct hemolysin (TDH) is the major virulence determinant of the gastroenteric bacterial pathogen Vibrio parahaemolyticus. TDH is a membrane-damaging pore-forming toxin (PFT). TDH shares remarkable structural similarity with the actinoporin family of eukaryotic PFTs produced by the sea anemones. Unlike most of the PFTs, it exists as tetramer in solution, and such assembly state is crucial for its functionality. Although the structure of the tetrameric assembly of TDH in solution is known, membrane pore structure is not available yet. Also, the specific membrane-interaction mechanisms of TDH, and the exact role of any receptor(s) in such process, still remain unclear. In this mini review, we discuss some of the unique structural and physicochemical properties of TDH, and their implications for the membrane-damaging action of the toxin. We also present our current understanding regarding the membrane pore-formation mechanism of this atypical bacterial PFT.
Collapse
Affiliation(s)
- Pratima Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
9
|
Wang D, Flint SH, Gagic D, Palmer JS, Fletcher GC, On SLW. In silico analysis revealing CsrA roles in motility-sessility switching and tuning VBNC cells in Vibrio parahaemolyticus. BIOFOULING 2021; 37:680-688. [PMID: 34369215 DOI: 10.1080/08927014.2021.1955357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
The formation of biofilms is a survival strategy employed by bacteria to help protect them from changing or unfavourable environments. In this research, 319 genes which govern biofilm formation in V. parahaemolyticus, as reported in 1,625 publications, were analysed using protein-protein-interaction (PPI) network analysis. CsrA was identified as a motility-sessility switch and biofilm formation regulator. Through robust rank aggregation (RRA) analysis of GSE65340, the generation of viable but non-culturable (VBNC) cells that may enhance cell tolerance to stress, was found to be associated with the TCA cycle and carbon metabolism biological pathways. The finding that CsrA is likely to play a role in the development of VBNC cells improves understanding of the molecular mechanisms of VBNC formation in V. parahaemolyticus and contributes to on-going efforts to reduce the hazard posed by this foodborne pathogen.
Collapse
Affiliation(s)
- Dan Wang
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Steve H Flint
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Dragana Gagic
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jon S Palmer
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Graham C Fletcher
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Stephen L W On
- Faculty of Agriculture and Life Sciences, Lincoln University, Canterbury, New Zealand
| |
Collapse
|
10
|
Gao H, Wang H, Qin Q, Gao Y, Qiu Y, Zhang J, Li J, Lou J, Diao B, Zhang Y, Kan B. Transcriptional regulation of the mannitol phosphotransferase system operon by the ferric uptake regulator (Fur) in Vibrio cholerae El Tor serogroup O1. Res Microbiol 2021; 172:103848. [PMID: 34089838 DOI: 10.1016/j.resmic.2021.103848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022]
Abstract
The phosphoenolpyruvate (PEP): carbohydrate phosphotransferase system (PTS) allows bacteria to use various carbohydrates as energy resources including mannitol. The mannitol-specific PTS transporter in Vibrio cholerae is encoded by the mtlADR operon. Expression of the mtl operon has been shown to be strictly regulated by CRP, MtlS, and MtlR. In the present study, we investigated the regulation of mtlADR by the ferric uptake regulator (Fur). The results showed that Fur binds to the promoter-proximal DNA region of mtlADR to repress its transcription independent of iron, in mannitol-containing growth medium. The capacity for mannitol fermentation was significantly increased in Δfur relative to that of WT for normal and iron-replete growth media. The level of organic acids produced by Δfur was significantly enhanced relative to that produced by the WT strain in the normal and iron-replete media but not in an iron-starved medium. The results provided for a deeper understanding of the regulation of mtlADR in V. cholerae.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Han Wang
- Department of Clinical Diagnostic Centre, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Qin Qin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yue Gao
- First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yue Qiu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jingyun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing Lou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
11
|
Gao H, Ma L, Qin Q, Qiu Y, Zhang J, Li J, Lou J, Diao B, Zhao H, Shi Q, Zhang Y, Kan B. Fur Represses Vibrio cholerae Biofilm Formation via Direct Regulation of vieSAB, cdgD, vpsU, and vpsA-K Transcription. Front Microbiol 2020; 11:587159. [PMID: 33193241 PMCID: PMC7641913 DOI: 10.3389/fmicb.2020.587159] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Attached Vibrio cholerae biofilms are essential for environmental persistence and infectivity. The vps loci (vpsU, vpsA-K, and vpsL-Q) are required for mature biofilm formation and are responsible for the synthesis of exopolysaccharide. Transcription of vps genes is activated by the signaling molecule bis-(3'-5')-cyclic di-GMP (c-di-GMP), whose metabolism is controlled by the proteins containing the GGDEF and/or EAL domains. The ferric uptake regulator (Fur) plays key roles in the transcription of many