1
|
Zhong F, Li W, Zhao C, Jin L, Lu X, Zhao Y, Pu J, Ge H. Basigin Deficiency Induces Spontaneous Polycystic Kidney in Mice. Hypertension 2024; 81:114-125. [PMID: 37955149 DOI: 10.1161/hypertensionaha.123.21486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Polycystic kidney disease is the most common hereditary kidney disorder with early and frequent hypertension symptoms. The mechanisms of cyst progression in polycystic kidney disease remain incompletely understood. METHODS Bsg (basigin) heterozygous and homozygous knockout mice were generated using cas9 system, and Bsg overexpression was achieved by adeno-associated virus serotype 9 injection. Renal morphology was investigated through histological and imaging analysis. Molecular analysis was performed through transcriptomic profiling and biochemical approaches. RESULTS Bsg-deficient mice exhibited significantly elevated arterial blood pressure. Further investigation demonstrated that Bsg deficiency triggers spontaneous cystic formation in mouse kidneys, which shares similar cyst pathological features and common transcriptional regulatory pathways with human polycystic kidney disease. Moreover, Bsg disruption promoted polycystin-1 ubiquitination and degradation, leading to activation of polycystic kidney disease associated cAMP and AMPK signaling pathways in Bsg knockout mouse kidneys. Finally, adeno-associated virus serotype 9 mediated Bsg reexpression reversed cystic progression in Bsg knockout mice in vivo, and Bsg overexpression inhibited the expansion of Madin-Darby canine kidney cysts in vitro. CONCLUSIONS Our findings show that Bsg deficiency leads to an early-onset spontaneous polycystic kidney phenotype, suggesting that dysregulated Bsg signaling may be a contributing factor in cystogenesis.
Collapse
Affiliation(s)
- Fangyuan Zhong
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Wenli Li
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Chenxu Zhao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Lixing Jin
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Xiyuan Lu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Yichao Zhao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Heng Ge
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
2
|
Chen M, Gu X. Emerging roles of proximal tubular endocytosis in renal fibrosis. Front Cell Dev Biol 2023; 11:1235716. [PMID: 37799275 PMCID: PMC10547866 DOI: 10.3389/fcell.2023.1235716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
Endocytosis is a crucial component of many pathological conditions. The proximal tubules are responsible for reabsorbing the majority of filtered water and glucose, as well as all the proteins filtered through the glomerular barrier via endocytosis, indicating an essential role in kidney diseases. Genetic mutations or acquired insults could affect the proximal tubule endocytosis processes, by disturbing or overstressing the endolysosomal system and subsequently activating different pathways, orchestrating renal fibrosis. This paper will review recent studies on proximal tubular endocytosis affected by other diseases and factors. Endocytosis plays a vital role in the development of renal fibrosis, and renal fibrosis could also, in turn, affect tubular endocytosis.
Collapse
Affiliation(s)
- Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangchen Gu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Medicine, Shanghai Hospital of Civil Aviation Administration of China, Shanghai, China
| |
Collapse
|
3
|
Swenson-Fields KI, Ward CJ, Lopez ME, Fross S, Heimes Dillon AL, Meisenheimer JD, Rabbani AJ, Wedlock E, Basu MK, Jansson KP, Rowe PS, Stubbs JR, Wallace DP, Vitek MP, Fields TA. Caspase-1 and the inflammasome promote polycystic kidney disease progression. Front Mol Biosci 2022; 9:971219. [PMID: 36523654 PMCID: PMC9745047 DOI: 10.3389/fmolb.2022.971219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/15/2022] [Indexed: 05/03/2024] Open
Abstract
We and others have previously shown that the presence of renal innate immune cells can promote polycystic kidney disease (PKD) progression. In this study, we examined the influence of the inflammasome, a key part of the innate immune system, on PKD. The inflammasome is a system of molecular sensors, receptors, and scaffolds that responds to stimuli like cellular damage or microbes by activating Caspase-1, and generating critical mediators of the inflammatory milieu, including IL-1β and IL-18. We provide evidence that the inflammasome is primed in PKD, as multiple inflammasome sensors were upregulated in cystic kidneys from human ADPKD patients, as well as in kidneys from both orthologous (PKD1 RC/RC or RC/RC) and non-orthologous (jck) mouse models of PKD. Further, we demonstrate that the inflammasome is activated in female RC/RC mice kidneys, and this activation occurs in renal leukocytes, primarily in CD11c+ cells. Knock-out of Casp1, the gene encoding Caspase-1, in the RC/RC mice significantly restrained cystic disease progression in female mice, implying sex-specific differences in the renal immune environment. RNAseq analysis implicated the promotion of MYC/YAP pathways as a mechanism underlying the pro-cystic effects of the Caspase-1/inflammasome in females. Finally, treatment of RC/RC mice with hydroxychloroquine, a widely used immunomodulatory drug that has been shown to inhibit the inflammasome, protected renal function specifically in females and restrained cyst enlargement in both male and female RC/RC mice. Collectively, these results provide evidence for the first time that the activated Caspase-1/inflammasome promotes cyst expansion and disease progression in PKD, particularly in females. Moreover, the data suggest that this innate immune pathway may be a relevant target for therapy in PKD.
