1
|
Huang Y, Shi W, He Q, Tan J, Tong J, Yu B. Racial and ethnic influences on carotid atherosclerosis: Epidemiology and risk factors. SAGE Open Med 2024; 12:20503121241261840. [PMID: 39045542 PMCID: PMC11265241 DOI: 10.1177/20503121241261840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Carotid atherosclerosis-related stenosis, marked by atherosclerotic plaque formation in the carotid artery, significantly increases ischemic stroke risk. Its prevalence varies across ethnic groups, reflecting racial disparities. Epidemiological studies have highlighted different susceptibilities to carotid stenosis among racial groups. Native Americans and Whites show greater vulnerability, indicating genetic and environmental influences. The impact of carotid stenosis is more severe in Hispanic and Black populations, with a higher incidence of related brain injuries, underscoring the need for targeted interventions. Comparative imaging studies between Chinese and White individuals reveal unique patterns of carotid stenosis, enhancing understanding of its pathophysiology and management across ethnicities. This review also categorizes risk factors, distinguishing those with racial disparity (such as genetic loci, sleep apnea, and emotional factors, socioeconomic status) from those without. In summary, racial disparities affect carotid stenosis, leading to varying susceptibilities and outcomes among ethnic groups. Recognizing these differences is essential for developing effective prevention, diagnosis, and management strategies. Addressing these disparities is critical to reducing ischemic stroke's burden across populations. Continued research and targeted interventions are crucial to improve outcomes for individuals at risk of carotid stenosis and its complications.
Collapse
Affiliation(s)
- Yijun Huang
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weihao Shi
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qing He
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinyun Tan
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jindong Tong
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Bo Yu
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
2
|
Ravi S, Martin LC, Krishnan M, Kumaresan M, Manikandan B, Ramar M. Interactions between macrophage membrane and lipid mediators during cardiovascular diseases with the implications of scavenger receptors. Chem Phys Lipids 2024; 258:105362. [PMID: 38006924 DOI: 10.1016/j.chemphyslip.2023.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The onset and progression of cardiovascular diseases with the major underlying cause being atherosclerosis, occur during chronic inflammatory persistence in the vascular system, especially within the arterial wall. Such prolonged maladaptive inflammation is driven by macrophages and their key mediators are generally attributed to a disparity in lipid metabolism. Macrophages are the primary cells of innate immunity, endowed with expansive membrane domains involved in immune responses with their signalling systems. During atherosclerosis, the membrane domains and receptors control various active organisations of macrophages. Their scavenger/endocytic receptors regulate the trafficking of intracellular and extracellular cargo. Corresponding influence on lipid metabolism is mediated by their dynamic interaction with scavenger membrane receptors and their integrated mechanisms such as pinocytosis, phagocytosis, cholesterol export/import, etc. This interaction not only results in the functional differentiation of macrophages but also modifies their structural configurations. Here, we reviewed the association of macrophage membrane biomechanics and their scavenger receptor families with lipid metabolites during the event of atherogenesis. In addition, the membrane structure of macrophages and the signalling pathways involved in endocytosis integrated with lipid metabolism are detailed. This article establishes future insights into the scavenger receptors as potential targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
3
|
Wang B, Liang B, Huang Y, Li Z, Zhang B, Du J, Ye R, Xian H, Deng Y, Xiu J, Yang X, Ichihara S, Ichihara G, Zhong Y, Huang Z. Long-Chain Acyl Carnitines Aggravate Polystyrene Nanoplastics-Induced Atherosclerosis by Upregulating MARCO. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205876. [PMID: 37144527 PMCID: PMC10323628 DOI: 10.1002/advs.202205876] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 04/10/2023] [Indexed: 05/06/2023]
Abstract
Exposure to micro- and nanoplastics (MNPs) is common because of their omnipresence in environment. Recent studies have revealed that MNPs may cause atherosclerosis, but the underlying mechanism remains unclear. To address this bottleneck, ApoE-/- mice are exposed to 2.5-250 mg kg-1 polystyrene nanoplastics (PS-NPs, 50 nm) by oral gavage with a high-fat diet for 19 weeks. It is found that PS-NPs in blood and aorta of mouse exacerbate the artery stiffness and promote atherosclerotic plaque formation. PS-NPs activate phagocytosis of M1-macrophage in the aorta, manifesting as upregulation of macrophage receptor with collagenous structure (MARCO). Moreover, PS-NPs disrupt lipid metabolism and increase long-chain acyl carnitines (LCACs). LCAC accumulation is attributed to the PS-NP-inhibited hepatic carnitine palmitoyltransferase 2. PS-NPs, as well as LCACs alone, aggravate lipid accumulation via upregulating MARCO in the oxidized low-density lipoprotein-activated foam cells. Finally, synergistic effects of PS-NPs and LCACs on increasing total cholesterol in foam cells are found. Overall, this study indicates that LCACs aggravate PS-NP-induced atherosclerosis by upregulating MARCO. This study offers new insight into the mechanisms underlying MNP-induced cardiovascular toxicity, and highlights the combined effects of MNPs with endogenous metabolites on the cardiovascular system, which warrant further study.
