1
|
Del Toro K, Sayaman R, Thi K, Licon-Munoz Y, Hines WC. Transcriptomic analysis of the 12 major human breast cell types reveals mechanisms of cell and tissue function. PLoS Biol 2024; 22:e3002820. [PMID: 39499736 PMCID: PMC11537416 DOI: 10.1371/journal.pbio.3002820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/29/2024] [Indexed: 11/07/2024] Open
Abstract
A fundamental question in biology, central to our understanding of cancer and other pathologies, is determining how different cell types coordinate to form and maintain tissues. Recognizing the distinct features and capabilities of the cells that compose these tissues is critical. Unfortunately, the complexity of tissues often hinders our ability to distinguish between neighboring cell types and, in turn, scrutinize their transcriptomes and generate reliable and tractable cell models for studying their inherently different biologies. We have recently introduced a novel method that permits the identification and purification of the 12 cell types that compose the human breast-nearly all of which could be reliably propagated in the laboratory. Here, we explore the nature of these cell types. We sequence mRNAs from each purified population and investigate transcriptional patterns that reveal their distinguishing features. We describe the differentially expressed genes and enriched biological pathways that capture the essence of each cell type, and we highlight transcripts that display intriguing expression patterns. These data, analytic tools, and transcriptional analyses form a rich resource whose exploration provides remarkable insights into the inner workings of the cell types composing the breast, thus furthering our understanding of the rules governing normal cell and tissue function.
Collapse
Affiliation(s)
- Katelyn Del Toro
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Rosalyn Sayaman
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kate Thi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Yamhilette Licon-Munoz
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William Curtis Hines
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
2
|
Keogh K, McKenna C, Waters SM, Porter RK, Fitzsimons C, McGee M, Kenny DA. Effect of breed and diet on the M. longissimus thoracis et lumborum transcriptome of steers divergent for residual feed intake. Sci Rep 2023; 13:9034. [PMID: 37270611 DOI: 10.1038/s41598-023-35661-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
Improving cattle feed efficiency through selection of residual feed intake (RFI) is a widely accepted approach to sustainable beef production. A greater understanding of the molecular control of RFI in various breeds offered contrasting diets is necessary for the accurate identification of feed efficient animals and will underpin accelerated genetic improvement of the trait. The aim of this study was to determine genes and biological processes contributing to RFI across varying breed type and dietary sources in skeletal muscle tissue. Residual feed intake was calculated in Charolais and Holstein-Friesian steers across multiple dietary phases (phase-1: high concentrate (growing-phase); phase-2: zero-grazed grass (growing-phase); phase-3: high concentrate (finishing-phase). Steers divergent for RFI within each breed and dietary phase were selected for muscle biopsy collection, and muscle samples subsequently subjected to RNAseq analysis. No gene was consistently differentially expressed across the breed and diet types examined. However, pathway analysis revealed commonality across breeds and diets for biological processes including fatty acid metabolism, immune function, energy production and muscle growth. Overall, the lack of commonality of individual genes towards variation in RFI both within the current study and compared to the published literature, suggests other genomic features warrant further evaluation in relation to RFI.
Collapse
Affiliation(s)
- Kate Keogh
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - Clare McKenna
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath, C15 PW93, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | - Sinead M Waters
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - Richard K Porter
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | - Claire Fitzsimons
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - Mark McGee
- Livestock Systems Research Department, Teagasc, Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath, C15 PW93, Ireland.
| |
Collapse
|
3
|
Miranda CS, Silva-Veiga FM, Fernandes-da-Silva A, Guimarães Pereira VR, Martins BC, Daleprane JB, Martins FF, Souza-Mello V. Peroxisome proliferator-activated receptors-alpha and gamma synergism modulate the gut-adipose tissue axis and mitigate obesity. Mol Cell Endocrinol 2023; 562:111839. [PMID: 36581062 DOI: 10.1016/j.mce.2022.111839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
AIM To evaluate the effects of single PPARα or PPARγ activation, and their synergism (combined PPARα/γ activation) upon the gut-adipose tissue axis, focusing on the endotoxemia and upstream interscapular brown adipose tissue (iBAT) function in high-saturated fat-fed mice. METHODS Male C57BL/6 mice received a control diet (C, 10% lipids) or a high-fat diet (HF, 50% lipids) for 12 weeks. Then, the HF group was divided to receive the treatments for four weeks: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS The HF group exhibited overweight, oral glucose intolerance, gut dysbiosis, altered gut permeability, and endotoxemia, culminating in iBAT whitening. The downregulation of LPS-Tlr4 signaling underpinned reduced inflammation and improved lipid metabolism in iBAT in the HFα/γ group, the unique to show normalized body mass and increased energy expenditure. CONCLUSION PPARα/γ synergism treated obesity by ameliorating the gut-adipose tissue axis, where restored gut microbiota and permeability controlled endotoxemia and rescued iBAT whitening through favored thermogenesis.
