1
|
Maji A, Paul A, Sarkar A, Nahar S, Bhowmik R, Samanta A, Nahata P, Ghosh B, Karmakar S, Kumar Maity T. Significance of TRAIL/Apo-2 ligand and its death receptors in apoptosis and necroptosis signalling: Implications for cancer-targeted therapeutics. Biochem Pharmacol 2024; 221:116041. [PMID: 38316367 DOI: 10.1016/j.bcp.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
The human immune defensesystem routinely expresses the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which is the most prevalent element for antitumor immunity. TRAIL associates with its death receptors (DRs), DR4 (TRAIL-R1), and DR5 (TRAIL-R2), in cancer cells to initiate the intracellular apoptosis cascade. Accordingly, numerous academic institutions and pharmaceutical companies havetried to exploreTRAIL's capacity to kill tumourcells by producing recombinant versions of it (rhTRAIL) or TRAIL receptor agonists (TRAs) [monoclonal antibody (mAb), synthetic and natural compounds, etc.] and molecules that sensitize TRAIL signalling pathway for therapeutic applications. Recently, several microRNAs (miRs) have been found to activate or inhibit death receptor signalling. Therefore, pharmacological regulation of these miRs may activate or resensitize the TRAIL DRs signal, and this is a novel approach for developing anticancer therapeutics. In this article, we will discuss TRAIL and its receptors and molecular pathways by which it induces various cell death events. We will unravel potential innovative applications of TRAIL-based therapeutics, and other investigated therapeutics targeting TRAIL-DRs and summarize the current preclinical pharmacological studies and clinical trials. Moreover, we will also emphasizea few situations where future efforts may be addressed to modulate the TRAIL signalling pathway.
Collapse
Affiliation(s)
- Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Sourin Nahar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Ajeya Samanta
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Pankaj Nahata
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078, India.
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| |
Collapse
|
2
|
Avila JP, Carvalho BM, Coimbra EC. A Comprehensive View of the Cancer-Immunity Cycle (CIC) in HPV-Mediated Cervical Cancer and Prospects for Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:1333. [PMID: 36831674 PMCID: PMC9954575 DOI: 10.3390/cancers15041333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common cancer in women worldwide, with more than 500,000 new cases each year and a mortality rate of around 55%. Over 80% of these deaths occur in developing countries. The most important risk factor for CC is persistent infection by a sexually transmitted virus, the human papillomavirus (HPV). Conventional treatments to eradicate this type of cancer are accompanied by high rates of resistance and a large number of side effects. Hence, it is crucial to devise novel effective therapeutic strategies. In recent years, an increasing number of studies have aimed to develop immunotherapeutic methods for treating cancer. However, these strategies have not proven to be effective enough to combat CC. This means there is a need to investigate immune molecular targets. An adaptive immune response against cancer has been described in seven key stages or steps defined as the cancer-immunity cycle (CIC). The CIC begins with the release of antigens by tumor cells and ends with their destruction by cytotoxic T-cells. In this paper, we discuss several molecular alterations found in each stage of the CIC of CC. In addition, we analyze the evidence discovered, the molecular mechanisms and their relationship with variables such as histological subtype and HPV infection, as well as their potential impact for adopting novel immunotherapeutic approaches.
Collapse
Affiliation(s)
| | | | - Eliane Campos Coimbra
- Institute of Biological Sciences, University of Pernambuco (ICB/UPE), Rua Arnóbio Marques, 310, Santo Amaro, Recife 50100-130, PE, Brazil
| |
Collapse
|
3
|
Lagunas-Martínez A, Madrid-Marina V, Gómez-Cerón C, Deas J, Peralta-Zaragoza O. The Autophagy Process in Cervical Carcinogenesis: Role of Non-Coding-RNAs, Molecular Mechanisms, and Therapeutic Targets. Cells 2022; 11:cells11081323. [PMID: 35456001 PMCID: PMC9028856 DOI: 10.3390/cells11081323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Autophagy is a highly conserved multistep lysosomal degradation process in which cellular components are localized to autophagosomes, which subsequently fuse with lysosomes to degrade the sequestered contents. Autophagy serves to maintain cellular homeostasis. There is a close relationship between autophagy and tumor progression, which provides opportunities for the development of anticancer therapeutics that target the autophagy pathway. In this review, we analyze the effects of human papillomavirus (HPV) E5, E6, and E7 oncoproteins on autophagy processes in cervical cancer development. Inhibition of the expression or the activity of E5, E6, and E7 can induce autophagy in cells expressing HPV oncogenes. Thus, E5, E6, and E7 oncoproteins target autophagy during HPV-associated carcinogenesis. Furthermore, noncoding RNA (ncRNA) expression profiling in cervical cancer has allowed the identification of autophagy-related ncRNAs associated with HPV. Autophagy-related genes are essential drivers of autophagy and are regulated by ncRNAs. We review the existing evidence regarding the role of autophagy-related proteins, the function of HPV E5, E6, and E7 oncoproteins, and the effects of noncoding RNA on autophagy regulation in the setting of cervical carcinogenesis. By characterizing the mechanisms behind the dysregulation of these critical factors and their impact on host cell autophagy, we advance understanding of the relationship between autophagy and progression from HPV infection to cervical cancer, and highlight pathways that can be targeted in preventive and therapeutic strategies against cervical cancer.
