1
|
Xin ZZ, Tang S, Lu X, Zhang HB, Zhang DZ, Wang G, Tang BP, Liu QN. The analyses of the complete mitochondrial genomes of three crabs revealed novel gene rearrangements and phylogenetic relationships of Brachyura. Mol Biol Rep 2023; 50:10301-10313. [PMID: 37971570 DOI: 10.1007/s11033-023-08833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/19/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Brachyura crab is the largest branch of Decapoda crustacean. Phylogenetic relationships within Brachyura remain controversial to be investigated. The mitochondrial genome (mitogenome) is an important molecular marker for studying the phylogenetic relationships of Brachyura. METHODS AND RESULTS To understand the phylogeny of Brachyura, the three complete mitogenomes from Charybdis annulata, Leptodius exaratus, and Spider crab were sequenced and annotated. Their full length was 15,747, 15,716, and 16,608 bp long, respectively. The first two crabs both contained 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a control region. However, Spider crab contained 13 PCGs, two rRNA genes, 25 tRNA genes and a control region. The mitogenomes of each of the three crabs exhibited high AT content (67.8%, 69.1%, and 70.8%), with negative AT skews (-0.014, - 0.028, and - 0.017) and GC skews (-0.269, - 0.286, and - 0.341). The gene order of C. annulata was identical to the ancestor of Brachyura. Compared with the ancestor of Brachyura, L. exaratus exhibited the gene rearrangements of Val (V)-rrnS-control region, and Spider crab had the four copies of Lys (K). Phylogenetic analyses indicated that C. annulata belonged to Portunidae family, Portunoidea superfamilies, L. exaratus belonged to Xanthidae family, Xanthoidea superfamilies, and Spider crab belonged to Mithracidae family, Majoidea superfamilies. Phylogenetic analyses showed that the two species (Somanniathelphusa boyangensis and Huananpotamon lichuanense) belonging to the Potamoidea were sister groups to the Thoracotremata, thus supporting the conclusion that Heterotremata is polyphyletic. CONCLUSION The results of this study enriched the crab mitogenome database and enabled us to better understand the phylogenetic relationships of Brachyura.
Collapse
Affiliation(s)
- Zhao-Zhe Xin
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, Shandong, China
| | - Sheng Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Xiang Lu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China.
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China.
| |
Collapse
|
2
|
Kim JM, Kim HS, Yi CH. The complete mitochondrial genome of Helicana japonica (Crustacea, Decapoda, Varunidae) from South Korea. Mitochondrial DNA B Resour 2023; 8:872-876. [PMID: 37600504 PMCID: PMC10434999 DOI: 10.1080/23802359.2023.2246686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
Helicana japonica mainly inhabits burrowed holes in the mudflats and intertidal zones. Specimens from the Republic of Korea were collected and whole genomic DNA from the cheliped muscle tissue was extracted. We determined the complete mitochondrial genome using Illumina HiSeq X Ten. The mitogenome is 16,535 bp in length and consists of 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. A phylogenetic tree was reconstructed using the maximum-likelihood of phylogeny methods. H. japonica formed a sister clade with Helicana wuana, which is another Helicana species.
