1
|
Heryanto C, Mazo-Vargas A, Martin A. Efficient hyperactive piggyBac transgenesis in Plodia pantry moths. Front Genome Ed 2022; 4:1074888. [PMID: 36620082 PMCID: PMC9816379 DOI: 10.3389/fgeed.2022.1074888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
While piggyBac transposon-based transgenesis is widely used in various emerging model organisms, its relatively low transposition rate in butterflies and moths has hindered its use for routine genetic transformation in Lepidoptera. Here, we tested the suitability of a codon-optimized hyperactive piggyBac transposase (hyPBase) in mRNA form to deliver and integrate transgenic cassettes into the genome of the pantry moth Plodia interpunctella. Co-injection of hyPBase mRNA with donor plasmids successfully integrated 1.5-4.4 kb expression cassettes driving the fluorescent markers EGFP, DsRed, or EYFP in eyes and glia with the 3xP3 promoter. Somatic integration and expression of the transgene in the G0 injected generation was detectable from 72-h embryos and onward in larvae, pupae and adults carrying a recessive white-eyed mutation. Overall, 2.5% of injected eggs survived into transgene-bearing adults with mosaic fluorescence. Subsequent outcrossing of fluorescent G0 founders transmitted single-insertion copies of 3xP3::EGFP and 3xP3::EYFP and generated stable isogenic lines. Random in-crossing of a small cohort of G0 founders expressing 3xP3::DsRed yielded a stable transgenic line segregating for more than one transgene insertion site. We discuss how hyPBase can be used to generate stable transgenic resources in Plodia and other moths.
Collapse
|
2
|
Li D, Huang M, Dong S, Jin Y, Zhou R, Wu C. Comprehensive Transcriptomic Analysis of Heterotrophic Nitrifying Bacterium Klebsiella sp. TN-10 in Response to Nitrogen Stress. Microorganisms 2022; 10:microorganisms10020353. [PMID: 35208807 PMCID: PMC8876665 DOI: 10.3390/microorganisms10020353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Klebsiella sp. TN-10, a heterotrophic nitrifying bacterium, showed excellent nitrification ability under nitrogen stress. The strain was cultured under different nitrogen stress levels, including ammonium sulfate 0.5, 2.5, and 5 g/L, and samples were titled group-L, group-M, and group-H, respectively. In these three groups, the removed total nitrogen was 70.28, 118.33, and 157.18 mg/L after 12 h of cultivation, respectively. An RNA-Seq transcriptome analysis was used to describe key regulatory networks in response to nitrogen stress. The GO functional enrichment and KEGG enrichment analyses showed that differentially expressed genes (DEGs) participated in more pathways under higher nitrogen stress (group-H). Carbohydrate metabolism and amino acid metabolism were the most abundant subcategories, which meant these pathways were significantly influenced by nitrogen stress and could be related to nitrogen removal. In the nitrogen cycle, up-regulated gene2311 (narK, encodes major facilitator superfamily transporter) may accelerate the entry of nitrogen into the cells and subsequently contribute to the nitrogen utilization. In addition, the up-regulation of gene2312 (narG), gene2313 (narH), and gene2315 (narH) may accelerate denitrification pathways and facilitate nitrogen removal. The results presented in this study may play a pivotal role in understanding the regulation networks of the nitrifying bacterium TN-10 under nitrogen stress.
Collapse
Affiliation(s)
- Dan Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (D.L.); (Y.J.); (R.Z.)
| | - Mingquan Huang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (M.H.); (C.W.)
| | - Shirong Dong
- Sichuan Fansaoguang Food Group Co., Ltd, Chengdu 611732, China;
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (D.L.); (Y.J.); (R.Z.)
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (D.L.); (Y.J.); (R.Z.)
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (D.L.); (Y.J.); (R.Z.)