Collapse
Affiliation(s)
- Alfredo Lagunas-Martínez
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
| | - Vicente Madrid-Marina
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
| | - Claudia Gómez-Cerón
- Research Center in Population Health, Department of Cancer Epidemiology, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico;
| | - Jessica Deas
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
- Correspondence: ; Tel.: +52-777-3293000
| |
Collapse
|
4
|
Molecular Investigation of miRNA Biomarkers as Chemoresistance Regulators in Melanoma: A Protocol for Systematic Review and Meta-Analysis. Genes (Basel) 2022; 13:genes13010115. [PMID: 35052456 PMCID: PMC8775297 DOI: 10.3390/genes13010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/18/2021] [Accepted: 01/05/2022] [Indexed: 01/25/2023] Open
Abstract
Introduction: Melanoma is a global disease that is predominant in Western countries. However, reliable data resources and comprehensive studies on the theragnostic efficiency of miRNAs in melanoma are scarce. Hence, a decisive study or comprehensive review is required to collate the evidence for profiling miRNAs as a theragnostic marker. This protocol details a comprehensive systematic review and meta-analysis on the impact of miRNAs on chemoresistance and their association with theragnosis in melanoma. Methods and analysis: The articles will be retrieved from online bibliographic databases, including Cochrane Review, EMBASE, MEDLINE, PubMed, Scopus, Science Direct, and Web of Science, with different permutations of ‘keywords’. To obtain full-text papers of relevant research, a stated search method will be used, along with selection criteria. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Protocols 2015 (PRISMA-P) standards were used to create this study protocol. The hazard ratio (HR) with a 95% confidence interval will be analyzed using Comprehensive Meta-Analysis (CMA) software 3.0. (CI). The pooled effect size will be calculated using a random or fixed-effects meta-analysis model. Cochran’s Q test and the I2 statistic will be used to determine heterogeneity. Egger’s bias indicator test, Orwin’s and the classic fail-safe N tests, the Begg and Mazumdar rank collection test, and Duval and Tweedie’s trim and fill calculation will all be used to determine publication bias. The overall standard deviation will be evaluated using Z-statistics. Subgroup analyses will be performed according to the melanoma participants’ clinicopathological and biological characteristics and methodological factors if sufficient studies and retrieved data are identified and available. The source of heterogeneity will be assessed using a meta-regression analysis. A pairwise matrix could be developed using either a pairwise correlation or expression associations of miRNA with patients’ survival for the same studies.
Collapse
|
5
|
Yang H, Su G, Chen X. Pantoprazole promotes the sensitivity of cervical cancer cells to cisplatin by inhibiting cisplatin-induced autophagy. J Cancer Res Ther 2022; 18:362-369. [DOI: 10.4103/jcrt.jcrt_968_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Ivanisenko NV, Seyrek K, Hillert-Richter LK, König C, Espe J, Bose K, Lavrik IN. Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks. Trends Cancer 2021; 8:190-209. [PMID: 34973957 DOI: 10.1016/j.trecan.2021.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
The extrinsic pathway is mediated by death receptors (DRs), including CD95 (APO-1/Fas) or TRAILR-1/2. Defects in apoptosis regulation lead to cancer and other malignancies. The master regulator of the DR networks is the cellular FLICE inhibitory protein (c-FLIP). In addition to its key role in apoptosis, c-FLIP may exert other cellular functions, including control of necroptosis, pyroptosis, nuclear factor κB (NF-κB) activation, and tumorigenesis. To gain further insight into the molecular mechanisms of c-FLIP action in cancer networks, we focus on the structure, isoforms, interactions, and post-translational modifications of c-FLIP. We also discuss various avenues to target c-FLIP in cancer cells for therapeutic benefit.
Collapse
Affiliation(s)
- Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Artificial Intelligence Research Institute, Moscow, Russia
| | - Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Laura K Hillert-Richter
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Johannes Espe
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Kakoli Bose
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Inna N Lavrik
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.
| |
Collapse
|
7
|
Karimi F, Mollaei H. Potential of miRNAs in cervical cancer chemoresistance. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Je H, Nam GH, Kim GB, Kim W, Kim SR, Kim IS, Lee EJ. Overcoming therapeutic efficiency limitations against TRAIL-resistant tumors using re-sensitizing agent-loaded trimeric TRAIL-presenting nanocages. J Control Release 2021; 331:7-18. [DOI: 10.1016/j.jconrel.2021.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
|
9
|
Diefenbach D, Greten HJ, Efferth T. Genomic landscape analyses in cervical carcinoma and consequences for treatment. Curr Opin Pharmacol 2020; 54:142-157. [PMID: 33166910 DOI: 10.1016/j.coph.2020.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 11/28/2022]
Abstract
Where we are on the road to 'tailor-made' precision medicine for drug-resistant cervical carcinoma? We explored studies about analyses of viral and human genomes, epigenomes and transcriptomes, DNA mutation analyses, their importance in detecting HPV sequences, mechanisms of drug resistance to established and targeted therapies with small molecule or therapeutic antibodies, to radiosensitivity and to chemoradiotherapy. The value of repurposing of old drugs initially approved for other disease indications and now considered for cervix cancer therapy is also discussed. The microbiome influences drug response and survival too. HPV genomic integration sites were less significant. Nomograms (Lee et al., 2013) even outperformed FIGO staging regarding prediction of five-year overall survival times. We conclude that there are still many loose threads to be followed up, before coherent conclusions for individualized therapy of drug-resistant cervical carcinoma can be drawn.