Collapse
Affiliation(s)
- Ji-Min Kim
- Department of Ecology and Conservation, Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
- School of Marine Biology, College of Marine Science, Kunsan National University, Gunsan, Republic of Korea
| | - Hyung-Seop Kim
- School of Marine Biology, College of Marine Science, Kunsan National University, Gunsan, Republic of Korea
| | - Chang-Ho Yi
- Department of Ecology and Conservation, Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| |
Collapse
|
3
|
Liao Y, Liu K, Ren T, Zhang Z, Ma Z, Dan SF, Lan Z, Lu M, Fang H, Zhang Y, Liu J, Zhu P. The characterization, expression and activity analysis of three superoxide dismutases in Eriocheir hepuensis under azadirachtin stress. FISH & SHELLFISH IMMUNOLOGY 2021; 117:228-239. [PMID: 34418554 DOI: 10.1016/j.fsi.2021.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Superoxide dismutase (SOD) can effectively eliminate of excess ROS, which causes oxidative damage to lipids, proteins, and DNA. In this study, we cloned the CuZn-SOD, cMn-SOD1, and cMn-SOD2 genes in Eriocheir hepuensis, and found that the coding sequence (CDS) lengths were 627 bp, 861 bp and 1062 bp, which encoded 208, 286, and 353 amino acids, respectively. Phylogenetic analysis indicated that all SOD genes were evolutionarily conserved, while cMn-SOD2 had an extra gap (67 amino acids) in the conserved domain compared with cMn-SOD1 without huge changes in the tertiary structure of the conserved domain, suggesting that cMn-SOD2 may be a duplicate of cMn-SOD1. qRT-PCR showed that the three SOD genes were widely expressed in all the tested tissues, CuZn-SOD and cMn-SOD1 were mostly expressed in the hepatopancreas, while cMn-SOD2 was mostly expressed in thoracic ganglia. Under azadirachtin stress, the oxidation index of surviving individuals, including the T-AOC, SOD activity, and MDA contents increased in the early stage and then remained steady except for a decrease in MDA contents in the later stage. qRT-PCR showed that the three SOD genes displayed the same trends as SOD activity in surviving individuals, and the highest expressions of CuZn-SOD in the hepatopancreas, heart, and gill were 14.16, 1.41, and 30.87 times that of the corresponding control group, respectively. The changes were 1.35, 5.77 and 3.33 fold for cMn-SOD1 and 1.62, 1.71 and 1.79 fold for cMn-SOD2, respectively. However, the activity and expression of SOD genes in dead individuals were lower than that observed in surviving individuals. These results reveal that SOD plays a significant role in the defence against azadirachtin-induced oxidative stress.
Collapse
Affiliation(s)
- Yongyan Liao
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Ke Liu
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China; School of Marine Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, PR China
| | - Tianjiao Ren
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Zining Zhang
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Zihang Ma
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | | | - Zhenyu Lan
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Min Lu
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Huaiyi Fang
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Yan Zhang
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Jinxia Liu
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China.
| | - Peng Zhu
- Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China; School of Marine Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, PR China.
| |
Collapse
|
4
|
Li YT, Xin ZZ, Tang YY, Yang TT, Tang BP, Sun Y, Zhang DZ, Zhou CL, Liu QN, Yu XM. Comparative Mitochondrial Genome Analyses of Sesarmid and Other Brachyuran Crabs Reveal Gene Rearrangements and Phylogeny. Front Genet 2020; 11:536640. [PMID: 33240311 PMCID: PMC7667018 DOI: 10.3389/fgene.2020.536640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/28/2020] [Indexed: 01/26/2023] Open
Abstract
Mitochondrial genomes (mitogenomes) are important for understanding molecular evolution and phylogenetic relationships. The complete mitogenome of Perisesarma bidens was determined, which is 15,641 bp in length. The A + T content of P. bidens mitogenome was 74.81%. The AT skew was slightly negative (-0.021). The 22 tRNAs ranged from 65 to 73 bp and were highly A + T biased. All tRNA genes had typical cloverleaf structures, except for the trnS1 gene, which lacked a dihydrouridine (DHU) arm. The gene order within the P. bidens mitogenome was identical to the pancrustacean ground pattern, except for the translocation of the trnH. Additionally, the gene order of trnI-trnQ-trnM in pancrustacean ground pattern became trnQ-trnI-trnM in P. bidens. Phylogenetic analyses supported the inclusion of P. bidens in Sesarmidae and the promotion of Sesarminae to Sesarmidae. The results will help us to better understand the status and evolutionary history of Grapsoidea crabs.