- Correspondence: (M.H.); (C.W.)
| |
Collapse
|
3
|
Heryanto C, Hanly JJ, Mazo-Vargas A, Tendolkar A, Martin A. Mapping and CRISPR homology-directed repair of a recessive white eye mutation in Plodia moths. iScience 2022; 25:103885. [PMID: 35243245 PMCID: PMC8861637 DOI: 10.1016/j.isci.2022.103885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
The pantry moth Plodia interpunctella is a worldwide pest of stored food products and a promising laboratory model system for lepidopteran functional genomics. Here we describe efficient methods for precise genome editing in this insect. A spontaneous recessive white-eyed phenotype maps to a frameshift deletion (c.737delC) in the white gene. CRISPR NHEJ mutagenesis of white replicates this phenotype with high rates of somatic biallelic knockout. G0 individuals with mutant clones on both eyes produced 100% mutant progeny, making white an ideal marker for co-conversion when targeting other genes. CRISPR HDR experiments corrected c.737delC and reverted white eyes to a pigmented state in 37% of G0 mosaic adults. These repaired alleles showed practical rates of germline transmission in backcrosses, demonstrating the potential of the technique for precise genome editing. Plodia offers a promising avenue for research in this taxon because of its lab-ready features, egg injectability, and editability. Plodia pantry moths are an emerging model organism for functional genomics in Lepidoptera Spontaneous and CRISPR-induced white mutations yield recessive-white eye phenotypes CRISPR HDR repair with ssODN donor result in practical rates of base editing We provide optimized protocols for Plodia handling and genome editing
Collapse
|
4
|
Yang H, Xu D, Zhuo Z, Hu J, Lu B. Transcriptome and gene expression analysis of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) during developmental stages. PeerJ 2020; 8:e10223. [PMID: 33194414 PMCID: PMC7643551 DOI: 10.7717/peerj.10223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/29/2020] [Indexed: 01/15/2023] Open
Abstract
Background Red palm weevil, Rhynchophorus ferrugineus Olivier, is one of the most destructive pests harming palm trees. However, genomic resources for R. ferrugineus are still lacking, limiting the ability to discover molecular and genetic means of pest control. Methods In this study, PacBio Iso-Seq and Illumina RNA-seq were used to generate transcriptome from three developmental stages of R. ferrugineus (pupa, 7th-instar larva, adult) to increase the understanding of the life cycle and molecular characteristics of the pest. Results Sequencing generated 625,983,256 clean reads, from which 63,801 full-length transcripts were assembled with N50 of 3,547 bp. Expression analyses revealed 8,583 differentially expressed genes (DEGs). Moreover, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these DEGs were mainly related to the peroxisome pathway which associated with metabolic pathways, material transportation and organ tissue formation. In summary, this work provides a valuable basis for further research on the growth and development, gene expression and gene prediction, and pest control of R. ferrugineus.
Collapse
Affiliation(s)
- Hongjun Yang
- College of Life Science, China West Normal University, Nanchong, Sichuan, China.,Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, Hainan,China
| | - Danping Xu
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
| | - Zhihang Zhuo
- College of Life Science, China West Normal University, Nanchong, Sichuan, China.,Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, Hainan,China.,Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiameng Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, Hainan,China
| | - Baoqian Lu
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture China, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
5
|
Yang XJ, Zheng HL, Liu YY, Li HW, Jiang YH, Lin LB, Deng XY, Zhang QL. Selection of Reference Genes for Quantitative Real-Time PCR in Aquatica leii (Coleoptera: Lampyridae) Under Five Different Experimental Conditions. Front Physiol 2020; 11:555233. [PMID: 33123022 PMCID: PMC7573347 DOI: 10.3389/fphys.2020.555233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/08/2020] [Indexed: 01/29/2023] Open
Abstract
Aquatic fireflies are important indicators of the quality of freshwater environments and key models for research on insect adaptation to freshwater environments. For these investigations, gene expression analyses using quantitative real-time PCR are heavily dependent on reliable reference genes. In this study, based on a transcriptome assembly and annotation for the aquatic firefly Aquatica leii at the adult and larval stages, 10 candidate reference genes (α-tubulin, β-tubulin, β-actin, EF1A, SDHA, UBQ, GST, GAPDH, RPS31, and RPL13A) were identified for analyses of expression stability. Quantitative real-time PCR analyses for each candidate reference genes in A. leii was conducted for four developmental stages, four adult tissue types, two adult sexes, and two ecological stressors [adults exposed to five temperatures and larvae exposed to four concentrations of benzo(a)pyrene]. Results were evaluated by three independent algorithms (geNorm, NormFinder, and BestKeeper) and one comparative algorithm (RefFinder). The expression stability of candidate reference genes in A. leii differed under various conditions. Reference genes with the most stable expressions levels in different tissues, temperatures, sexes, developmental stages, and concentrations of benzo(a)pyrene were α-tubulin, GST, β-actin, β-tubulin, and α-tubulin, respectively. Furthermore, the optimal normalization factors (NFs) for the quantification of the expression levels of target genes by quantitative real-time PCR analyses of A. leii were identified for each experimental group. In particular, NF = 2 for different tissues (α-tubulin + β-tubulin), different sexes (β-actin + EF1A), and larvae exposed to different concentrations of benzo(a)pyrene (α-tubulin + EF1A); NF = 3 for developmental stages (GST + GAPDH + SDHA) and adults exposed to different temperatures (β-tubulin + EFA + GST). In addition, we surveyed the expression profiles of two target genes (CYP3A and CSP8) in larvae exposed to different concentrations of benzo(a)pyrene and in different adult tissues. The results further validated the reliability of the reference genes. The optimal reference genes for various experimental conditions identified in these analyses provide a useful tool for ecological studies of aquatic fireflies.