Collapse
Affiliation(s)
- Dominik Diefenbach
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
10
|
Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules 2020; 25:molecules25204701. [PMID: 33066509 PMCID: PMC7587345 DOI: 10.3390/molecules25204701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities. Plant-based anti-cancer agents, such as etoposide, irinotecan, paclitaxel, and vincristine, are currently being applied in medical treatments for patients with cancer. Further, the efficacy of plenty of phytochemicals has been evaluated to discover a promising candidate for cancer therapy. For developing more effective cancer therapy, it is required to apprehend the molecular mechanism deployed by natural compounds. MicroRNAs (miRNAs) have been realized to play a pivotal role in regulating cellular signaling pathways, affecting the efficacy of therapeutic agents in cancer. This review presents a feature of phytochemicals with anti-cancer activity, focusing mainly on the relationship between phytochemicals and miRNAs, with insights into the role of miRNAs as the mediators and the regulators of anti-cancer effects of phytochemicals.
Collapse
|
11
|
Miao J, Regenstein JM, Xu D, Zhou D, Li H, Zhang H, Li C, Qiu J, Chen X. The roles of microRNA in human cervical cancer. Arch Biochem Biophys 2020; 690:108480. [PMID: 32681832 DOI: 10.1016/j.abb.2020.108480] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022]
Abstract
Although a potentially preventable disease, cervical cancer (CC) is the second most commonly diagnosed gynaecological cancer with at least 530,000 new cases annually, and the prognosis with CC is still poor. Studies suggest that aberrant expression of microRNA (miRNA) contributes to the progression of CC. As a group of small non-coding RNA with 18-25 nucleotides, miRNA regulate about one-third of all human genes. They function by repressing translation or inducing mRNA cleavage or degradation, including genes involved in diverse and important cellular processes, including cell cycling, proliferation, differentiation, and apoptosis. Results showed that misexpression of miRNA is closely related to the onset and progression of CC. This review will provide an overview of the function of miRNA in CC and the mechanisms involved in cervical carcinogenesis.
Collapse
Affiliation(s)
- Jingnan Miao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, 14853-7201, USA
| | - Dan Xu
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Dan Zhou
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Haixia Li
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Hua Zhang
- Department of Food Science, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150010, China
| | - Chunfeng Li
- Gastrointestinal Surgical Ward, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Junqiang Qiu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China; Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou, Hainan, 570100, China.
| | - Xun Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China; Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou, Hainan, 570100, China
| |
Collapse
|
12
|
Zhang X, Xie K, Zhou H, Wu Y, Li C, Liu Y, Liu Z, Xu Q, Liu S, Xiao D, Tao Y. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer 2020; 19:47. [PMID: 32122355 PMCID: PMC7050132 DOI: 10.1186/s12943-020-01171-z] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/24/2020] [Indexed: 02/08/2023] Open
Abstract
As the standard treatments for cancer, chemotherapy and radiotherapy have been widely applied to clinical practice worldwide. However, the resistance to cancer therapies is a major challenge in clinics and scientific research, resulting in tumor recurrence and metastasis. The mechanisms of therapy resistance are complicated and result from multiple factors. Among them, non-coding RNAs (ncRNAs), along with their modifiers, have been investigated to play key roles in regulating tumor development and mediating therapy resistance within various cancers, such as hepatocellular carcinoma, breast cancer, lung cancer, gastric cancer, etc. In this review, we attempt to elucidate the mechanisms underlying ncRNA/modifier-modulated resistance to chemotherapy and radiotherapy, providing some therapeutic potential points for future cancer treatment.
