1
|
Liu M, Ding H, Jin C, Wang M, Li P, Bao Z, Wang B, Hu J. Theoretical Analysis and Expression Profiling of 17β-Hydroxysteroid Dehydrogenase Genes in Gonadal Development and Steroidogenesis of Leopard Coral Grouper ( Plectropomus leopardus). Int J Mol Sci 2024; 25:2180. [PMID: 38396857 PMCID: PMC10889806 DOI: 10.3390/ijms25042180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The differentiation and developmental trajectory of fish gonads, significantly important for fish breeding, culture, and production, has long been a focal point in the fields of fish genetics and developmental biology. However, the mechanism of gonadal differentiation in leopard coral grouper (Plectropomus leopardus) remains unclear. This study investigates the 17β-Hydroxysteroid Dehydrogenase (Hsd17b) gene family in P. leopardus, with a focus on gene characterization, expression profiling, and functional analysis. The results reveal that the P. leopardus's Hsd17b gene family comprises 11 members, all belonging to the SDR superfamily. The amino acid similarity is only 12.96%, but conserved motifs, such as TGxxxGxG and S-Y-K, are present in these genes. Hsd17b12a and Hsd17b12b are unique homologs in fish, and chromosomal localization has confirmed that they are not derived from different transcripts of the same gene, but rather are two independent genes. The Hsd17b family genes, predominantly expressed in the liver, heart, gills, kidneys, and gonads, are involved in synthesizing or metabolizing sex steroid hormones and neurotransmitters, with their expression patterns during gonadal development categorized into three distinct categories. Notably, Hsd17b4 and Hsd17b12a were highly expressed in the testis and ovary, respectively, suggesting their involvement in the development of reproductive cells in these organs. Fluorescence in situ hybridization (FISH) further indicated specific expression sites for these genes, with Hsd17b4 primarily expressed in germ stem cells and Hsd17b12a in oocytes. This comprehensive study provides foundational insights into the role of the Hsd17b gene family in gonadal development and steroidogenesis in P. leopardus, contributing to the broader understanding of fish reproductive biology and aquaculture breeding.
Collapse
Affiliation(s)
- Mingjian Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
| | - Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
| | - Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
| | - Peiyu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
- Hainan Seed Industry Laboratory, Sanya 572025, China
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
- Hainan Seed Industry Laboratory, Sanya 572025, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
- Hainan Seed Industry Laboratory, Sanya 572025, China
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
| |
Collapse
|
2
|
Function of Foxl2 and Dmrt1 proteins during gonadal differentiation in the olive flounder Paralichthys olivaceus. Int J Biol Macromol 2022; 215:141-154. [PMID: 35716793 DOI: 10.1016/j.ijbiomac.2022.06.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/03/2022] [Accepted: 06/12/2022] [Indexed: 01/14/2023]
Abstract
Study on fish sex differentiation is important both from academic and practical aspects. Foxl2 and Dmrt1 are important transcription factors that should be involved in fish gonadal differentiation, but there is still no direct evidence to clarify their protein functions. Olive flounder Paralichthys olivaceus, an important mariculture fish in China, Japan, and Korea, shows sex-dimorphic growth. In this study, the Foxl2 and Dmrt1 proteins were detected in granulosa cells of the ovary and Sertoli cells of the testis, respectively, showing significant sex-dimorphic expression patterns. Then, bioactive high-purity Foxl2 and Dmrt1 recombinant proteins were obtained in vitro. Furthermore, effects of the recombinant Foxl2 and Dmrt1 during gonadal differentiation period were evaluated by intraperitoneal injection in juvenile fish. Compared with the control group, the male rate in the Dmrt1 group increased from 0 % to 82 %, showing for the first time in fish that the recombinant Dmrt1 could alter the sex phenotype. In addition, transcription levels of cyp19a and its transcription factors also changed after the recombinant Foxl2 and Dmrt1 injection. These findings reveal that Foxl2 and Dmrt1 are vital regulators for fish gonadal differentiation by regulating cyp19a expression, and also provide a new approach for sex control in fish aquaculture.