Collapse
Affiliation(s)
- Xiao-Jie Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Hai-Long Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Ying-Yang Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| |
Collapse
|
6
|
Chen EH, Tao YX, Song W, Shen F, Yuan ML, Tang PA. Transcriptome-Wide Identification of MicroRNAs and Analysis of Their Potential Roles in Development of Indian Meal Moth (Lepidoptera:Pyralidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1535-1546. [PMID: 32108881 DOI: 10.1093/jee/toaa030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) have been reported to play indispensable roles in regulating various developmental processes via the posttranscriptional repression of target genes in insect species. In the present paper, we studied the miRNAs in Indian meal moth (Plodia interpunctella (Hübener)), one of the most economically important stored grains pests around the world. In total, 12 small RNA libraries from four developmental stages of P. interpunctella were constructed, and 178 known and 23 novel miRNAs were identified. In addition, the expression profiles of these miRNAs were assessed across different developmental stages and miRNAs that were highly expressed in eggs, larvae, pupae, and adults were identified. Specifically, 100, 61, and 52 miRNAs were differentially expressed between eggs and larvae, larvae and pupae, and pupae and adults, respectively. The KEGG and GO analysis of the predicted target genes suggested the essential roles of miRNAs in the regulation of complex development of P. interpunctella. Importantly, we also found a set of miRNAs might be involved in the larval metamorphic molting process, with their expressions increasing and then decreasing during the larva-pupa-adult stages of P. interpunctella. In conclusion, the current paper has discovered numerous miRNAs, and some key miRNAs that might be responsible for regulating development in P. interpunctella. To our knowledge, this is the first study to document miRNAs and their expression patterns in interpunctella, and those findings would lay an important molecular foundation for future functional analysis of these miRNAs in P. interpunctella.
Collapse
Affiliation(s)
- Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Ye-Xin Tao
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Wei Song
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Fei Shen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Pei-An Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Han X, Lu C, Geib SM, Zheng J, Wu S, Zhang F, Liang G. Characterization of Dendrolimus houi Lajonquiere (Lepidoptera: Lasiocampidae) Transcriptome across All Life Stages. INSECTS 2019; 10:insects10120442. [PMID: 31835398 PMCID: PMC6956129 DOI: 10.3390/insects10120442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
Abstract
Dendrolimus houi Lajonquiere is a phytophagous caterpillar infesting many economically important coniferous tree species in China, causing serious economic and ecological environment losses. Based on previous research, it has one generation per year in South China and East China in contrast to two generations per year in Yunnan province in southwestern China. The species is potentially resilient to climatic extremes in these regions with the eggs and 1st instar larvae surviving in the winter (5 °C), older instar larvae and pupae surviving high temperatures in the summer (35 °C), suggesting some temperature stress tolerance during different developmental stages. However, little is known in this species at the genetic and genomic level. In this study, we used high throughput sequencing to obtain transcriptome data from different developmental stages (eggs, 1st-3rd instar larvae, 4th-5th instar larvae, 6th-7th instar larvae, pupae, male and female adults), which were collected from Fujian province. In total, we obtained approximately 90 Gb of data, from which 33,720 unigenes were assembled and 17,797 unigenes were annotated. We furtherly analyzed the differentially expressed genes (DGEs) across all stages, the largest number between the eggs and 1st instar larvae stage and gene expression varied significantly in different developmental stages. Furthermore, 4138 SSR genes and 114,977 SNP loci were screened from transcriptome data. This paper will be a foundation for further study towards improved integrated pest management strategies for this species.
