1
|
Woodcock CL, Alsaleem M, Toss MS, Lothion-Roy J, Harris AE, Jeyapalan JN, Blatt N, Rizvanov AA, Miftakhova RR, Kariri YA, Madhusudan S, Green AR, Rutland CS, Fray RG, Rakha EA, Mongan NP. The role of the ALKBH5 RNA demethylase in invasive breast cancer. Discov Oncol 2024; 15:343. [PMID: 39127986 PMCID: PMC11317455 DOI: 10.1007/s12672-024-01205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most common internal RNA modification and is involved in regulation of RNA and protein expression. AlkB family member 5 (ALKBH5) is a m6A demethylase. Given the important role of m6A in biological mechanisms, m6A and its regulators, have been implicated in many disease processes, including cancer. However, the contribution of ALKBH5 to invasive breast cancer (BC) remains poorly understood. The aim of this study was to evaluate the clinicopathological value of ALKBH5 in BC. METHODS Publicly available data were used to investigate ALKBH5 mRNA alterations, prognostic significance, and association with clinical parameters at the genomic and transcriptomic level. Differentially expressed genes (DEGs) and enriched pathways with low or high ALKBH5 expression were investigated. Immunohistochemistry (IHC) was used to assess ALKBH5 protein expression in a large well-characterised BC series (n = 1327) to determine the clinical significance and association of ALKBH5 expression. RESULTS Reduced ALKBH5 mRNA expression was significantly associated with poor prognosis and unfavourable clinical parameters. ALKBH5 gene harboured few mutations and/or copy number alternations, but low ALKBH5 mRNA expression was seen. Patients with low ALKBH5 mRNA expression had a number of differentially expressed genes and enriched pathways, including the cytokine-cytokine receptor interaction pathway. Low ALKBH5 protein expression was significantly associated with unfavourable clinical parameters associated with tumour progression including larger tumour size and worse Nottingham Prognostic Index group. CONCLUSION This study implicates ALKBH5 in BC and highlights the need for further functional studies to decipher the role of ALKBH5 and RNA m6A methylation in BC progression.
Collapse
Affiliation(s)
- Corinne L Woodcock
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.
| | - Mansour Alsaleem
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
- Unit of Scientific Research, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | - Jennifer Lothion-Roy
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Anna E Harris
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Jennie N Jeyapalan
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Nataliya Blatt
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
- Institute for Fundamental Medicine and Science, Kazan Federal University, Kazan, Tatarstan, Russia
| | - Albert A Rizvanov
- Institute for Fundamental Medicine and Science, Kazan Federal University, Kazan, Tatarstan, Russia
| | - Regina R Miftakhova
- Institute for Fundamental Medicine and Science, Kazan Federal University, Kazan, Tatarstan, Russia
| | - Yousif A Kariri
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
- Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Shaqra University 33, 11961, Shaqra, Saudi Arabia
| | - Srinivasan Madhusudan
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | - Catrin S Rutland
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Rupert G Fray
- School of Biosciences, Plant Science Division, University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
- Pathology Department, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Nigel P Mongan