Collapse
Affiliation(s)
- Yue-Tian Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetland, Yancheng Teachers University, Yancheng, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetland, Yancheng Teachers University, Yancheng, China
- College of Life Sciences, Nankai University, Tianjin, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, China
| | - Ying-Yu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetland, Yancheng Teachers University, Yancheng, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, China
| | - Ting-Ting Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetland, Yancheng Teachers University, Yancheng, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetland, Yancheng Teachers University, Yancheng, China
| | - Yue Sun
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetland, Yancheng Teachers University, Yancheng, China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetland, Yancheng Teachers University, Yancheng, China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetland, Yancheng Teachers University, Yancheng, China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetland, Yancheng Teachers University, Yancheng, China
| | - Xiao-Min Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Zhang Y, Gong L, Lu X, Jiang L, Liu B, Liu L, Lü Z, Li P, Zhang X. Gene rearrangements in the mitochondrial genome of Chiromantes eulimene (Brachyura: Sesarmidae) and phylogenetic implications for Brachyura. Int J Biol Macromol 2020; 162:704-714. [DOI: 10.1016/j.ijbiomac.2020.06.196] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 11/25/2022]
|
6
|
Tang YY, Tang BP, Xin ZZ, Li YT, Zha XH, Zhang DZ, Sun Y, Liu QN, Ma YF. Characterization of the complete mitochondrial genome of Helice latimera and its phylogenetic implications in Brachyura. Genomics 2020; 112:5180-5187. [DOI: 10.1016/j.ygeno.2020.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/22/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
|
7
|
Liu QN, Tang YY, Yang TT, Li YT, Yu XM. Phylogenetic relationships of Grapsoidea and insights into the higher phylogeny of Brachyuran. Genomics 2020; 113:429-439. [PMID: 32889043 DOI: 10.1016/j.ygeno.2020.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
Decapoda is one of the most diverse crustacean orders, and has become an important research subject. However, the phylogenetic relationships among the main lineages of Decapoda remain uncertain, especially in the order Brachyura. Herein, we sequenced the whole mitochondrial genome of V. litterata and constructed a phylogenetic tree to understand its phylogenetic relationships with other species. The results showed that the mitochondrial genome of V. litterata was generally similar to mitogenomes of Metazoa reported in the literature, with a size of 16,247 bp, 37 genes, and a control region. Both AT-skew and GC-skew were negative, indicating more abundant Cs and Ts than Gs and As. The gene arrangement of V. litterata is identical to those of Eriocheir hepuensis, Cyclograpsus granulosus, Hemigrapsus sanguineus, Helicana wuana, and Helice tientsinensis but differs from the pancrustacean ground pattern and typical arrangement of Brachyuran crabs. Phylogenetic reconstruction showed that V. litterata belongs to the Varunidae.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- School of Wetland, Yancheng Teachers University, Yancheng 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| | - Ying-Yu Tang
- School of Wetland, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Ting-Ting Yang
- School of Wetland, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Yue-Tian Li
- School of Wetland, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Xiao-Min Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
8
|
Lu X, Gong L, Zhang Y, Chen J, Liu L, Jiang L, Lü Z, Liu B, Tong G, Wei X. The complete mitochondrial genome of Calappa bilineata: The first representative from the family Calappidae and its phylogenetic position within Brachyura. Genomics 2020; 112:2516-2523. [PMID: 32045669 DOI: 10.1016/j.ygeno.2020.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/08/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
In this study, we determined the complete mitogenome sequence of Calappa bilineata, which is the first mitogenome of Calappidae up to now. The total length is 15,606 bp and includes 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs and one control region. The genome composition is highly A + T biased (68.7%), and exhibits a negative AT-skew (-0.010) and GC-skew (-0.267). As with other invertebrate mitogenomes, the PCGs start with the standard ATN and stop with the standard TAN codons or incomplete T. Phylogenetic analysis showed that C. bilineata was most closely related to Matuta planipes (Matutidae), and these two species formed a sister clade, constituting a Calappoidea group and forming a sister clade with part of Eriphioidea. The existence of the polyphyletic families raised doubts over the traditional classification system. These results will help to better understand the features of the C. bilineata mitogenome and lay foundation for further evolutionary relationships within Brachyura.
Collapse
Affiliation(s)
- Xinting Lu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Ying Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Jian Chen
- Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Lihua Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Guixiang Tong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Xinxian Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fishery Sciences, Nanning, Guangxi 530021, China.
| |
Collapse
|
9
|
Novel gene rearrangement in the mitochondrial genome of Coenobita brevimanus (Anomura: Coenobitidae) and phylogenetic implications for Anomura. Genomics 2019; 112:1804-1812. [PMID: 31655177 DOI: 10.1016/j.ygeno.2019.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022]
Abstract
The complete mitochondrial genomes (mitogenomes) can indicate phylogenetic relationships among organisms, as well as useful information about the process of molecular evolution and gene rearrangement mechanisms. However, knowledge on the complete mitogenome of Coenobitidae (Decapoda: Anomura) is quite scarce. Here, we describe in detail the complete mitogenome of Coenobita brevimanus, which is 16,393 bp in length, and contains 13 protein-coding genes, two ribosomal RNA, 22 transfer RNA genes, as well as a putative control region. The genome composition shows a moderate A + T bias (65.0%), and exhibited a negative AT-skew (-0.148) and a positive GC-skew (0.183). Five gene clusters (or genes) involving eleven tRNAs and two PCGs were found to have rearranged with respect to the pancrustacean ground pattern gene order. Duplication-random loss and recombination models were determined as most likely to explain the observed large-scale gene rearrangements. Phylogenetic analysis placed all Coenobitidae species into one clade. The polyphyly of Paguroidea was well supported, whereas the non-monophyly of Galatheoidea was inconsistence with previous findings on Anomura. Taken together, our results help to better understand gene rearrangement process and the evolutionary status of C. brevimanus and lay a foundation for further phylogenetic studies of Anomura.