Collapse
Affiliation(s)
- Katherine I. Swenson-Fields
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Christopher J. Ward
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | - Micaila E. Lopez
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shaneann Fross
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Anna L. Heimes Dillon
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - James D. Meisenheimer
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Adib J. Rabbani
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Emily Wedlock
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Malay K. Basu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kyle P. Jansson
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | - Peter S. Rowe
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jason R. Stubbs
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | - Darren P. Wallace
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael P. Vitek
- Duke University Medical Center, Durham, NC, United States
- Resilio Therapeutics LLC, Durham, NC, United States
| | - Timothy A. Fields
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
4
|
Pagliarini R, Podrini C. Metabolic Reprogramming and Reconstruction: Integration of Experimental and Computational Studies to Set the Path Forward in ADPKD. Front Med (Lausanne) 2021; 8:740087. [PMID: 34901057 PMCID: PMC8652061 DOI: 10.3389/fmed.2021.740087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic reprogramming is a key feature of Autosomal Dominant Polycystic Kidney Disease (ADPKD) characterized by changes in cellular pathways occurring in response to the pathological cell conditions. In ADPKD, a broad range of dysregulated pathways have been found. The studies supporting alterations in cell metabolism have shown that the metabolic preference for abnormal cystic growth is to utilize aerobic glycolysis, increasing glutamine uptake and reducing oxidative phosphorylation, consequently resulting in ADPKD cells shifting their energy to alternative energetic pathways. The mechanism behind the role of the polycystin proteins and how it leads to disease remains unclear, despite the identification of numerous signaling pathways. The integration of computational data analysis that accompanies experimental findings was pivotal in the identification of metabolic reprogramming in ADPKD. Here, we summarize the important results and argue that their exploitation may give further insights into the regulative mechanisms driving metabolic reprogramming in ADPKD. The aim of this review is to provide a comprehensive overview on metabolic focused studies and potential targets for treatment, and to propose that computational approaches could be instrumental in advancing this field of research.
Collapse
Affiliation(s)
- Roberto Pagliarini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - Christine Podrini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Strong A, Skraban C, Meyers K, Amaral S, Furth S, Drant S, Hsiao W, Galea L, Gold J, Gold NB, Leonard J, Lopez S, Zackai EH, Pyeritz RE. Expanding the phenotypic spectrum of Mendelian connective tissue disorders to include prominent kidney phenotypes. Am J Med Genet A 2021; 185:3762-3769. [PMID: 34355836 PMCID: PMC9888756 DOI: 10.1002/ajmg.a.62449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 02/02/2023]
Abstract
Heritable connective tissue disorders are a group of diseases, each rare, characterized by various combinations of skin, joint, musculoskeletal, organ, and vascular involvement. Although kidney abnormalities have been reported in some connective tissue disorders, they are rarely a presenting feature. Here we present three patients with prominent kidney phenotypes who were found by whole exome sequencing to have variants in established connective tissue genes associated with Loeys-Dietz syndrome and congenital contractural arachnodactyly. These cases highlight the importance of considering connective tissue disease in children presenting with structural kidney disease and also serves to expand the phenotype of Loeys-Dietz syndrome and possibly congenital contractural arachnodactyly to include cystic kidney disease and cystic kidney dysplasia, respectively.