Collapse
Affiliation(s)
- Xinyi Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Kai Xie
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Honghua Zhou
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yuwei Wu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chan Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yating Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhaoya Liu
- Department of Geriatrics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Qian Xu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Desheng Xiao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
13
|
Gasperi V, Vangapandu C, Savini I, Ventimiglia G, Adorno G, Catani MV. Polyunsaturated fatty acids modulate the delivery of platelet microvesicle-derived microRNAs into human breast cancer cell lines. J Nutr Biochem 2019; 74:108242. [PMID: 31665654 DOI: 10.1016/j.jnutbio.2019.108242] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Breast cancer is one of the most frequent and malignant types of cancer in women, with an increasing morbidity and mortality rate; in particular, treatment of triple negative breast cancer remains a challenge, since the efforts made with targeted therapies were ineffective. Among surrounding cells influencing the biology of cancer cells, platelets are recognizing as novel players. Activated platelets release microvesicles (MVs) that, once delivered to cancer cells, modulate signaling pathways related to cell growth and dissemination; among factors contained in platelet-derived MVs, microRNAs are highly involved in cancer development. The growing interest in ω3 and ω6 polyunsaturated fatty acids (PUFAs) as adjuvants in anti-cancer therapy prompted us to investigate the ability of arachidonic acid (AA) and docosahexaenoic acid (DHA) to modulate MV biological functions. AA induced differential enhancement of platelet-specific microRNAs (miR-223 and miR-126), an effect further enhanced by the presence of DHA. MVs can be delivered to and microRNAs internalized by breast cancer cells, although with different efficiency; analysis of kinetics of MV delivery, indeed, suggested that tumor cells fine-tune the uptake of specific microRNA. Finally, we demonstrated that physiological delivery of platelet miR-223 and miR-126 induced cellular effects in breast cancer cells, including cell cycle arrest, inhibition of migration and sensitivity to cisplatin. These results have been confirmed by exogenous expression of miR-223 and miR-126 through transient transfection experiments. Our preliminary data suggest that ω6/ω3-PUFA supplementation, by modulating microRNA delivery, enhances platelet anti-tumor activities, thus opening new avenues for add-on therapies in cancer patients.
Collapse
Affiliation(s)
- Valeria Gasperi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Chaitanya Vangapandu
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Isabella Savini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gaspare Ventimiglia
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gaspare Adorno
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Valeria Catani
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
14
|
Clinical Theragnostic Relationship between Drug-Resistance Specific miRNA Expressions, Chemotherapeutic Resistance, and Sensitivity in Breast Cancer: A Systematic Review and Meta-Analysis. Cells 2019; 8:cells8101250. [PMID: 31615089 PMCID: PMC6830093 DOI: 10.3390/cells8101250] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022] Open
Abstract
Awareness of breast cancer has been increasing due to early detection, but the advanced disease has limited treatment options. There has been growing evidence on the role of miRNAs involved in regulating the resistance in several cancers. We performed a comprehensive systematic review and meta-analysis on the role of miRNAs in influencing the chemoresistance and sensitivity of breast cancer. A bibliographic search was performed in PubMed and Science Direct based on the search strategy, and studies published until December 2018 were retrieved. The eligible studies were included based on the selection criteria, and a detailed systematic review and meta-analysis were performed based on PRISMA guidelines. A random-effects model was utilised to evaluate the combined effect size of the obtained hazard ratio and 95% confidence intervals from the eligible studies. Publication bias was assessed with Cochran’s Q test, I2 statistic, Orwin and Classic fail-safe N test, Begg and Mazumdar rank correlation test, Duval and Tweedie trim and fill calculation and the Egger’s bias indicator. A total of 4584 potential studies were screened. Of these, 85 articles were eligible for our systematic review and meta-analysis. In the 85 studies, 188 different miRNAs were studied, of which 96 were upregulated, 87 were downregulated and 5 were not involved in regulation. Overall, 24 drugs were used for treatment, with doxorubicin being prominently reported in 15 studies followed by Paclitaxel in 11 studies, and 5 drugs were used in combinations. We found only two significant HR values from the studies (miR-125b and miR-4443) and our meta-analysis results yielded a combined HR value of 0.748 with a 95% confidence interval of 0.508–1.100; p-value of 0.140. In conclusion, our results suggest there are different miRNAs involved in the regulation of chemoresistance through diverse drug genetic targets. These biomarkers play a crucial role in guiding the effective diagnostic and prognostic efficiency of breast cancer. The screening of miRNAs as a theragnostic biomarker must be brought into regular practice for all diseases. We anticipate that our study serves as a reference in framing future studies and clinical trials for utilising miRNAs and their respective drug targets.