Collapse
|
3
|
The Comparative Survey of Coordinated Regulation of Steroidogenic Pathway in Japanese Flounder (Paralichthys olivaceus) and Chinese Tongue Sole (Cynoglossus semilaevis). Int J Mol Sci 2022; 23:ijms23105520. [PMID: 35628330 PMCID: PMC9141715 DOI: 10.3390/ijms23105520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Steroidogenesis controls the conversion of cholesterol into steroid hormones through the complex cascade reaction of various enzymes, which play essential roles in sexual differentiation and gonadal development in vertebrates, including teleosts. Japanese flounder (Paralichthys olivaceus) and Chinese tongue sole (Cynoglossus semilaevis) are important marine cultured fishes in China and have remarkable sexual dimorphism with bigger females and sex reversal scenarios from female to neo-male. Several steroidogenic genes have been analyzed individually in the two species, but there is a lack of information on the coordinated interaction of steroidogenic gene regulation. Therefore, in this study, through genomic and transcriptomic analysis, 39 and 42 steroidogenic genes were systematically characterized in P. olivaceus and C. semilaevis genomes, respectively. Phylogenetic and synteny analysis suggested a teleost specific genome duplication origin for cyp19a1a/cyp19a1b, hsd17b12a/hsd17b12b, ara/arb and esr2a/esr2b but not for star/star2 and cyp17a1/cyp17a2. Comparative transcriptome analysis revealed conserved expression patterns for steroidogenic genes in P. olivaceus and C. smilaevis gonads; star/star2, cyp11a/cyp11c, cyp17a1/cyp17a2, cyp21a, hsd3b1, hsd11b and hsd20b were strongly expressed in testis, while cyp19a1a and hsd17b genes were highly expressed in ovaries. Only a few genes were differentially expressed between male and neo-male testis of both P. olivaceus and C. semilaevis, and even fewer genes were differentially regulated in the brains of both species. Network analysis indicated that cyp11c, cyp17a1 and hsd3b1 actively interacted with other steroidogenic genes in P. olivaceus and C. semilaevis, and may play a more sophisticated role in the steroid hormone biosynthesis cascade. The coordinated interaction of steroidogenic genes provided comprehensive insights into steroidogenic pathway regulation with a global biological impact, as well as sexual development in teleost species.
Collapse
|
4
|
Mateus AP, Mourad M, Power DM. Skin damage caused by scale loss modifies the intestine of chronically stressed gilthead sea bream (Sparus aurata, L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103989. [PMID: 33385418 DOI: 10.1016/j.dci.2020.103989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
The present study was designed to test if the damage caused by scale loss provokes a change in other innate immune barriers such as the intestine and how chronic stress affects this response. Sea bream (Sparus aurata) were kept in tanks at low density (16 kg m-3, LD) or exposed to a chronic high density (45 kg m-3, HD) stress for 4 weeks. Scales were then removed (approximately 50%) from the left flank in the LD and HD fish. Intestine samples (n = 8/group) were examined before and at 12 h, 3 days and 7 days after scale removal. Changes in the morphology of the intestine revealed that chronic stress and scale loss was associated with intestinal inflammation. Specifically, enterocyte height and the width of the lamina propria, submucosa and muscle layer were significantly increased (p < 0.05) 3 days after skin damage in fish under chronic stress (HD) compared to other treatments (LDWgut3d or HDgut0h). This was associated with a significant up-regulation (p < 0.05) in the intestine of gene transcripts for cell proliferation (pcna) and anti-inflammatory cytokine tgfβ1 and down-regulation of gene transcripts for the pro-inflammatory cytokines tnf-α and il1β (p < 0.05) in HD and LD fish 3 days after scale removal compared to the undamaged control (LDgut0h). Furthermore, a significant up-regulation of kit, a marker of mast cells, in the intestine of HDWgut3d and LDWgut3d fish suggests they may mediate the crosstalk between immune barriers. Skin damage induced an increase in cortisol levels in the anterior intestine in HDWgut12 h fish and significant (p < 0.05) down-regulation of mr expression, irrespective of stress. These results suggest glucocorticoid levels and signalling in the intestine of fish are modified by superficial cutaneous wounds and it likely modulates intestine inflammation.