Collapse
Affiliation(s)
- Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cara Skraban
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin Meyers
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sandra Amaral
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Susan Furth
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Stacey Drant
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Wendy Hsiao
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lauren Galea
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jessica Gold
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nina B. Gold
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacqueline Leonard
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sonya Lopez
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elaine H. Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Reed E. Pyeritz
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Kiseleva AA, Golemis EA. Informatics-guided drug repurposing for Autosomal Dominant Polycystic Kidney Disease (ADPKD). EBioMedicine 2020; 52:102628. [PMID: 31981981 PMCID: PMC6976921 DOI: 10.1016/j.ebiom.2020.102628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Anna A Kiseleva
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111, United States; Kazan Federal University, 420000 Kazan, Russian Federation
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111, United States.
| |
Collapse
|
7
|
Identification of ADPKD-Related Genes and Pathways in Cells Overexpressing PKD2. Genes (Basel) 2020; 11:genes11020122. [PMID: 31979107 PMCID: PMC7074416 DOI: 10.3390/genes11020122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/17/2022] Open
Abstract
Consistent with the gene dosage effect hypothesis, renal cysts can arise in transgenic murine models overexpressing either PKD1 or PKD2, which are causal genes for autosomal dominant polycystic kidney disease (ADPKD). To determine whether PKD gene overexpression is a universal mechanism driving cystogenesis or is merely restricted to rodents, other animal models are required. Previously, we failed to observe any renal cysts in a transgenic porcine model of PKD2 overexpression partially due to epigenetic silencing of the transgene. Thus, to explore the feasibility of porcine models and identify potential genes/pathways affected in ADPKD, LLC-PK1 cells with high PKD2 expression were generated. mRNA sequencing (RNA-seq) was performed, and MYC, IER3, and ADM were found to be upregulated genes common to the different PKD2 overexpression cell models. MYC is a well-characterized factor contributing to cystogenesis, and ADM is a biomarker for chronic kidney disease. Thus, these genes might be indicators of disease progression. Additionally, some ADPKD-associated pathways, e.g., the mitogen-activated protein kinase (MAPK) pathway, were enriched in the cells. Moreover, gene ontology (GO) analysis demonstrated that proliferation, apoptosis, and cell cycle regulation, which are hallmarks of ADPKD, were altered. Therefore, our experiment identified some biomarkers or indicators of ADPKD, indicating that high PKD2 expression would likely drive cystogenesis in future porcine models.
Collapse
|
8
|
Muñoz JJ, Anauate AC, Amaral AG, Ferreira FM, Meca R, Ormanji MS, Boim MA, Onuchic LF, Heilberg IP. Identification of housekeeping genes for microRNA expression analysis in kidney tissues of Pkd1 deficient mouse models. Sci Rep 2020; 10:231. [PMID: 31937827 PMCID: PMC6959247 DOI: 10.1038/s41598-019-57112-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022] Open
Abstract
Polycystic kidney disease is a complex clinical entity which comprises a group of genetic diseases that leads to renal cyst development. We evaluated the most suitable housekeeping genes for microRNA expression by RT-qPCR analyses of kidney tissues in Pkd1-deficient mouse models from a panel of five candidates genes (miR-20a, miR-25, miR-26a, miR-191 and U6) and 3 target genes (miR-17, miR-21 and let-7a) using samples from kidneys of cystic mice (Pkd1flox/flox:Nestincre, CY), non-cystic controls (Pkd1flox/flox, NC), Pkd1-haploinsufficient (Pkd1+/−, HT), wild-type controls (Pkd1+/+, WT), severely cystic mice (Pkd1V/V, SC), wild-type controls (CO). The stability of the candidate genes was investigated using NormFinder, GeNorm, BestKeeper, DataAssist, and RefFinder software packages and the comparative ΔCt method. The analyses identified miR-26a as the most stable housekeeping gene for all kidney samples, miR-20a for CY and NC, miR-20a and miR-26a for HT and WT, and miR-25 and miR-26a for SC and CO. Expression of miR-21 was upregulated in SC compared to CO and trends of miR-21 upregulation and let-7a downregulation in CY and HT compared to its control kidneys, when normalized by different combinations of miR-20a, miR-25 and miR-26a. Our findings established miR-20a, miR-25, and miR-26a as the best housekeeping genes for miRNA expression analyses by RT-qPCR in kidney tissues of Pkd1-deficient mouse models.