Collapse
|
15
|
Pedini F, De Luca G, Felicetti F, Puglisi R, Boe A, Arasi MB, Fratini F, Mattia G, Spada M, Caporali S, Biffoni M, Giuliani A, Carè A, Felli N. Joint action of miR-126 and MAPK/PI3K inhibitors against metastatic melanoma. Mol Oncol 2019; 13:1836-1854. [PMID: 31115969 PMCID: PMC6717748 DOI: 10.1002/1878-0261.12506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 02/03/2023] Open
Abstract
Emerging data support the rationale of combined therapies in advanced melanoma. Specifically, the combined use of drugs with different mechanisms of action can reduce the probability of selecting resistant clones. To identify agents active against melanoma cells, we screened a library of 349 anti‐cancer compounds, currently in clinical use or trials, and selected PIK‐75, an inhibitor of the phosphatidylinositol 3‐kinase/protein kinase B (PI3K/AKT) pathway, as the ‘top active’ drug. PIK‐75 was then used alone or in combination with vemurafenib, the first BRAF inhibitor approved for patients with melanoma harboring BRAF mutations. We identified a combined dose of PIK‐75 and vemurafenib that inhibited both the PI3K/AKT and mitogen‐activated protein kinase pathways, thereby overcoming any compensatory activation. In view of the important tumor suppressor function induced by restoring expression of microRNA (miR)‐126 in metastatic melanoma cells, we examined whether miR‐126 has a synergistic role when included in a triple combination alongside PIK‐75 and vemurafenib. We found that enforced expression of miR‐126 (which alone can reduce tumorigenicity) significantly increased PIK‐75 activity when used as either a single agent or in combination with vemurafenib. Interestingly, PIK‐75 proved to be effective against early passage cell lines derived from patients’ biopsies and on melanoma cell lines resistant to either vemurafenib or dabrafenib, thus suggesting that it potentially has the capability to overcome drug resistance. Finally, the synergistic role played by miR‐126 in combination with vemurafenib and/or PIK‐75 was demonstrated in vivo in mouse xenograft models, in which tumor growth inhibition was associated with increased apoptosis. These results not only show the efficacy of PIK‐75 and vemurafenib co‐treatment but also indicate that restoration of miR‐126 expression in advanced melanoma can enhance their antitumor activity, which may possibly allow dose reduction to decrease adverse events without reducing the therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Pedini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Felicetti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Puglisi
- Center for Gender Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Boe
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Gianfranco Mattia
- Center for Gender Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nadia Felli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
16
|
Axl Inhibitor R428 Enhances TRAIL-Mediated Apoptosis Through Downregulation of c-FLIP and Survivin Expression in Renal Carcinoma. Int J Mol Sci 2019; 20:ijms20133253. [PMID: 31269715 PMCID: PMC6651098 DOI: 10.3390/ijms20133253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022] Open
Abstract
R428, a selective small molecule Axl inhibitor, is known to have anti-cancer effects, such as inhibition of invasion and proliferation and induction of cell death in cancer cells. The Axl receptor tyrosine kinase is highly expressed in cancer cells and the level of Axl expression is associated with survival, metastasis, and drug resistance of many cancer cells. However, the effect of Axl inhibition on overcoming anti-cancer drugs resistance is unclear. Therefore, we investigated the capability of Axl inhibition as a therapeutic agent for the induction of TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) sensitivity. In this study, R428 markedly sensitized cancer cells to TRAIL-induced apoptotic cell death, but not in normal human skin fibroblast (HSF) and human umbilical vein cells (EA.hy926). Moreover, knockdown of Axl by siRNA also increased TRAIL-induced apoptosis. R428 decreased c-FLIP proteins levels via induction of miR-708 expression and survivin protein levels at the post-translational level, and we found that knockdown of Axl also decreased both c-FLIP and survivin protein expression. Overexpression of c-FLIP and survivin markedly inhibited R428 plus TRAIL-induced apoptosis. Furthermore, R428 sensitized cancer cells to multiple anti-cancer drugs-mediated cell death. Our results provide that inhibition of Axl could improve sensitivity to TRAIL through downregulation of c-FLIP and survivin expression in renal carcinoma cells. Taken together, Axl may be a tempting target to overcome TRAIL resistance.
Collapse
|
17
|
Caporali S, Amaro A, Levati L, Alvino E, Lacal PM, Mastroeni S, Ruffini F, Bonmassar L, Antonini Cappellini GC, Felli N, Carè A, Pfeffer U, D'Atri S. miR-126-3p down-regulation contributes to dabrafenib acquired resistance in melanoma by up-regulating ADAM9 and VEGF-A. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:272. [PMID: 31227006 PMCID: PMC6588909 DOI: 10.1186/s13046-019-1238-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