Collapse
Affiliation(s)
- Xiaohong Han
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (S.W.)
| | - Ciding Lu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (S.W.)
| | - Scott M. Geib
- Daniel K. Inouye US Pacific Basin Agricultural Research Center, USDA-ARS, 64 Nowelo, St.; Hilo, HI 96720, USA;
| | - Junxian Zheng
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (S.W.)
| | - Songqing Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (S.W.)
- Provincial Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Feiping Zhang
- Provincial Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Guanghong Liang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (S.W.)
- Provincial Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Correspondence: ; Tel.: +86-0591-8385-1475
| |
Collapse
|
8
|
Noriega DD, Arias PL, Barbosa HR, Arraes FBM, Ossa GA, Villegas B, Coelho RR, Albuquerque EVS, Togawa RC, Grynberg P, Wang H, Vélez AM, Arboleda JW, Grossi-de-Sa MF, Silva MCM, Valencia-Jiménez A. Transcriptome and gene expression analysis of three developmental stages of the coffee berry borer, Hypothenemus hampei. Sci Rep 2019; 9:12804. [PMID: 31488852 PMCID: PMC6728347 DOI: 10.1038/s41598-019-49178-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Coffee production is a global industry valued at approximately 173 billion US dollars. One of the main challenges facing coffee production is the management of the coffee berry borer (CBB), Hypothenemus hampei, which is considered the primary arthropod pest of coffee worldwide. Current control strategies are inefficient for CBB management. Although biotechnological alternatives, including RNA interference (RNAi), have been proposed in recent years to control insect pests, characterizing the genetics of the target pest is essential for the successful application of these emerging technologies. In this study, we employed RNA-seq to obtain the transcriptome of three developmental stages of the CBB (larva, female and male) to increase our understanding of the CBB life cycle in relation to molecular features. The CBB transcriptome was sequenced using Illumina Hiseq and assembled de novo. Differential gene expression analysis was performed across the developmental stages. The final assembly produced 29,434 unigenes, of which 4,664 transcripts were differentially expressed. Genes linked to crucial physiological functions, such as digestion and detoxification, were determined to be tightly regulated between the reproductive and nonreproductive stages of CBB. The data obtained in this study help to elucidate the critical roles that several genes play as regulatory elements in CBB development.
Collapse
Affiliation(s)
- Daniel D Noriega
- Department of Cellular Biology, University of Brasília, Brasília-DF, Brazil.
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil.
| | - Paula L Arias
- Departamento de Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia
| | - Helena R Barbosa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Biotechnology Center, UFRGS, Porto Alegre-RS, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Biotechnology Center, UFRGS, Porto Alegre-RS, Brazil
| | - Gustavo A Ossa
- Departamento de Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia
| | - Bernardo Villegas
- Departamento de Producción Agropecuaria, Universidad de Caldas, Manizales, Colombia
| | - Roberta R Coelho
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | | - Roberto C Togawa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | | - Haichuan Wang
- University of Nebraska-Lincoln, Nebraska, United States of America
| | - Ana M Vélez
- University of Nebraska-Lincoln, Nebraska, United States of America
| | - Jorge W Arboleda
- Centro de Investigaciones en Medio Ambiente y Desarrollo - CIMAD, Universidad de Manizales, Manizales, Caldas, Colombia
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil.