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Zhou CS, Feng MT, Chen X, Gao Y, Chen L, Li LD, Li DH, Cao YQ. Exonuclease 1 (EXO1) is a Potential Prognostic Biomarker and Correlates with Immune Infiltrates in Lung Adenocarcinoma. Onco Targets Ther 2021; 14:1033-1048. [PMID: 33623391 PMCID: PMC7894803 DOI: 10.2147/ott.s286274] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Exonuclease 1 (EXO1) has been identified to be highly expressed in different human malignancies, but its expression and prognostic role in lung adenocarcinoma (LUAD) remain unknown. Materials and Methods Two independent cohorts extracted from public databases and one cohort from our center were analyzed in this study. Expression levels of EXO1 in LUAD tissues and paired para-cancer tissues were detected. The prognostic value of EXO1 in LUAD patients was evaluated in the three cohorts. Enrichment analyses were performed to explore the possible underlying biological pathways. Moreover, we also explored the correlations between EXO1 and tumor-infiltrating immune cells and evaluated the impact of EXO1 knock-down on the migration of lung cancer cells. Results In this study, we found that EXO1 was highly expressed in LUAD tissues compared with para-cancerous tissues in public databases (p < 0.01), which was consistent with our data (p < 0.01). Survival analysis indicated that high expression of EXO1 was associated with poor prognosis in LUAD (p < 0.01). Enrichment analyses indicated that biological pathways like cell cycle regulation, DNA damage and repair, immune response, neuroactive ligand-receptor interaction, may be associated with EXO1 aberrant expression. Moreover, high expression of EXO1 was correlated with decreased infiltrating B cells (p < 0.01) and CD4+ T cells (p < 0.01) levels, and low infiltrating levels of B cells (p < 0.01) and dendritic cells (DCs) (p < 0.05) indicated poor overall survival (OS) in LUAD. Additionally, in vitro experiments suggested that knockdown of EXO1 may inhibit the migratory ability of lung cancer cells. Conclusion In conclusion, EXO1 is a potential prognostic biomarker in LUAD, and correlates with infiltrating levels of immune cells in the tumor microenvironment. Further prospective validation of EXO1 in lung cancer is warranted.
Collapse
Affiliation(s)
- Chang-Shuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ming-Tao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Liang-Dong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - De-Heng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yi-Qun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Srour MK, Qu Y, Deng N, Carlson K, Mirocha J, Gao B, Dadmanesh F, Cui X, Giuliano AE. Gene expression comparison between primary estrogen receptor-positive and triple-negative breast cancer with paired axillary lymph node metastasis. Breast J 2021; 27:432-440. [PMID: 33464691 DOI: 10.1111/tbj.14119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
The aim of this study is to characterize and compare changes in gene expression patterns of paired axillary lymph node (ALN) metastases from estrogen receptor (ER)-positive and triple-negative (TNBC) primary breast cancer (PBC). Patients with stage 2-3 PBC with macrometastasis to an ALN were selected. Gene expression of 2567 cancer-associated genes was analyzed with the HTG EdgeSeq system coupled with the Illumina Next Generation Sequencing (NGS) platform. Changes in gene expression between ER/PR-positive, HER2-negative PBC, and their paired ALN metastases were compared with TNBC and their paired ALN metastases. Fourteen pairs of ER-positive and paired ALN metastasis were analyzed. Compared with the PBC, ALN metastasis had 673 significant differentially expressed genes, including 348 upregulated genes and 325 downregulated genes. Seventeen pairs of TNBC and paired ALN metastasis were analyzed. ALN metastasis had 257 significant differentially expressed genes, including 123 upregulated genes and 134 downregulated genes. When gene expression of the ALN for ER-positive PBC was compared to that of TNBC, 97 genes were upregulated in both, and 115 genes were similarly downregulated. Common upregulated genes were associated with cell death, necrosis, and homeostasis. Common downregulated genes were those of migration, degradation of extracellular matrix, and invasion. Although ER-positive PBC and TNBC have a distinct gene expression profiles and distinct changes from PBC to ALN metastases, a significant number of genes are similarly up- or downregulated. Understanding the role of these common genomic changes may provide clues to understanding the metastatic process itself.