Background Development of resistance to inhibitors of BRAF (BRAFi) and MEK (MEKi) remains a great challenge for targeted therapy in patients with BRAF-mutant melanoma. Here, we explored the role of miRNAs in melanoma acquired resistance to BRAFi. Methods miRNA expression in two BRAF-mutant melanoma cell lines and their dabrafenib-resistant sublines was determined using Affymetrix GeneChip® miRNA 3.1 microarrays and/or qRT-PCR. The effects of miR-126-3p re-expression on proliferation, apoptosis, cell cycle, ERK1/2 and AKT phosphorylation, dabrafenib sensitivity, invasiveness and VEGF-A secretion were evaluated in the dabrafenib-resistant sublines using MTT assays, flow cytometry, immunoblotting, invasion assays in Boyden chambers and ELISA. ADAM9, PIK3R2, MMP7 and CXCR4 expression in the sensitive and dabrafenib-resistant cells was determined by immunoblotting. Small RNA interference was performed to investigate the consequence of VEGFA or ADAM9 silencing on proliferation, invasiveness or dabrafenib sensitivity of the resistant sublines. Long-term proliferation assays were carried out in dabrafenib-sensitive cells to assess the effects of enforced miR-126-3p expression or ADAM9 silencing on resistance development. VEGF-A serum levels in melanoma patients treated with BRAFi or BRAFi+MEKi were evaluated at baseline (T0), after two months of treatment (T2) and at progression (TP) by ELISA. Results miR-126-3p was significantly down-regulated in the dabrafenib-resistant sublines as compared with their parental counterparts. miR-126-3p replacement in the drug-resistant cells inhibited proliferation, cell cycle progression, phosphorylation of ERK1/2 and/or AKT, invasiveness, VEGF-A and ADAM9 expression, and increased dabrafenib sensitivity. VEGFA or ADAM9 silencing impaired proliferation and invasiveness of the drug-resistant sublines. ADAM9 knock-down in the resistant cells increased dabrafenib sensitivity, whereas miR-126-3p enforced expression or ADAM9 silencing in the drug-sensitive cells delayed the development of resistance. At T0 and T2, statistically significant differences were observed in VEGF-A serum levels between patients who responded to therapy and patients who did not. In responder patients, a significant increase of VEGF-A levels was observed at TP versus T2. Conclusions Strategies restoring miR-126-3p expression or targeting VEGF-A or ADAM9 could restrain growth and metastasis of dabrafenib-resistant melanomas and increase their drug sensitivity. Circulating VEGF-A is a promising biomarker for predicting patients’ response to BRAFi or BRAFi+MEKi and for monitoring the onset of resistance. Electronic supplementary material The online version of this article (10.1186/s13046-019-1238-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | - Adriana Amaro
- Molecular Pathology, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Lauretta Levati
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | - Ester Alvino
- Institute of Translational Pharmacology, National Council of Research, Rome, Italy
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | | | - Federica Ruffini
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy
| | | | - Nadia Felli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center of Gender Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ulrich Pfeffer
- Molecular Pathology, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167, Rome, Italy.
| |
Collapse
|
18
|
Current Evidence on miRNAs as Potential Theranostic Markers for Detecting Chemoresistance in Colorectal Cancer: A Systematic Review and Meta-Analysis of Preclinical and Clinical Studies. Mol Diagn Ther 2019; 23:65-82. [PMID: 30726546 DOI: 10.1007/s40291-019-00381-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Findings from observational clinical studies examining the relationship between biomarker expression and theranosis in colorectal cancer (CRC) have been conflicting. OBJECTIVE We conducted this systematic review and meta-analysis to summarise the existing evidence to demonstrate the involvement of microRNAs (miRNAs) in chemoresistance and sensitivity in CRC through drug genetic pathways. METHODS Using PRISMA guidelines, we systematically searched PubMed and Science Direct for relevant studies that took place between 2012 and 2017. A random-effects model of meta-analysis was applied to evaluate the pooled effect size of hazard ratios (HRs) across the included studies. Cochran's Q test and the I2 statistic were used to detect heterogeneity. A funnel plot was used to assess potential publication bias. RESULTS Of the 4700 studies found, 39 studies comprising 2822 patients with CRC met the inclusion criteria. The included studies used one or a combination of 14 chemotherapy drugs, including 5-fluorouracil and oxaliplatin. Of the 60 miRNAs, 28 were associated with chemosensitivity, 20 with chemoresistance, and one with differential expression and radiosensitivity; ten miRNAs were not associated with any impact on chemotherapy. The results outline the importance of 34 drug-regulatory pathways of chemoresistance and sensitivity in CRC. The mean effect size was 0.689 (95% confidence interval 0.428-1.110), indicating that the expression of miRNAs decreased the likelihood of death by about 32%. CONCLUSION Studies have consistently shown that multiple miRNAs could act as clinical predictors of chemoresistance and sensitivity. An inclusion of supplementary miRNA estimation in CRC routine practice needs to be considered to evaluate the efficacy of chemotherapy after confirming our findings with large-scale prospective cohort studies. PROSPERO REGISTRATION NUMBER CRD42017082196.
Collapse
|
19
|
Tu J, Cheung HH, Lu G, Chan CLK, Chen Z, Chan WY. microRNA-126 Is a Tumor Suppressor of Granulosa Cell Tumor Mediated by Its Host Gene EGFL7. Front Oncol 2019; 9:486. [PMID: 31245291 PMCID: PMC6579899 DOI: 10.3389/fonc.2019.00486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 05/23/2019] [Indexed: 02/03/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at a post-transcriptional level. We examined the role of miR-126 in granulosa cell tumor (GCT) of the ovaries. In tissues from malignant GCT patients miR-126 expression was repressed. We showed that miR-126 could inhibit proliferation, migration, hormone production and promote apoptosis of cancerous granulosa cells (GCs) in vitro. The role of miR-126 as “tumor suppressor” was confirmed by using a tumor formation model in vivo. By RNA-seq, immunohistochemical staining (IHC), Western blot and luciferase reporter assay, we identified and confirmed EGFL7 as a direct functional target of miR-126 in cancer GCs. Furthermore, we found that the AKT signaling pathway was associated with miR-126 and EGFL7 in cancer GCs. Taken together, our results demonstrate a function of miR-126 in the suppression of GCT development via the regulation of EGFL7.