Collapse
|
10
|
The parasitic dinoflagellate Hematodinium perezi infecting mudflat crabs, Helice tientsinensis, in polyculture system in China. J Invertebr Pathol 2019; 166:107229. [DOI: 10.1016/j.jip.2019.107229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 11/23/2022]
|
11
|
Yang TT, Liu Y, Xin ZZ, Liu QN, Zhang DZ, Tang BP. The complete mitochondrial genome of Uca lactea (Ocypodidae, Brachyura) and phylogenetic relationship in Brachyura. MITOCHONDRIAL DNA PART B-RESOURCES 2019. [DOI: 10.1080/23802359.2019.1591189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Gong L, Jiang H, Zhu K, Lu X, Liu L, Liu B, Jiang L, Ye Y, Lü Z. Large-scale mitochondrial gene rearrangements in the hermit crab Pagurus nigrofascia and phylogenetic analysis of the Anomura. Gene 2019; 695:75-83. [PMID: 30738095 DOI: 10.1016/j.gene.2019.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
Complete mitochondrial genome (mitogenome) provides important information for better understanding of gene rearrangement, molecular evolution and phylogenetic analysis. Currently, only a few Paguridae mitogenomes have been reported. Herein, we described the complete mitogenome of hermit crab Pagurus nigrofascia. The total length was 15,423 bp, containing 13 protein-coding genes (PCGs), two ribosomal RNA, 22 transfer RNA genes, as well as an AT-rich region. The genome composition was highly A + T biased (71.4%), and exhibited a negative AT-skew (-0.006) and GC-skew (-0.138). Eight tRNA genes, two PCGs and an AT-rich region found to be rearranged with respect to the pancrustacean ground pattern gene order. Duplication-random loss and recombination model were adopted to explain the large-scale gene rearrangement events. Two phylogenetic trees of Anomura involving 12 families were constructed. The results showed that all Paguridae species were clustered into one clade except Pagurus longicarpus, which for the first time imposed raises doubt about the morphological taxonomy of this species. Furthermore, the present study found that higher- level phylogenetic relationships within Anomura were controversial, compared with the previous studies. Our results help to better understand gene rearrangements and the evolutionary status of P. nigrofascia and lay foundation for further phylogenetic study of Anomura.
Collapse
Affiliation(s)
- Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China.
| | - Hui Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Kehua Zhu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Xinting Lu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Lihua Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yingying Ye
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| |
Collapse
|
13
|
Liu Y, Yang TT, Xin ZZ, Liu QN, Zhang DZ, Tang BP. The complete mitochondrial genome sequence of Metaplax longipes (Grapsoidea: Varunidae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1574626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, China
| | - Ting-Ting Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, China
| |
Collapse
|
14
|
Guinot D, Ng NK, Moreno PAR. Review of grapsoid families for the establishment of a new family for Leptograpsodes Montgomery, 1931, and a new genus of Gecarcinidae H. Milne Edwards, 1837 (Crustacea, Decapoda, Brachyura, Grapsoidea MacLeay, 1838). ZOOSYSTEMA 2018. [DOI: 10.5252/zoosystema2018v40a26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Danièle Guinot
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, case postale 53, 57 rue Cuvier, F-75231 Paris cedex 05 (France)
| | - Ngan Kee Ng
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Republic of Singapore)
| | - Paula A. Rodríguez Moreno
- Direction générale déléguée aux Collections, Muséum national d'Histoire naturelle, case postale 30, 57 rue Cuvier, F-75231 Paris cedex 05 (France)
| |
Collapse
|
15
|
Wang Z, Tang D, Sun L, Shi X, Liu R, Guo H, Tang B. Comparative transcriptome analysis in the hepatopancreas of Helice tientsinensis exposed to the toxic metal cadmium. Genes Genomics 2018; 41:417-429. [DOI: 10.1007/s13258-018-0774-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