genes involved in iron metabolism and non-iron functions. However, roles for Fur in Vibrio biofilm production have not been documented. In this study, phenotypic assays demonstrated that Fur, independent of iron, decreases in vivo c-di-GMP levels and inhibits in vitro biofilm formation by Vibrio cholerae. The Fur box-like sequences were detected within the promoter-proximal DNA regions of vpsU, vpsA-K, vieSAB, and cdgD, suggesting that transcription of these genes may be under the direct control of Fur. Indeed, the results of luminescence, quantitative PCR (qPCR), electrophoretic mobility shift assay (EMSA), and DNase I footprinting assays demonstrated Fur to bind to the promoter-proximal DNA regions of vpsU, vpsA-K, and cdgD to repress their transcription. In contrast, Fur activates the transcription of vieSAB in a direct manner. The cdgD and vieSAB encode proteins with GGDEF and EAL domains, respectively. Thus, data presented here highlight a new physiological role for Fur wherein it acts as a repressor of V. cholerae biofilm formation mediated by decreasing the production of exopolysaccharide and the intracellular levels of c-di-GMP.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lizhi Ma
- Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qin Qin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue Qiu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jingyun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Lou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiannan Shi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
12
|
Gao H, Zhang J, Lou J, Li J, Qin Q, Shi Q, Zhang Y, Kan B. Direct Binding and Regulation by Fur and HapR of the Intermediate Regulator and Virulence Factor Genes Within the ToxR Virulence Regulon in Vibrio cholerae. Front Microbiol 2020; 11:709. [PMID: 32362889 PMCID: PMC7181404 DOI: 10.3389/fmicb.2020.00709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/26/2020] [Indexed: 01/30/2023] Open
Abstract
Cholera toxin (CT) and toxin coregulated pilus (TCP, TcpA is the major subunit) are two major virulence factors of Vibrio cholerae, both of which play critical roles in developing severe diarrhea in human. Expression of CT and TCP is under the tight control of the regulatory cascade known as the ToxR virulence regulon, which is composed of three regulators ToxR, TcpP, and ToxT. Besides, their expression is also regulated by the quorum sensing (QS) master regulator HapR and the regulatory protein Fur. Though transcription of tcpP, toxT, and/or tcpA are reported to be regulated by HapR and Fur, to date there are no studies to verify their direct regulations. In the present study, we showed that HapR directly repress the transcription of tcpP and tcpA by binding to their promoter regions, and possibly repress toxT transcription in an indirect manner. Fur directly activated the transcription of tcpP, toxT, and tcpA by binding to their promoters. Taking account of the sequential expression of hapR, fur, tcpP, toxT, and tcpA in the different growth phases of V. cholerae, we deduce that at the early mid-logarithmic growth phase, Fur binds to the promoters of tcpP, toxT, and tcpA to activate their transcription; while at the later mid-logarithmic growth phase, HapR can bind to the promoters of tcpP and tcpA to repress their transcription. Our study reveals the new recognition in the virulence regulatory pathways in V. cholerae and suggests the complicated and subtle regulation network with the growth density dependence.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingyun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Lou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qin Qin
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiannan Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
13
|
A GntR Family Transcription Factor (VPA1701) for Swarming Motility and Colonization of Vibrio parahaemolyticus. Pathogens 2019; 8:pathogens8040235. [PMID: 31766229 PMCID: PMC6963403 DOI: 10.3390/pathogens8040235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
Motility is important for virulence, biofilm formation, and the environmental adaptation of many bacteria. Vibrio parahaemolyticus (V. parahaemolyticus) contains two flagellar systems that are responsible for motility, and are tightly regulated by transcription regulators and sigma factors. In this study, we identified a novel transcription factor, VPA1701, which regulates the swarming motility of V. parahaemolyticus. The VPA1701 deletion mutant (ΔVPA1701) eliminated the swarming motility on the surface of BHI agar plates and reduced colonization in infant rabbits. RNA-seq assays, confirmed by qRT-PCR, indicated that VPA1701 regulated the expression of lateral flagellar cluster genes. Further analyses revealed that VPA1701 directly binds to the promoter region of the flgBCDEFGHIJKL cluster to regulate the expression of lateral flagellar genes. CalR was originally identified as a repressor for the swarming motility of V. parahaemolyticus, and it was inhibited by calcium. In this study, we found that VPA1701 could inhibit the expression of the calR gene to increase the swarming motility of V. parahaemolyticus. Calcium downregulated the expression of calR, indicating that calcium could increase swarming motility of ΔVPA1701 by inhibiting calR. Thus, this study illustrates how the transcription factor VPA1701 regulates the expression of lateral flagellar genes and calR to control the swarming motility of V. parahaemolyticus.