Collapse
Affiliation(s)
- J J Muñoz
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - A C Anauate
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - A G Amaral
- Divisions of Molecular Medicine and Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - F M Ferreira
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - R Meca
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M S Ormanji
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M A Boim
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - L F Onuchic
- Divisions of Molecular Medicine and Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - I P Heilberg
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
A high throughput zebrafish chemical screen reveals ALK5 and non-canonical androgen signalling as modulators of the pkd2 -/- phenotype. Sci Rep 2020; 10:72. [PMID: 31919453 PMCID: PMC6952374 DOI: 10.1038/s41598-019-56995-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/17/2019] [Indexed: 01/14/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of end-stage renal failure in humans and results from germline mutations in PKD1 or PKD2. Despite the recent approval of tolvaptan, safer and more effective alternative drugs are clearly needed to slow disease progression. As a first step in drug discovery, we conducted an unbiased chemical screen on zebrafish pkd2 mutant embryos using two publicly available compound libraries (Spectrum, PKIS) totalling 2,367 compounds to identify novel treatments for ADPKD. Using dorsal tail curvature as the assay readout, three major chemical classes (steroids, coumarins, flavonoids) were identified from the Spectrum library as the most promising candidates to be tested on human PKD1 cystic cells. Amongst these were an androgen, 5α−androstane 3,17-dione, detected as the strongest enhancer of the pkd2 phenotype but whose effect was found to be independent of the canonical androgen receptor pathway. From the PKIS library, we identified several ALK5 kinase inhibitors as strong suppressors of the pkd2 tail phenotype and in vitro cyst expansion. In summary, our results identify ALK5 and non-canonical androgen receptors as potential therapeutic targets for further evaluation in drug development for ADPKD.
Collapse
|
10
|
The role of DNA damage as a therapeutic target in autosomal dominant polycystic kidney disease. Expert Rev Mol Med 2019; 21:e6. [PMID: 31767049 DOI: 10.1017/erm.2019.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease and is caused by heterozygous germ-line mutations in either PKD1 (85%) or PKD2 (15%). It is characterised by the formation of numerous fluid-filled renal cysts and leads to adult-onset kidney failure in ~50% of patients by 60 years. Kidney cysts in ADPKD are focal and sporadic, arising from the clonal proliferation of collecting-duct principal cells, but in only 1-2% of nephrons for reasons that are not clear. Previous studies have demonstrated that further postnatal reductions in PKD1 (or PKD2) dose are required for kidney cyst formation, but the exact triggering factors are not clear. A growing body of evidence suggests that DNA damage, and activation of the DNA damage response pathway, are altered in ciliopathies. The aims of this review are to: (i) analyse the evidence linking DNA damage and renal cyst formation in ADPKD; (ii) evaluate the advantages and disadvantages of biomarkers to assess DNA damage in ADPKD and finally, (iii) evaluate the potential effects of current clinical treatments on modifying DNA damage in ADPKD. These studies will address the significance of DNA damage and may lead to a new therapeutic approach in ADPKD.
Collapse
|
11
|
Liu D, Huo Y, Chen S, Xu D, Yang B, Xue C, Fu L, Bu L, Song S, Mei C. Identification of Key Genes and Candidated Pathways in Human Autosomal Dominant Polycystic Kidney Disease by Bioinformatics Analysis. Kidney Blood Press Res 2019; 44:533-552. [DOI: 10.1159/000500458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 11/19/2022] Open
Abstract
Background/Aims: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic form of kidney disease. High-throughput microarray analysis has been applied for elucidating key genes and pathways associated with ADPKD. Most genetic profiling data from ADPKD patients have been uploaded to public databases but not thoroughly analyzed. This study integrated 2 human microarray profile datasets to elucidate the potential pathways and protein-protein interactions (PPIs) involved in ADPKD via bioinformatics analysis in order to identify possible therapeutic targets. Methods: The kidney tissue microarray data of ADPKD patients and normal individuals were searched and obtained from NCBI Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified, and enriched pathways and central node genes were elucidated using related websites and software according to bioinformatics analysis protocols. Seven DEGs were validated between polycystic kidney disease and control kidney samples by quantitative real-time polymerase chain reaction. Results: Two original human microarray datasets, GSE7869 and GSE35831, were integrated and thoroughly analyzed. In total, 6,422 and 1,152 DEGs were extracted from GSE7869 and GSE35831, respectively, and of these, 561 DEGs were consistent between the databases (291 upregulated genes and 270 downregulated genes). From 421 nodes, 34 central node genes were obtained from a PPI network complex of DEGs. Two significant modules were selected from the PPI network complex by using Cytotype MCODE. Most of the identified genes are involved in protein binding, extracellular region or space, platelet degranulation, mitochondrion, and metabolic pathways. Conclusions: The DEGs and related enriched pathways in ADPKD identified through this integrated bioinformatics analysis provide insights into the molecular mechanisms of ADPKD and potential therapeutic strategies. Specifically, abnormal decorin expression in different stages of ADPKD may represent a new therapeutic target in ADPKD, and regulation of metabolism and mitochondrial function in ADPKD may become a focus of future research.
Collapse
|