Collapse
Affiliation(s)
- Bo Wang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Boxuan Liang
- Affiliated Dongguan People's HospitalSouthern Medical UniversityDongguan523059China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Bingli Zhang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Yanhong Deng
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Jiancheng Xiu
- State Key Laboratory of Organ Failure ResearchDepartment of CardiologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Sahoko Ichihara
- Department of Environmental and Preventive MedicineSchool of MedicineJichi Medical UniversityTochigi329‐0498Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental HealthFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda278‐8510Japan
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
4
|
CYP7A1, NPC1L1, ABCB1, and CD36 Polymorphisms Are Associated with Increased Serum Coenzyme Q 10 after Long-Term Supplementation in Women. Antioxidants (Basel) 2021; 10:antiox10030431. [PMID: 33799730 PMCID: PMC7998724 DOI: 10.3390/antiox10030431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/03/2023] Open
Abstract
Coenzyme Q10 (CoQ10), an essential component for energy production that exhibits antioxidant activity, is considered a health-supporting and antiaging supplement. However, intervention-controlled studies have provided variable results on CoQ10 supplementation benefits, which may be attributed to individual CoQ10 bioavailability differences. This study aimed to investigate the relationship between genetic polymorphisms and CoQ10 serum levels after long-term supplementation. CoQ10 levels at baseline and after one year of supplementation (150 mg) were determined, and eight single nucleotide polymorphisms (SNPs) in cholesterol metabolism and CoQ10 absorption, efflux, and cellular uptake related genes were assessed. Rs2032582 (ABCB1) and rs1761667 (CD36) were significantly associated with a higher increase in CoQ10 levels in women. In addition, in women, rs3808607 (CYP7A1) and rs2072183 (NPC1L1) were significantly associated with a higher increase in CoQ10 per total cholesterol levels. Subgroup analyses showed that these four SNPs were useful for classifying high- or low-responder to CoQ10 bioavailability after long-term supplementation among women, but not in men. On the other hand, in men, no SNP was found to be significantly associated with increased serum CoQ10. These results collectively provide novel evidence on the relationship between genetics and CoQ10 bioavailability after long-term supplementation, which may help understand and assess CoQ10 supplementation effects, at least in women.
Collapse
|
5
|
Wu Y, Zhang F, Lu R, Feng Y, Li X, Zhang S, Hou W, Tian J, Kong X, Sun L. Functional lncRNA-miRNA-mRNA networks in rabbit carotid atherosclerosis. Aging (Albany NY) 2020; 12:2798-2813. [PMID: 32045883 PMCID: PMC7041763 DOI: 10.18632/aging.102778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/19/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is one of the most common clinical cardiovascular disorders. Accumulating evidence indicates that lncRNAs exert critical functions in atherosclerosis; however, their functional roles and regulatory mechanisms remain unclear. In this study, we induced atherosclerotic plaques in three rabbit carotid arteries through an atherogenic diet and balloon injury; three age-matched rabbits were fed normal chow and served as controls. We thoroughly investigated the RNA (mRNA, lncRNA and miRNA) expression profiles in atherosclerotic rabbit carotid models with deep RNA sequencing. We identified several significantly differentially expressed RNAs. The corresponding lncRNA-miRNA-mRNA network was constructed, and the significantly dysregulated network was selected. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that the mRNAs in the network were involved in leukocyte activation, cell proliferation, cell adhesion molecules and cytokine-cytokine receptor interaction. After rigorous screening, we obtained a differentially expressed lncRNA-miRNA-mRNA interaction network associated with atherosclerosis. In the network, XLOC_054118 and XLOC_030217 upregulate the CHI3L1, SOAT, CTSB and CAPG genes by competitively binding to the miRNA ocu-miR-96-5p. XLOC_062719 and XLOC_063297 upregulate CTSS, CTSB and EDNRA genes by competitively binding to the miRNA ocu-miR-185-5p.