Collapse
|
14
|
Li L, Meng H, Gu D, Li Y, Jia M. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis. Microbiol Res 2019; 222:43-51. [PMID: 30928029 DOI: 10.1016/j.micres.2019.03.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is mainly distributed in the seafood such as fish, shrimps and shellfish throughout the world. V. parahaemolyticus can cause diseases in marine aquaculture, leading to huge economic losses to the aquaculture industry. More importantly, it is also the leading cause of seafood-borne diarrheal disease in humans worldwide. With the development of animal model, next-generation sequencing as well as biochemical and cell biological technologies, deeper understanding of the virulence factors and pathogenic mechanisms of V. parahaemolyticus has been gained. As a globally transmitted pathogen, the pathogenicity of V. parahaemolyticus is closely related to a variety of virulence factors. This article comprehensively reviewed the molecular mechanisms of eight types of virulence factors: hemolysin, type III secretion system, type VI secretion system, adhesion factor, iron uptake system, lipopolysaccharide, protease and outer membrane proteins. This review comprehensively summarized our current understanding of the virulence factors in V. parahaemolyticus, which are potentially new targets for the development of therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Lingzhi Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Hongmei Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Yang Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Mengdie Jia
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
15
|
Lv T, Song T, Liu H, Peng R, Jiang X, Zhang W, Han Q. Isolation and characterization of a virulence related Vibrio alginolyticus strain Wz11 pathogenic to cuttlefish, Sepia pharaonis. Microb Pathog 2018; 126:165-171. [PMID: 30391535 DOI: 10.1016/j.micpath.2018.10.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 10/28/2022]
Abstract
Vibrio alginolyticus is a ubiquitous marine opportunistic pathogen that can infect various hosts in marine environment. In the present study, V. alginolyticus strain Wz11 was isolated from diseased cuttlefish, Sepia pharaonis, with 20% of promoted death and high survival capacity in skin mucus and tissue liquid. Its growth, siderophore production, and expressions of haemolysin and swarming related genes were characterized under iron limited conditions. The minimal inhibitory concentration (MIC) of 2,2'-dipyridyl (DP) to V. alginolyticus strain Wz11 was 640 μM. While growth of V. alginolyticus strain Wz11 was inhibited by DP, production of iron-seizing substances, haemolytic activity and swarming motility were increased. Moreover, expressions of haemolysin related genes tlh, tdh and vah and flagellar related genes flgH, fliC, fliD and fliS were also characterized using real-time reverse transcriptase PCR. Expression of tdh was up-regulated to 7.7-fold, while expressions of tlh and vah were down-regulated to 0.016-fold and 0.03-fold, respectively. The expression of fliC, flgH, fliD and fliS was up-regulated to 4.9-, 3.8-, 8.6- and 4.5-fold, respectively. Concluded from our results suggested that V. alginolyticus strain Wz11 was considered as a potential pathogen of S. pharaonis, and iron level played an important role in the production of iron-seizing substances, and activities of haemolysin and bacterial swarming as well as their related gene expressions.