- Catholic University of Brasília - Postgraduate Program in Genomic Sciences and Biotechnology, Brasília-DF, Brazil.
| | - Maria C M Silva
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | |
Collapse
|
9
|
Zhang QL, Guo J, Deng XY, Wang F, Chen JY, Lin LB. Comparative transcriptomic analysis provides insights into the response to the benzo(a)pyrene stress in aquatic firefly (Luciola leii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:226-234. [PMID: 30677670 DOI: 10.1016/j.scitotenv.2019.01.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Many studies have reported that behavior and bioluminescence of fireflies could be affected by changes in environment conditions. However, little is known about how the deterioration of the aquatic environment affects aquatic fireflies, particularly with respect to molecular responses following exposure to water pollutants, such as benzo(a)pyrene (BaP), which is a key indicator in environmental risk assessment because of the hazards it poses. Here, whole transcriptome sequencing and gene expression analysis were performed on freshwater fireflies (Luciola leii) exposed to BaP (concentration of 0.01 mg/L). Four transcriptomic libraries were constructed for the control and treatment groups, including two biological replicates. From the mixed pools (each pool contains 60 individuals from three time points), a total of 54,282 unigenes were assembled. Furthermore, 329,337 of Single-nucleotide Polymorphisms (SNPs) and 1324 of Simple Sequence Repeats (SSRs) were predicted using bioinformatics, which is useful for the future development of molecular markers. Subsequently, 2414 differently expressed genes (DEGs) were identified in response to BaP stress in comparison to the control, including 1350 up-regulated and 1064 down-regulated DEGs. Functional enrichment showed that these DEGs are primarily related to innate immunity; xenobiotic biodegradation and response, biomacromolecule metabolism, biosynthesis, and absorption. Eight key BaP-responsive DEGs were screened to survey the dynamic changes of expression in response to BaP stress at different time points, and to validate the RNA sequencing data using quantitative real-time PCR. The results indicate that the expression of genes encoding UGT, CYP3A, CYP9, CYP6AS5 and ADHP were induced, while those encoding UGT2B10L, PTGDS, and ALDH were reduced, to participate in response to the BaP exposure and potentially help counteract the adverse effects of BaP. This investigation provides insight into the toxicological response of fireflies to the occurrence of water deterioration.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun-Yuan Chen
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences (CAS), Nanjing 210008, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
10
|
Chu XH, Yang TT, Liu Y, Hong L, Jiao T, Meng X, Zhang DZ, Wang JL, Tang BP, Zhou CL, Liu QN, Zhang WW, He WF. Transcriptome analysis of differential expressed genes in hepatopancreas of Procambarus clarkii challenged with peptidoglycan. FISH & SHELLFISH IMMUNOLOGY 2019; 86:311-318. [PMID: 30465916 DOI: 10.1016/j.fsi.2018.11.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Procambarus clarkii is one of the most economically important species in Chinese aquaculture, and is widely cultured. Infection of P. clarkii populations with bacterial pathogens causes high mortality and great economic loss, therefore disease control is of significant economic importance. P. clarkii is a model system for studying immune responses in invertebrates, and its immune system consists solely of the innate response. In the present study, we examined gene expression related to immune function in P. clarkii in response to pathogen challenge. The transcriptome of hepatopancreas tissue from P. clarkii challenged with peptidoclycan (PGN) was analyzed and compared to control specimens. After assembly and annotation, 48,661 unigenes were identified with an average length of 671.54 bp. A total of 2533 differentially expressed genes (DEGs) were obtained, including 765 significantly up-regulated unigenes and 1757 significantly down-regulated unigenes. Gene ontology (GO) analysis demonstrated 19 biological process subcategories, 16 cellular component subcategories, and 17 molecular function subcategories that were enriched among these DEGs. Enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed enrichment among immune responses pathways. Taken together, this study not only enriches the existing P. clarkii transcriptome database, but also elucidates immune responses of crayfish that are activated in response to PGN challenge.
Collapse
Affiliation(s)
- Xiao-Hua Chu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Ting-Ting Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Liang Hong
- Department of Infectious Disease, Ruian People's Hospital, Wenzhou, Zhejiang, 325200, PR China
| | - Ting Jiao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Xun Meng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Jia-Lian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China.
| | - Wei-Wei Zhang
- Department of Infectious Disease, Ruian People's Hospital, Wenzhou, Zhejiang, 325200, PR China.