Collapse
Affiliation(s)
- Jiajie Tu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Hoi-Hung Cheung
- CUHK-SDU Joint Laboratory on Reproductive Genetics, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Zijiang Chen
- CUHK-SDU Joint Laboratory on Reproductive Genetics, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| |
Collapse
|
20
|
Jian M, Du Q, Zhu D, Mao Z, Wang X, Feng Y, Xiao Z, Wang H, Zhu Y. Tumor suppressor miR-145-5p sensitizes prolactinoma to bromocriptine by downregulating TPT1. J Endocrinol Invest 2019; 42:639-652. [PMID: 30370446 DOI: 10.1007/s40618-018-0963-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/01/2018] [Indexed: 01/27/2023]
Abstract
PURPOSE Prolactinoma is the most commonly seen secretory tumor of pituitary glands, which accounts for approximately up to 40% of total pituitary adenomas. Due to its high drug resistance, dopamine agonist, such as bromocriptine, has limited effect on the treatment of patients with prolactinoma. Recent discoveries have revealed that multiple miRNAs were involved in regulating drug resistance. In this research, we explored the relationship between miR-145-5p expression as well as bromocriptine sensitivity both in vitro and in vivo. METHODS To study the role of miR-145-5p in drug resistance of prolactinoma, the expression levels of miR-145-5p in bromocriptine-resistant prolactinoma cell line MMQ/BRC and its parental cell line MMQ cells, 24 bromocriptine-resistant as well as eight sensitive clinical samples were measured by qRT-PCR. Moreover, CCK8, flow cytometry and immunofluorescence were performed to identify the biological characteristics of MMQ/BRC and MMQ. TPT1 was predicted as a direct target gene of miR-145-5p by bioinformatic methods. In addition, qRT-PCR, western blot and immunohistochemistry were used to detect the expression level of TPT1 in clinical specimens and cell lines. Xenograft mouse model was constructed to analyze whether miR-145-5p could reverse bromocriptine resistance in prolactinoma in vivo. RESULTS In our study, bromocriptine-resistant prolactinoma clinical samples and cell line had decreased miR-145-5p levels and expressed high levels of TPT1 compared with their sensitive counterparts. Bioinformatic methods and our preliminary dual luciferase reporter assay were utilized to elucidate that TPT1 was a direct target gene of miR-145-5p. Furthermore, introducing miR-145-5p mimic into MMQ cells led to a decrease of IC50 along with upregulation of TPT1; nevertheless, transfecting the corresponding inhibitor into MMQ cells resulted in an upregulation of IC50 as well as reduction of TPT1. CONCLUSIONS Collectively, our findings elucidated the role of miR-145-5p as an important regulator of drug resistance in prolactinoma by controlling TPT1, and implicated the potential application of miR-145-5p in cancer therapy as well.
Collapse
Affiliation(s)
- M Jian
- Department of Histology and Embryology, Medical School of Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Q Du
- Department of Histology and Embryology, Medical School of Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - D Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Z Mao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - X Wang
- Department of Histology and Embryology, Medical School of Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Y Feng
- Department of Histology and Embryology, Medical School of Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Z Xiao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - H Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| | - Y Zhu
- Department of Histology and Embryology, Medical School of Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
21
|
miR-126-3p sensitizes glioblastoma cells to temozolomide by inactivating Wnt/β-catenin signaling via targeting SOX2. Life Sci 2019; 226:98-106. [DOI: 10.1016/j.lfs.2019.04.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/27/2022]
|
22
|
Safa AR, Kamocki K, Saadatzadeh MR, Bijangi-Vishehsaraei K. c-FLIP, a Novel Biomarker for Cancer Prognosis, Immunosuppression, Alzheimer's Disease, Chronic Obstructive Pulmonary Disease (COPD), and a Rationale Therapeutic Target. BIOMARKERS JOURNAL 2019; 5:4. [PMID: 32352084 PMCID: PMC7189798 DOI: 10.36648/2472-1646.5.1.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of c-FLIP (cellular FADD-like IL-1β-converting enzyme inhibitory protein) has been shown in several diseases including cancer, Alzheimer's disease, and chronic obstructive pulmonary disease (COPD). c-FLIP is a critical anti-cell death protein often overexpressed in tumors and hematological malignancies and its increased expression is often associated with a poor prognosis. c-FLIP frequently exists as long (c-FLIPL) and short (c-FLIPS) isoforms, regulates its anti-cell death functions through binding to FADD (FAS associated death domain protein), an adaptor protein known to activate caspases-8 and -10 and links c-FLIP to several cell death regulating complexes including the death-inducing signaling complex (DISC) formed by various death receptors. c-FLIP also plays a critical role in necroptosis and autophagy. Furthermore, c-FLIP is able to activate several pathways involved in cytoprotection, proliferation, and survival of cancer cells through various critical signaling proteins. Additionally, c-FLIP can inhibit cell death induced by several chemotherapeutics, anti-cancer small molecule inhibitors, and ionizing radiation. Moreover, c-FLIP plays major roles in aiding the survival of immunosuppressive tumor-promoting immune cells and functions in inflammation, Alzheimer's disease (AD), and chronic obstructive pulmonary disease (COPD). Therefore, c-FLIP can serve as a versatile biomarker for cancer prognosis, a diagnostic marker for several diseases, and an effective therapeutic target. In this article, we review the functions of c-FLIP as an anti-apoptotic protein and negative prognostic factor in human cancers, and its roles in resistance to anticancer drugs, necroptosis and autophagy, immunosuppression, Alzheimer's disease, and COPD.