Collapse
Affiliation(s)
- Yingnan Wu
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Feng Zhang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Rui Lu
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yanan Feng
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xiaoying Li
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Shuang Zhang
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Wenying Hou
- Department of Ultrasound, Xuanwu Hospital Capital University, Beijing 100053, China
| | - Jiawei Tian
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xianchao Kong
- Department of Gynecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Litao Sun
- Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang, China
- Department of Ultrasound, Shenzhen University General Hospital, Shenzhen 518055, Guangdong, China
| |
Collapse
|
6
|
Momeni-Moghaddam MA, Asadikaram G, Akbari H, Abolhassani M, Masoumi M, Nadimy Z, Khaksari M. CD36 gene polymorphism rs1761667 (G > A) is associated with hypertension and coronary artery disease in an Iranian population. BMC Cardiovasc Disord 2019; 19:140. [PMID: 31185924 PMCID: PMC6560776 DOI: 10.1186/s12872-019-1111-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/20/2019] [Indexed: 12/01/2022] Open
Abstract
Background CD36 is associated with regulation of lipid metabolism, atherosclerosis, and blood pressure. Moreover, its variation may be involved in the development of hypertension and/or coronary artery disease (CAD). The present study was conducted to investigate the possible association of CD36 rs1761667 (G > A) polymorphism with hypertension and/or CAD in the southeastern of Iran. Methods The present observational study was composed of 238 subjects who were admitted for coronary angiography, and divided into four groups: 1) hypertensive without CAD (H-Tens, n = 52); 2) hypertensive with CAD (CAD + H-Tens, n = 57); 3) CAD without hypertension (CAD, n = 65); and 4) non-hypertensive without CAD as the control group (Ctrl, n = 64). The CD36 rs1761667 polymorphism was genotyped with PCR-RFLP method. Association between CD36 rs1761667 genotypes and the risk of CAD and hypertension was assessed using multinomial regression by adjusting for age, sex, creatinine, fasting blood sugar (FBS), systolic blood pressure (SBP) and diastolic blood pressure (DBP). Results In the present study, minor allele (A) frequency was 0.36. The genotype, but not allele frequency of the CD36 rs1761667 was significantly different between the four study groups (p = 0.003). Furthermore, using a recessive inheritance model CD36 rs1761667 polymorphism was significantly associated with an increased risk of CAD with hypertension (OR = 5.677; 95% CI = 1.053–30.601; p = 0.043). However, using the dominant model of CD36 rs1761667 had a protective effect on H-Tens and CAD patients. Conclusion The present findings revealed an association between CD36 rs1761667 polymorphism and susceptibility to hypertension and/or CAD in a southeastern Iranian population.
Collapse
Affiliation(s)
- Mohammad Amin Momeni-Moghaddam
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran. .,Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman, Iran.
| | - Hamed Akbari
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Masoumi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Nadimy
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Abstract
The reduction of plasma apolipoprotein B (apoB) containing lipoproteins has long been pursued as the main modifiable risk factor for the development of cardiovascular disease (CVD). This has led to an intense search for strategies aiming at reducing plasma apoB-lipoproteins, culminating in reduction of overall CV risk. Despite 3 decades of progress, CVD remains the leading cause of morbidity and mortality worldwide and, as such, new therapeutic targets are still warranted. Clinical and preclinical research has moved forward from the original concept, under which some lipids must be accumulated and other removed to achieve the ideal condition in disease prevention, into the concept that mechanisms that orchestrate lipid movement between lipoproteins, cells and organelles is equally involved in CVD. As such, this review scrutinizes potentially atherogenic changes in lipid trafficking and assesses the molecular mechanisms behind it. New developments in risk assessment and new targets for the mitigation of residual CVD risk are also addressed.
Collapse
Affiliation(s)
- Andrei C Sposito
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil.
| | | | - Joaquim Barreto
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|