Collapse
Affiliation(s)
- Marissa K Srour
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ying Qu
- Department of Surgery, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Nan Deng
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Kjirsten Carlson
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - James Mirocha
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Bowen Gao
- Department of Surgery, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Farnaz Dadmanesh
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Armando E Giuliano
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Zhang L, Fan M, Napolitano F, Gao X, Xu Y, Li L. Transcriptomic analysis identifies organ-specific metastasis genes and pathways across different primary sites. J Transl Med 2021; 19:31. [PMID: 33413400 PMCID: PMC7791985 DOI: 10.1186/s12967-020-02696-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022] Open
Abstract
Background Metastasis is the most devastating stage of cancer progression and often shows a preference for specific organs. Methods To reveal the mechanisms underlying organ-specific metastasis, we systematically analyzed gene expression profiles for three common metastasis sites across all available primary origins. A rank-based method was used to detect differentially expressed genes between metastatic tumor tissues and corresponding control tissues. For each metastasis site, the common differentially expressed genes across all primary origins were identified as organ-specific metastasis genes. Results Pathways enriched by these genes reveal an interplay between the molecular characteristics of the cancer cells and those of the target organ. Specifically, the neuroactive ligand-receptor interaction pathway and HIF-1 signaling pathway were found to have prominent roles in adapting to the target organ environment in brain and liver metastases, respectively. Finally, the identified organ-specific metastasis genes and pathways were validated using a primary breast tumor dataset. Survival and cluster analysis showed that organ-specific metastasis genes and pathways tended to be expressed uniquely by a subgroup of patients having metastasis to the target organ, and were associated with the clinical outcome. Conclusions Elucidating the genes and pathways underlying organ-specific metastasis may help to identify drug targets and develop treatment strategies to benefit patients.
Collapse
Affiliation(s)
- Lin Zhang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, 310000, China
| | - Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, 310000, China
| | - Francesco Napolitano
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ying Xu
- Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, 130033, China.,MOE Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Jilin University, Changchun, 130012, China.,Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, 310000, China.
| |
Collapse
|
5
|
MEX3A promotes triple negative breast cancer proliferation and migration via the PI3K/AKT signaling pathway. Exp Cell Res 2020; 395:112191. [DOI: 10.1016/j.yexcr.2020.112191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
|
6
|
Dai Z, Sheng F, Sun N, Ji Y, Liao Q, Sun S, Yang F, Li W. Caveolin-1 promotes trophoblast cell invasion through the focal adhesion kinase (FAK) signalling pathway during early human placental development. Reprod Fertil Dev 2020; 31:1057-1067. [PMID: 30944060 DOI: 10.1071/rd18296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
Normal implantation and placental development depend on the appropriate differentiation and invasion of trophoblast cells. Inadequate trophoblast cell invasion results in pregnancy-related disorders, which endanger both mother and fetus; however, the mechanism of early placental development has not been fully explained. In this study we conducted gene expression profile analysis using mouse placental tissues at different developmental stages (embryonic day (E)7.5, E14.5 and E19.5) using series tests of cluster (STC) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses. Focal adhesion kinase (FAK) signalling pathway-related gene expression levels were verified using quantitative reverse transcription polymerase chain reaction and western blot. The results showed that caveolin-1 (Cav1) was downregulated in the placenta of unexplained spontaneous abortion subjects compared with that of induced abortion. Furthermore, by modulating CAV1 expression levels, CAV1 was shown to promote human trophoblast cell proliferation, migration and invasion by activating the FAK signalling pathway. These results indicate that CAV1 and the FAK signalling pathway are crucial for early placental development, which sheds new light on our understanding of the mechanisms of human trophoblast cell invasion and early development of the placenta.