|
16
|
Liu Y, Xin ZZ, Zhu XY, Wang Y, Zhang DZ, Jiang SH, Zhang HB, Zhou CL, Liu QN, Tang BP. Transcriptomic analysis of immune-related genes in the lipopolysaccharide-stimulated hepatopancreas of the mudflat crab Helice tientsinensis. FISH & SHELLFISH IMMUNOLOGY 2018; 83:272-282. [PMID: 30217505 DOI: 10.1016/j.fsi.2018.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 06/08/2023]
Abstract
The mudflat crab Helice tientsinensis is one of the most economically important aquaculture species in China. Nevertheless, it is susceptible to various diseases caused by viruses, bacteria and rickettsia-like organisms. A better understanding of the immune system and genes related to the responses to bacterial and viral infection is required. Herein, the hepatopancreas transcriptome of H. tientsinensis was analyzed by comparing control and lipopolysaccharide (LPS)-stimulated RNA-Seq data, yielding 91,885,038 bp and 13.78 Gb of clean reads. Following assembly and annotation, 93,207 unigenes with an average length of 883 bp were identified, of which 31,674 and 13,700 were annotated in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. Following LPS, 4845 differentially expressed genes (DEGs) were identified, of which 2491 and 2354 were up- and down-regulated, respectively. To further investigate immune-related DEGs, KEGG enrichment analysis identified immune response pathways, most notably the peroxisome and Toll-like receptor signaling pathways. Quantitative real time-PCR (qRT-PCR) confirmed the up-regulation of a random selection of DEGs. This systematic transcriptomic analysis of the innate immune pathway in H. tientsinensis expands our understanding of the immune system in crabs.
Collapse
Affiliation(s)
- Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Xiao-Yu Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Ying Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China.
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China.
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China.
| |
Collapse
|
17
|
Yang Y, Li Q, Kong L, Yu H. Comparative mitogenomic analysis reveals cryptic species in Reticunassa festiva (Neogastropoda: Nassariidae). Gene 2018; 662:88-96. [DOI: 10.1016/j.gene.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 11/29/2022]
|
18
|
Guinot D, Segonzac M. A review of the brachyuran deep-sea vent community of the western Pacific, with two new species of Austinograea Hessler & Martin, 1989 (Crustacea, Decapoda, Brachyura, Bythograeidae) from the Lau and North Fiji Back-Arc Basins. ZOOSYSTEMA 2018. [DOI: 10.5252/zoosystema2018v40a5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Danièle Guinot
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNR
| | - Michel Segonzac
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNR
| |
Collapse
|
19
|
Lin F, Xie Z, Fazhan H, Baylon JC, Yang X, Tan H, Guan M, Shi X, Ikhwanuddin M, Ma H. The complete mitochondrial genome of Varuna yui (Decapoda: Brachyura: Varunidae) and its phylogeny. Mitochondrial DNA B Resour 2018; 3:263-264. [PMID: 33474136 PMCID: PMC7799475 DOI: 10.1080/23802359.2018.1443043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 11/04/2022] Open
Abstract
The complete mitochondrial genome plays an important role in the research on phylogenetic relationship. Here, we reported the first complete mitochondrial genome sequence of Varuna yui Hwang & Takeda, 1986 (Varunidae). The complete mtDNA (15,915 bp in length) consisted of 13 protein-coding genes, 22 tRNAs, two rRNA genes, and a control region. The gene arrangement was identical to those observed in the Varunidae species. The phylogenetic analysis suggested that V. yui had close relationship with other Varunidae species (Helicetient sinensis, Eriocher sinesis, etc.). The newly described genome may facilitate further comparative mitogenomic analysis within Varunidae species.