Collapse
Affiliation(s)
- Ana Patrícia Mateus
- Centro de Ciências Do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; Escola Superior de Saúde, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Mona Mourad
- Laboratory of Fish Reproduction and Spawning, Aquaculture Division, National Institute of Oceanography & Fisheries, Kayet-bey, Al-Anfoushy, 21556, Alexandria, Egypt.
| | - Deborah M Power
- Centro de Ciências Do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
5
|
Zou C, Wang L, Zou Y, Wu Z, Wang W, Liang S, Wang L, You F. Characteristics and sex dimorphism of 17β-hydroxysteroid dehydrogenase family genes in the olive flounder Paralichthys olivaceus. J Steroid Biochem Mol Biol 2020; 199:105597. [PMID: 31958634 DOI: 10.1016/j.jsbmb.2020.105597] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022]
Abstract
Sex steroid hormones play important roles in fish sex differentiation, gonadal development and secondary sexual characteristics. Olive flounder Paralichthys olivaceus is a valuable commercial marine fish species and has marked sexual dimorphism. However, the mechanisms of action of sex hormones in flounder sex are still unclear. In this study, a total of ten Hsd17b family genes, including Hsd17b3, -4, -7, -8, -9, -10, -12a, -12b, -14 and -15, were identified in the flounder, which encoded critical enzymes acting on sex steroid synthesis and metabolism. Hsd17b genes were distributed on eight chromosomes. Hsd17b12a and -12b were located on chromosomes 19 and 7, respectively. It was speculated that these two genes were just highly similar rather than different transcripts derived from the same gene. According to the results of domain and motif analyses, they all belonged to the SDR superfamily and contained conserved Hsd17b motifs TGxxxGxG, PGxxxT, NNAG and YxxxK. Analysis of amino acid sequences predicted that Hsd17b1, -4, -7, -12a and -14 were hydrophilic proteins. The stability of Hsd17b1, -3 and -12b proteins was predicted to be low. The various Hsd17b family genes differed in tissue expression pattern, and Hsd17b10, -12a and -12b were highly expressed in the flounder ovary. Moreover, throughout gonadal development, Hsd17b3 was highly expressed in the testis, and Hsd17b1, -12a and -12b were highly expressed in the ovary, suggesting that they might play an important role in testosterone synthesis in the testis or estrogen synthesis in the ovary. Activities of Hsd17b3 at stages I-V were all significantly higher in the testis than in the ovary (P < 0.05, P < 0.01). Transfection analysis in HEK293T cells showed that Hsd17b1 and -3 were located in both the cytoplasm and nucleus. Additionally, after challenging fish with tamoxifen, Hsd17b3 expression level in the testis decreased significantly (P < 0.01), and in the ovary no significant change was observed. Moreover, the expression of Hsd17b1 in the ovary was significantly upregulated after injection with flutamide (P < 0.05). These findings introduce the characteristics of the flounder Hsd17b in subfamily, which contribute to our understanding of the regulation of sex steroid hormone synthesis in fish gonadal development.
Collapse
Affiliation(s)
- Congcong Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China
| | - Wenxiang Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shaoshuai Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China
| | - Ling Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China.