Collapse
Affiliation(s)
- Ahmad R Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| | - Krzysztof Kamocki
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| | - M Reza Saadatzadeh
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, USA
| | | |
Collapse
|
23
|
Xu J, Wang H, Wang H, Chen Q, Zhang L, Song C, Zhou Q, Hong Y. The inhibition of miR-126 in cell migration and invasion of cervical cancer through regulating ZEB1. Hereditas 2019; 156:11. [PMID: 31007650 PMCID: PMC6456986 DOI: 10.1186/s41065-019-0087-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Cervical cancer is a malignancy that’s common in female with high incidence and mortality worldwide. MicroRNAs (miRNAs) act a pivotal part in human cancer development. Our aim was to investigate the effect of miR-126 on cervical cancer and its underlying molecular mechanism. Results Firstly, RT-qPCR assay revealed that the expression of miR-126 was significantly downregulated in cervical cancer tissues and cell lines, compared with that in normal adjacent tissues and normal cervical epithelial cell line (Ect1/E6E7), respectively. Then, ZEB1 was verified as a target of miR-126 by using luciferase reporter assay. Inversely, the expression of ZEB1 was markedly upregulated in tumor tissues, and its mRNA level was negatively regulated by miR-126 expression in SiHa and Hela cells. Moreover, the capability of cell proliferation, migration and invasion was analyzed by CCK-8, wound healing assay and transwell assay, respectively. The results demonstrated that overexpression of miR-126 inhibited SiHa and Hela cell proliferation, migration and invasion, while ZEB1 abolished the inhibition induced by miR-126. Additionally, miR-126 suppressed MMP2 and MMP9 in mRNA and protein levels, as well as inhibited the protein expression of p-JAK2 and p-STAT3 in both SiHa and Hela cells, while ZEB1 rescued miR-126-induced suppression. Conclusion miR-126 functions as a tumor suppressor in cervical cancer cells in vitro, which inhibits the proliferation, migration and invasion by suppressing MMP2, MMP9 expression and inactivating JAK2/STAT3 signaling pathway through targeting ZEB1, suggesting that miR-126 might be a novel potential target for the diagnosis and treatment of patients with cervical cancer.
Collapse
Affiliation(s)
- Jiqin Xu
- 1Department of Gynaecology and Obstetrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical University, No. 321 Zhongshan Road, Gulou District, Nanjing, 210008 Jiangsu China.,2Department of Gynaecology and Obstetrics, Shuyang People's Hospital, Shuyang Hospital Affiliated to Xuzhou Medical University, Suqian, 223600 Jiangsu China
| | - Hongyun Wang
- 3Department of Gynaecology and Obstetrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008 Jiangsu China
| | - Huiyan Wang
- 1Department of Gynaecology and Obstetrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical University, No. 321 Zhongshan Road, Gulou District, Nanjing, 210008 Jiangsu China
| | - Qing Chen
- 4Department of Gynaecology and Obstetrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000 Jiangsu China
| | - Li Zhang
- 3Department of Gynaecology and Obstetrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008 Jiangsu China
| | - Chao Song
- 5State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100 Jiangsu China
| | - Qianqian Zhou
- 5State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100 Jiangsu China
| | - Ying Hong
- 1Department of Gynaecology and Obstetrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical University, No. 321 Zhongshan Road, Gulou District, Nanjing, 210008 Jiangsu China
| |
Collapse
|
24
|
Molecular pathways involved in microRNA-mediated regulation of multidrug resistance. Mol Biol Rep 2018; 45:2913-2923. [DOI: 10.1007/s11033-018-4358-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022]
|
25
|
Down‐regulation of intracellular anti‐apoptotic proteins, particularly c‐FLIP by therapeutic agents; the novel view to overcome resistance to TRAIL. J Cell Physiol 2018; 233:6470-6485. [PMID: 29741767 DOI: 10.1002/jcp.26585] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/08/2018] [Indexed: 12/24/2022]
|
26
|
De-Ugarte L, Serra-Vinardell J, Nonell L, Balcells S, Arnal M, Nogues X, Mellibovsky L, Grinberg D, Diez-Perez A, Garcia-Giralt N. Expression profiling of microRNAs in human bone tissue from postmenopausal women. Hum Cell 2017; 31:33-41. [PMID: 28933035 DOI: 10.1007/s13577-017-0181-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.
Collapse
Affiliation(s)
- Laura De-Ugarte
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Jenny Serra-Vinardell
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, IBUB, IRSJD, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Lara Nonell
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Susana Balcells
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, IBUB, IRSJD, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Magdalena Arnal
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Xavier Nogues
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Leonardo Mellibovsky
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, IBUB, IRSJD, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Adolfo Diez-Perez
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Natalia Garcia-Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|