Collapse
Affiliation(s)
- Zhihui Dai
- Department of Medical Genetics, Second Military Medical University, Shanghai, 200433, China
| | - Fei Sheng
- Centre of Reproductive Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Ningxia Sun
- Centre of Reproductive Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Yixuan Ji
- Centre of Reproductive Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Qiuying Liao
- Department of Medical Genetics, Second Military Medical University, Shanghai, 200433, China
| | - Shuhan Sun
- Department of Medical Genetics, Second Military Medical University, Shanghai, 200433, China
| | - Fu Yang
- Department of Medical Genetics, Second Military Medical University, Shanghai, 200433, China; and Corresponding authors. Emails: ;
| | - Wen Li
- Centre of Reproductive Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China; and Corresponding authors. Emails: ;
| |
Collapse
|
7
|
Srour MK, Gao B, Dadmanesh F, Carlson K, Qu Y, Deng N, Cui X, Giuliano AE. Gene expression comparison between primary triple-negative breast cancer and paired axillary and sentinel lymph node metastasis. Breast J 2019; 26:904-910. [PMID: 31713298 DOI: 10.1111/tbj.13684] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023]
Abstract
Few studies examine the genomics of axillary lymph node (ALN) metastasis in triple-negative breast cancer (TNBC). The aim was to characterize and compare gene expression patterns of primary breast cancers and paired ALN metastases. Patients with stage 2-3 ER/PR negative, HER2 negative TNBC with ALN macrometastasis without neo-adjuvant therapy were selected. Tumor-specific area was isolated from breast and ALN tissue sections. Gene expression of 2567 cancer-associated genes was analyzed with the HTG EdgeSeq system coupled with Illumina next-generation sequencing (NGS). Seventeen pairs of TNBC and autologous ALN metastasis were analyzed. Compared with the primary, ALN metastasis had 257 statistically significant differentially expressed genes, including 123 upregulated genes and 134 downregulated genes. Notably, there was an upregulation of anti-apoptosis and survival signaling genes (BIRC3, TCL1A, FLT3, and VCAM1) in the ALN metastasis. There was also an upregulation of chemotaxis genes (CCL19, CCL21, CXCL13, and TNFSF11). The most striking feature is the downregulation of genes known to regulate cell microenvironment interaction (MMP2, MMP 3, MMP 7, MMP 11, MMP14, COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, COL6A6, COL11A1, and COL17A1). In TNBC, ALN metastases have a distinct gene expression profile. Genes associated with anti-apoptosis, survival responses, and chemotaxis are upregulated, and genes associated with regulation of extracellular matrix are downregulated when compared to autologous primary cancer. TNBC cells metastatic to lymph nodes undergo a change in order to metastasize and survive in the new microenvironment, which may lead to insights into the metastatic process.
Collapse
Affiliation(s)
- Marissa K Srour
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Bowen Gao
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Farnaz Dadmanesh
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kjirsten Carlson
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ying Qu
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Nan Deng
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Armando E Giuliano
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
8
|
Li J, Rong MH, Dang YW, He RQ, Lin P, Yang H, Li XJ, Xiong DD, Zhang LJ, Qin H, Feng CX, Chen XY, Zhong JC, Ma J, Chen G. Differentially expressed gene profile and relevant pathways of the traditional Chinese medicine cinobufotalin on MCF‑7 breast cancer cells. Mol Med Rep 2019; 19:4256-4270. [PMID: 30896874 PMCID: PMC6471831 DOI: 10.3892/mmr.2019.10062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023] Open
Abstract
Cinobufotalin is a chemical compound extracted from the skin of dried bufo toads that may have curative potential for certain malignancies through different mechanisms; however, these mechanisms remain unexplored in breast cancer. The aim of the present study was to investigate the antitumor mechanism of cinobufotalin in breast cancer by using microarray data and in silico analysis. The microarray data set GSE85871, in which cinobufotalin exerted influences on the MCF‑7 breast cancer cells, was acquired from the Gene Expression Omnibus database, and the differentially expressed genes (DEGs) were analyzed. Subsequently, protein interaction analysis was conducted, which clarified the clinical significance of core genes, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to analyze cinobufotalin‑related pathways. The Connectivity Map (CMAP) database was used to select existing compounds that exhibited curative properties similar to those of cinobufotalin. A total of 1,237 DEGs were identified from breast cancer cells that were treated with cinobufotalin. Two core genes, SRC proto‑oncogene non‑receptor tyrosine kinase and cyclin‑dependent kinase inhibitor 2A, were identified as serving a vital role in the onset and development of breast cancer, and their expression levels were markedly reduced following cinobufotalin treatment as detected by the microarray of GSE85871. It also was revealed that the 'neuroactive ligand‑receptor interaction' and 'calcium signaling' pathways may be crucial for cinobufotalin to perform its functions in breast cancer. Conducting a matching search in CMAP, miconazole and cinobufotalin were indicated to possessed similar molecular mechanisms. In conclusion, cinobufotalin may serve as an effective compound for the treatment of a subtype of breast cancer that is triple positive for the presence of estrogen, progesterone and human epidermal growth factor receptor‑2 receptors, and its mechanism may be related to different pathways. In addition, cinobufotalin is likely to exert its antitumor influences in a similar way as miconazole in MCF‑7 cells.