| |
Collapse
|
6
|
Zou Y, Peng L, Weng S, Liang D, Fan Z, Wu Z, Tan X, Jiao S, You F. Characterization and expression of androgen receptors in olive flounder. Gene 2019; 683:184-194. [PMID: 30315925 DOI: 10.1016/j.gene.2018.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/03/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
Androgens are critical hormones that regulate sex differentiation, sexual maturation, and spermatogenesis in vertebrates, which is mainly mediated by androgen receptors (ARs). Reports on transcript variants of ar (AR encoding gene) in human are almost always associated with cancers and androgen insensitivity syndrome. However, the knowledge of ar variants in teleosts is scarce. In this study, arβ and two transcript variants of arα (arα1 and arα2) in olive flounder (Paralichthys olivaceus) were cloned and analyzed. Their expression patterns were investigated in 16 adult female and male tissues by RT-PCR, respectively. arα1 was expressed in the majority of tissues excluding male liver, medulla oblongata and female cerebellum, with higher levels in male gonad, kidney, head kidney, intestine, stomach, spleen, heart and gill than in female. arα2 had similar expression patterns as arα1, with lower levels in general. arβ was also widely expressed in various tissues excluding male spleen, female spleen and gill, with higher levels in male gonad, kidney, head kidney, intestine and lower levels in hypothalamus than in female. Compared with arβ, much lower expression levels of arα1 and arα2 were detected in different brain areas. The real-time quantitative PCR (qPCR) results showed that the total arα expression level was relatively higher during olive flounder gonadal differentiation and before the onset of testis differentiation, whereas arβ was expressed significantly higher during male gonadal differentiation period than female gonadal differentiation period. The in vitro transient transfection assays showed that ARα1, ARα2 and ARβ could all suppress the activity of cyp19a (p450arom aromatase gene) promoter, and the inhibitory effect of ARα1 was dose dependent. Our results imply that arα1, arα2 and arβ are sex-related genes and they might play important roles in gonadal differentiation in flounder.
Collapse
Affiliation(s)
- Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Limin Peng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Shenda Weng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dongdong Liang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhaofei Fan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Shuang Jiao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, P. R. China.
| |
Collapse
|
7
|
Peek CE, Cohen RE. Seasonal regulation of steroidogenic enzyme expression within the green anole lizard (Anolis carolinensis) brain and gonad. Gen Comp Endocrinol 2018; 268:88-95. [PMID: 30077794 DOI: 10.1016/j.ygcen.2018.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/12/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
Steroid hormones, such as testosterone and estradiol, are necessary for reproductive behavior. Seasonally breeding animals have increased sex steroid hormone levels during the breeding compared to non-breeding season, with increased reproductive behaviors and altered brain morphology in breeding individuals. Similar to other seasonally breeding animals, green anole lizards (Anolis carolinensis) have high sex steroid hormone levels and increased reproductive behaviors in the breeding season. Relatively less is known regarding the regulation of steroidogenesis in reptiles and this experiment examined whether enzymes involved in sex steroid hormone synthesis vary seasonally within the brain and gonads in wild-caught anole lizards. Specifically, we examined mRNA expression of steroidogenic acute regulatory protein (StAR), P450 17α-hydroxylase/C17-20lyase (Cyp17α1), 17 beta-hydroxysteroid dehydrogenase type 3 (17βHSD 3), and aromatase (Cyp19α1). We found that the mRNA for each of these genes was expressed in the lizard brain. Interestingly, Cyp19α1 mRNA expression in the brain was increased during the non-breeding season, potentially revealing a role for aromatase expression in the non-breeding brain. In the anole gonads, StAR mRNA expression levels were increased in both males and females during the breeding season, while the mRNA expression levels of CYP17α1 and 17βHSD 3 are increased when StAR mRNA expression was decreased, suggesting that the enzymes in the steroidogenic pathway are potentially regulated independently of StAR. This work reveals the seasonal regulation of steroidogenesis in the reptilian brain and gonad, although more work is necessary to determine the regulatory mechanisms that control these expression patterns.