Collapse
Affiliation(s)
- Fan Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Zhuofang Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Hanafiah Fazhan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Juliana C. Baylon
- Division of Biological Sciences, College of Arts and Sciences, University of the Philippines Visayas, Miagao, Philippines
| | - Xiaolong Yang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Huaqiang Tan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Mengyun Guan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Xi Shi
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Mhd Ikhwanuddin
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| |
Collapse
|
20
|
Bai J, Xu S, Nie Z, Wang Y, Zhu C, Wang Y, Min W, Cai Y, Zou J, Zhou X. The complete mitochondrial genome of Huananpotamon lichuanense (Decapoda: Brachyura) with phylogenetic implications for freshwater crabs. Gene 2018; 646:217-226. [PMID: 29307851 DOI: 10.1016/j.gene.2018.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/22/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
In the present study, we determined the complete mitochondrial genome of Huananpotamon lichuanense (Decapoda: Brachyura) for the first time. The genome is 15,380bp in length and typically consists of 37 genes. When the gene order was compared to the ancestral crustacean type, two tRNA genes (tRNAHis and tRNAGln) were rearranged in H. lichuanense, and the translocation of tRNAGln appeared only in Potamoidea crabs, such as Geothelphusa dehaani and Sinopotamon xiushuiense, supporting the monophyly of the Potamoidea superfamily. Thirteen protein-coding genes and 2 rRNA genes were divided into five complexes to perform the phylogenetic analysis, and the results showed that the trees constructed by complex I (ND1-ND6 and ND4L), complex IV (COX1-COX3) and rRNA genes better accord with the morphological classification system, suggesting that molecular markers of higher-level phylogeny can be developed in these three complexes in the future. The estimated divergence time for freshwater crabs is approximately 133.58Ma, and G. dehaani from Japan diverged from the freshwater crabs of mainland China approximately 60.66Ma. A selective pressure analysis based on current data revealed obviously increasing dN/dS ratios (except for ATP6 and ND4L) of freshwater crabs, and the accumulation of nonsynonymous mutations suggests that terrestrial habitats provide a relatively relaxed selective pressure environment for this group.
Collapse
Affiliation(s)
- Jun Bai
- Research lab of Freshwater Crustacean Decapoda &Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, Jiangxi Province 330006, People's Republic of China
| | - Shuxin Xu
- Research lab of Freshwater Crustacean Decapoda &Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, Jiangxi Province 330006, People's Republic of China
| | - Zongheng Nie
- Research lab of Freshwater Crustacean Decapoda &Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, Jiangxi Province 330006, People's Republic of China
| | - Yifan Wang
- Institute of Pathogen Biology, Jiangxi Academy of Medical Sciences, 461 Bayi Avenue, Nanchang City, Jiangxi Province 330006, People's Republic of China
| | - Chunchao Zhu
- Research lab of Freshwater Crustacean Decapoda &Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, Jiangxi Province 330006, People's Republic of China
| | - Yan Wang
- Research lab of Freshwater Crustacean Decapoda &Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, Jiangxi Province 330006, People's Republic of China
| | - Weiping Min
- Institute of Pathogen Biology, Jiangxi Academy of Medical Sciences, 461 Bayi Avenue, Nanchang City, Jiangxi Province 330006, People's Republic of China
| | - Yixiong Cai
- National Biodiversity Centre, National Parks Board, 1 Cluny Road, Singapore 259569, Republic of Singapore
| | - Jiexin Zou
- Research lab of Freshwater Crustacean Decapoda &Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, Jiangxi Province 330006, People's Republic of China.
| | - Xianmin Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, 1299 Xuefu Avenue, Nanchang City, Jiangxi Province 330031, People's Republic of China.
| |
Collapse
|
21
|
Tang BP, Liu Y, Xin ZZ, Zhang DZ, Wang ZF, Zhu XY, Wang Y, Zhang HB, Zhou CL, Chai XY, Liu QN. Characterisation of the complete mitochondrial genome of Helice wuana (Grapsoidea: Varunidae) and comparison with other Brachyuran crabs. Genomics 2017; 110:S0888-7543(17)30099-X. [PMID: 28982639 DOI: 10.1016/j.ygeno.2017.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 11/28/2022]
Abstract
The mitochondrial genome (mitogenome) provides important information for phylogenetic analysis and understanding evolutionary origins. Herein, we sequenced, annotated, and characterised the mitogenome of the crab Helice wuana to better understand its molecular evolution and phylogeny. The 16,359bp mitogenome includes 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and one control region. The genome composition is highly A+T biased 68.42%, and exhibits a negative AT-skew (-0.036) and GC-skew (-0.269) among Brachyura crabs. Gene rearrangements were detected, as was tandem duplication followed by random loss, which explains the translocation of mitochondrial genes. Phylogenetic analysis showed that H. wuana and H. tientsinensis clustered on one branch with high nodal support values. These results confirm that the placement of H. wuana within the Varunidae family of Thoracotrematan crabs. This study will provided a better understanding for gene rearrangements and crab evolution in the further.
Collapse
Affiliation(s)
- Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Zheng-Fei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Xiao-Yu Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Ying Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China.
| |
Collapse
|