Collapse
Affiliation(s)
- Jie Li
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China
| | - Min-Hua Rong
- Research Department, The Affiliated Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Lin
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Jiao Li
- PET‑CT, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Jie Zhang
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hui Qin
- Ultrasonics Division of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Cai-Xia Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Yi Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
9
|
Das CK, Linder B, Bonn F, Rothweiler F, Dikic I, Michaelis M, Cinatl J, Mandal M, Kögel D. BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells. Neoplasia 2018; 20:263-279. [PMID: 29462756 PMCID: PMC5852393 DOI: 10.1016/j.neo.2018.01.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/07/2023] Open
Abstract
Target-specific treatment modalities are currently not available for triple-negative breast cancer (TNBC), and acquired chemotherapy resistance is a primary obstacle for the treatment of these tumors. Here we employed derivatives of BT-549 and MDA-MB-468 TNBC cell lines that were adapted to grow in the presence of either 5-Fluorouracil, Doxorubicin or Docetaxel in an aim to identify molecular pathways involved in the adaptation to drug-induced cell killing. All six drug-adapted BT-549 and MDA-MB-468 cell lines displayed cross resistance to chemotherapy and decreased apoptosis sensitivity. Expression of the anti-apoptotic co-chaperone BAG3 was notably enhanced in two thirds (4/6) of the six resistant lines simultaneously with higher expression of HSP70 in comparison to parental controls. Doxorubicin-resistant BT-549 (BT-549rDOX20) and 5-Fluorouracil-resistant MDA-MB-468 (MDA-MB-468r5-FU2000) cells were chosen for further analysis with the autophagy inhibitor Bafilomycin A1 and lentiviral depletion of ATG5, indicating that enhanced cytoprotective autophagy partially contributes to increased drug resistance and cell survival. Stable lentiviral BAG3 depletion was associated with a robust down-regulation of Mcl-1, Bcl-2 and Bcl-xL, restoration of drug-induced apoptosis and reduced cell adhesion in these cells, and these death-sensitizing effects could be mimicked with the BAG3/Hsp70 interaction inhibitor YM-1 and by KRIBB11, a selective transcriptional inhibitor of HSF-1. Furthermore, BAG3 depletion was able to revert the EMT-like transcriptional changes observed in BT-549rDOX20 and MDA-MB-468r5-FU2000 cells. In summary, genetic and pharmacological interference with BAG3 is capable to resensitize TNBC cells to treatment, underscoring its relevance for cell death resistance and as a target to overcome therapy resistance of breast cancer.
Collapse
Affiliation(s)
- Chandan Kanta Das
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany; School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Benedikt Linder
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany
| | - Florian Bonn
- Institute of Biochemistry II, Goethe University Hospital, Frankfurt am Main, Germany
| | - Florian Rothweiler
- Institute for Medical Virology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Hospital, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Martin Michaelis
- Institute for Medical Virology, Goethe University Hospital, Frankfurt am Main, Germany; School of Biosciences, The University of Kent, Canterbury, Kent, UK
| | - Jindrich Cinatl
- Institute for Medical Virology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Donat Kögel
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Germany.
| |
Collapse
|