Collapse
Affiliation(s)
- Christine E Peek
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA.
| |
Collapse
|
8
|
Liang D, Fan Z, Zou Y, Tan X, Wu Z, Jiao S, Li J, Zhang P, You F. Characteristics of Cyp11a during Gonad Differentiation of the Olive Flounder Paralichthys olivaceus. Int J Mol Sci 2018; 19:ijms19092641. [PMID: 30200601 PMCID: PMC6164156 DOI: 10.3390/ijms19092641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 11/23/2022] Open
Abstract
The P450 side-chain cleavage enzyme, P450scc (Cyp11a) catalyzes the first enzymatic step for the synthesis of all steroid hormones in fish. To study its roles in gonads of the olive flounder Paralichthys olivaceus, an important maricultured fish species, we isolated the cyp11a genomic DNA sequence of 1396 bp, which consists of 5 exons and 4 introns. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) results indicated that the flounder cyp11a was exclusively expressed in gonad and head kidney tissues. Its expression level in the testis was higher than that in the ovary. According to the in situ hybridization patterns, cyp11a was mainly expressed in the Leydig cells of the testis, and the thecal cells of the ovary. Immunofluorescence analysis showed that Cyp11a was located in the cytoplasm of the cultured flounder testis cells. Further quantitative real-time PCR results presented the cyp11a differential expression patterns during gonad differentiation. Among different sampling points of the 17β-estradiol (E2, 5 ppm) treatment group, cyp11a expression levels were relatively high in the differentiating ovary (30 and 40 mm total length, TL), and then significantly decreased in the differentiated ovary (80, 100 and 120 mm TL, p < 0.05). The pregnenolone level also dropped in the differentiated ovary. In the high temperature treatment group (HT group, 28 ± 0.5 °C), the cyp11a expression level fluctuated remarkably in the differentiating testis (60 mm TL), and then decreased in the differentiated testis (80, 100 mm TL, p < 0.05). In the testosterone (T, 5 ppm) treatment group, the cyp11a was expressed highly in undifferentiated gonads and the differentiating testis, and then dropped in the differentiated testis. Moreover, the levels of cholesterol and pregnenolone of the differentiating testis in the HT and T groups increased. The expression level of cyp11a was significantly down-regulated after the cultured flounder testis cells were treated with 75 and 150 μM cyclic adenosine monophosphate (cAMP), respectively (p < 0.05), and significantly up-regulated after treatment with 300 μM cAMP (p < 0.05). Both nuclear receptors NR5a2 and NR0b1 could significantly up-regulate the cyp11a gene expression in a dosage dependent way in the testis cells detected by cell transfection analysis (p < 0.05). The above data provides evidence that cyp11a would be involved in the flounder gonad differentiation and development.
Collapse
Affiliation(s)
- Dongdong Liang
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 10049, China.
| | - Zhaofei Fan
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 10049, China.
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Shuang Jiao
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Peijun Zhang
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Feng You
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
9
|
Liu Y, Wang X, Li Y, Chen X. Metabolomic analysis of short-term sulfamethazine exposure on marine medaka (Oryzias melastigma) by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:269-275. [PMID: 29573603 DOI: 10.1016/j.aquatox.2018.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Toxicological effects of sulfamethazine (SM2) have garnered increasing concern due to its wide applications in aquaculture and persistence in the aquatic environment. Most studies have main focused on freshwater fish (i.e. zebrafish), while information regarding effects of SM2 on marine species is still scarce. Here, the hepatotoxicities in marine medaka (Oryzias melastigma) with an increasing SM2 concentration exposures (0.01 mg/L, 0.1 mg/L and 1 mg/L) were assessed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF/MS) based metabolomics. Significant metabolites belonging to different metabolites classes were identified by multivariate statistical analysis. The increases levels of amino acids including alanine, asparagine, ornithine, proline, threonine, glutamic acid, lysine, tyrosine and phenylalanine were found in at least two exposure levels. Pathway analysis revealed that amino acids played important biological roles during SM2 exposure: up-regulation of high energy-related amino acids for energy alteration; immune function disorder, oxidative stress and corresponding toxicities defenses. The down regulations of sugar and fatty acid metabolism were observed with an increasing level of SM2 exposure, suggesting that extra energy for cellular defense and detoxification was demanded in terms of different stress request. This study provided an innovative perspective to explore possible SM2 induced hepatic damages at three exposure levels on a nontarget aquatic specie.
Collapse
Affiliation(s)
- Yawen Liu
- State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China.
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xixi Chen
- State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| |
Collapse
|