| | - Wen-Fei He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
11
|
Lin Y, Wang Y, Li B, Tan H, Li D, Li L, Liu X, Han J, Meng X. Comparative transcriptome analysis of genes involved in anthocyanin synthesis in blueberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:561-572. [PMID: 29727860 DOI: 10.1016/j.plaphy.2018.04.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/10/2018] [Accepted: 04/25/2018] [Indexed: 05/09/2023]
Abstract
Blueberry (Vaccinium, family Ericaceae) is well known for its strong antioxidant properties and abundant active ingredients including anthocyanins, flavonols, and proanthocyanidins. In this study, variations in anthocyanin and phenolic compounds content in Bluecrop and Northblue blueberry cultivar fruits were studied, and comparative transcriptome analysis was performed to analyze differences in the molecular mechanisms of anthocyanin biosynthesis. A total of 13 799 unique genes were identified by differential expression analysis, and further subjected to GO classification and pathway enrichment. Nine differentially expressed genes (DEGs), including CHI, DFR, F3'H, FLS, CHS, OMT, UGT, ANS and F3H, were selected to validate the differential expression data using quantitative real-time PCR. The obtained qRT-PCR expression results were consistent with the RNA-Seq results. The expression levels of 9 candidate genes involved in flavonoid biosynthesis and metabolism were concurrent with the anthocyanin content. The developmental stage appeared to affect the expression of genes related to flavonoid biosynthesis to a greater extent than the tissue or cultivar type. This study provides an abundant data resource that will further our understanding of the molecular mechanisms of anthocyanin biosynthesis in blueberries.
Collapse
Affiliation(s)
- Yang Lin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hui Tan
- Faculty of Health Sciences, Hokkaido Universty, Sapporo, Japan
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Li Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xuan Liu
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | - Jichen Han
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China.
| |
Collapse
|
12
|
Triant DA, Cinel SD, Kawahara AY. Lepidoptera genomes: current knowledge, gaps and future directions. CURRENT OPINION IN INSECT SCIENCE 2018; 25:99-105. [PMID: 29602369 DOI: 10.1016/j.cois.2017.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 06/08/2023]
Abstract
Butterflies and moths (Lepidoptera) are one of the most ecologically diverse and speciose insect orders. With recent advances in genomics, new Lepidoptera genomes are regularly being sequenced, and many of them are playing principal roles in genomics studies, particularly in the fields of phylo-genomics and functional genomics. Thus far, assembled genomes are only available for <10 of the 43 Lepidoptera superfamilies. Nearly all are model species, found in the speciose clade Ditrysia. Community support for Lepidoptera genomics is growing with successful management and dissemination of data and analytical tools in centralized databases. With genomic studies quickly becoming integrated with ecological and evolutionary research, the Lepidoptera community will unquestionably benefit from new high-quality reference genomes that are more evenly distributed throughout the order.
Collapse
Affiliation(s)
- Deborah A Triant
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.
| | - Scott D Cinel
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Akito Y Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
Jia X, Zhang X, Liu H, Wang R, Zhang T. Identification of chemosensory genes from the antennal transcriptome of Indian meal moth Plodia interpunctella. PLoS One 2018; 13:e0189889. [PMID: 29304134 PMCID: PMC5755773 DOI: 10.1371/journal.pone.0189889] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/04/2017] [Indexed: 11/30/2022] Open
Abstract
Olfaction plays an indispensable role in mediating insect behavior, such as locating host plants, mating partners, and avoidance of toxins and predators. Olfactory-related proteins are required for olfactory perception of insects. However, very few olfactory-related genes have been reported in Plodia interpunctella up to now. In the present study, we sequenced the antennae transcriptome of P. interpunctella using the next-generation sequencing technology, and identified 117 candidate olfactory-related genes, including 29 odorant-binding proteins (OBPs), 15 chemosensory proteins (CSPs), three sensory neuron membrane proteins (SNMPs), 47 odorant receptors (ORs), 14 ionotropic receptors (IRs) and nine gustatory receptors (GRs). Further analysis of qRT-PCR revealed that nine OBPs, three CSPs, two SNMPs, nine ORs and two GRs were specifically expressed in the male antennae, whereas eight OBPs, six CSPs, one SNMP, 16 ORs, two GRs and seven IRs significantly expressed in the female antennae. Taken together, our results provided useful information for further functional studies on insect genes related to recognition of pheromone and odorant, which might be meaningful targets for pest management.
Collapse
Affiliation(s)
- Xiaojian Jia
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| | - Xiaofang Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| | - Hongmin Liu
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, P. R. China
| | - Rongyan Wang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| | - Tao Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| |
Collapse
|