Collapse
Affiliation(s)
- Tengteng Lv
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Tongxiang Song
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Huijie Liu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Ruibing Peng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xiamin Jiang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Qingxi Han
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
16
|
Cai Q, Zhang Y. Structure, function and regulation of the thermostable direct hemolysin (TDH) in pandemic Vibrio parahaemolyticus. Microb Pathog 2018; 123:242-245. [PMID: 30031890 DOI: 10.1016/j.micpath.2018.07.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 01/25/2023]
Abstract
Vibrio parahaemolyticus is a leading cause of seafood-associated bacterial gastroenteritis. The pathogen produces the thermostable direct hemolysin (TDH), which is the sole cause of the Kanagawa phenomenon (KP), a special β-type haemolysis in the Wagatsuma agar. TDH also exerts several other biological activities, the major includes lethal toxicity, cytotoxicity, and enterotoxicity. The structure and roles of TDH and the transcriptional regulation of tdh genes, are summarized in this review, which will give a better understanding of the pathogenesis of V. parahaemolyticus.
Collapse
Affiliation(s)
- Qin Cai
- The Fourth People 's Hospital of Zhenjiang, Zhenjiang, 212001, Jiangsu, PR China; School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China.
| |
Collapse
|
17
|
Gao H, Xu J, Lu X, Li J, Lou J, Zhao H, Diao B, Shi Q, Zhang Y, Kan B. Expression of Hemolysin Is Regulated Under the Collective Actions of HapR, Fur, and HlyU in Vibrio cholerae El Tor Serogroup O1. Front Microbiol 2018; 9:1310. [PMID: 29971055 PMCID: PMC6018088 DOI: 10.3389/fmicb.2018.01310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
The biotype El Tor of serogroup O1 and most of the non-O1/non-O139 strains of Vibrio cholerae can produce an extracellular pore-forming toxin known as cholera hemolysin (HlyA). Expression of HlyA has been previously reported to be regulated by the quorum sensing (QS) and the regulatory proteins HlyU and Fur, but lacks the direct evidence for their binding to the promoter of hlyA. In the present work, we showed that the QS regulator HapR, along with Fur and HlyU, regulates the transcription of hlyA in V. cholerae El Tor biotype. At the late mid-logarithmic growth phase, HapR binds to the three promoters of fur, hlyU, and hlyA to repress their transcription. At the early mid-logarithmic growth phase, Fur binds to the promoters of hlyU and hlyA to repress their transcription; meanwhile, HlyU binds to the promoter of hlyA to activate its transcription, but it manifests direct inhibition of its own gene. The highest transcriptional level of hlyA occurs at an OD600 value of around 0.6–0.7, which may be due to the subtle regulation of HapR, Fur, and HlyU. The complex regulation of HapR, Fur, and HlyU on hlyA would be beneficial to the invasion and pathogenesis of V. cholerae during the different infection stages.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jialiang Xu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Lou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiannan Shi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
18
|
Osei-Adjei G, Gao H, Zhang Y, Zhang L, Yang W, Yang H, Yin Z, Huang X, Zhang Y, Zhou D. Regulatory actions of ToxR and CalR on their own genes and type III secretion system 1 in Vibrio parahaemolyticus. Oncotarget 2017; 8:65809-65822. [PMID: 29029474 PMCID: PMC5630374 DOI: 10.18632/oncotarget.19498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-associated gastroenteritis. Type III secretion system 1 (T3SS1) is one of the virulence determinants of this bacteria. T3SS1 expression is regulated by ToxR and CalR. ToxR represses the transcription of T3SS1 genes via activation of CalR, which acts as a transcriptional repressor of T3SS1 genes. However, the transcriptional regulation mechanisms have not been elucidated. As showing in the present work, ToxR binds to the promoter DNA region of calR to activate its transcription. CalR occupies the promoter-proximal regions of each detected target operons in T3SS1 loci to repress their transcription, and thereby inhibiting T3SS1-dependent cytotoxicity. Moreover, a feedback CalR inhibits toxR and its own gene in a direct manner. Collectively, this work reported an interesting gene regulatory network involving the reciprocal regulation of ToxR and CalR, and their regulation on T3SS1 genes transcription in V. parahaemolyticus.
Collapse
Affiliation(s)
| | - He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Lingyu Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xinxiang Huang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|