Collapse
Affiliation(s)
- Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vitória Regina Guimarães Pereira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bruna Cadete Martins
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Li WH, Zhang L, Li YY, Wang XY, Li JL, Zhao SN, Ni MQ, Li Q, Sun H. Apolipoprotein A-IV Has Bi-Functional Actions in Alcoholic Hepatitis by Regulating Hepatocyte Injury and Immune Cell Infiltration. Int J Mol Sci 2022; 24:ijms24010670. [PMID: 36614113 PMCID: PMC9820766 DOI: 10.3390/ijms24010670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Alcohol abuse can lead to alcoholic hepatitis (AH), a worldwide public health issue with high morbidity and mortality. Here, we identified apolipoprotein A-IV (APOA4) as a biomarker and potential therapeutic target for AH. APOA4 expression was detected by Gene Expression Omnibus (GEO) databases, Immunohistochemistry, and qRT-PCR in AH. Bioinformatics Methods (protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Set Enrichment Analysis (GSEA) were used to show down-stream gene and pathways of APOA4 in AH. AML-12 cells were used to evaluate the biological function of APOA4 using an ELISA kit (AST, ALT, and IL-1β) and flow cytometry (ROS activity). Both in vivo and in vitro, APOA4 expression was significantly elevated in the AH model induced by alcohol (ETOH). AML-12 cell damage was specifically repaired by APOA4 deficiency, while AST, ALT, and IL-1β activity that was increased by ETOH (200 µmol, 12 h) were suppressed. APOA4 inhibition increased intracellular ROS induced by ETOH, which was detected by flow cytometry. Functional and PPI network analyses showed Fcgamma receptor (FCGR) and platelet activation signaling were potential downstream pathways. We identified CIDEC as a downstream gene of APOA4. The CIDEC AUC values for the ROC curves were 0.861. At the same time, APOA4 silencing downregulated the expression of CIDEC, whereas the knockdown of CIDEC did not influence the expression of APOA4 in AML-12 cells. Collectively, APOA4 regulates CIDEC expression and immune cell infiltration and may hold great potential as a biomarker and therapeutic target for AH.
Collapse
Affiliation(s)
- Wan-Hong Li
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Li Zhang
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yue-Ying Li
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xin-Yue Wang
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jin-Liang Li
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Shu-Ning Zhao
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ming-Qi Ni
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Qian Li
- Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Correspondence: (Q.L.); (H.S.); Tel./Fax: +86-451-86699347 (Q.L.)
| | - Hui Sun
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Correspondence: (Q.L.); (H.S.); Tel./Fax: +86-451-86699347 (Q.L.)
| |
Collapse
|
5
|
Du J, Cao L, Gao J, Jia R, Zhu H, Nie Z, Xi B, Yin G, Ma Y, Xu G. Protective Effects of Glycyrrhiza Total Flavones on Liver Injury Induced by Streptococcus agalactiae in Tilapia ( Oreochromis niloticus). Antibiotics (Basel) 2022; 11:1648. [PMID: 36421292 PMCID: PMC9686810 DOI: 10.3390/antibiotics11111648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 07/30/2023] Open
Abstract
Clinical studies have confirmed that Glycyrrhiza total flavones (GTFs) have good anti-hepatic injury, but whether they have a good protective effect on anti-hepatic injury activity induced by Streptococcus agalactiae in tilapia (Oreochromis niloticus) is unknown. The aims of this study were to investigate the protective effects of Glycyrrhiza total flavones on liver injury induced by S. agalactiae (SA) and its underlying mechanism in fish. A total of 150 tilapia were randomly divided into five groups, each with three replicates containing 10 fish: normal control group, S. agalactiae infection group, and three Glycyrrhiza total flavone treatment groups (addition of 0.1, 0.5, or 1.0 g of GTF to 1 kg of feed). The normal control group was only fed with basic diet, after 60 d of feeding, and intraperitoneal injection of the same volume of normal saline (0.05 mL/10 g body weight); the S. agalactiae infection group was fed with basic diet, and the S. agalactiae solution was intraperitoneally injected after 60 d of feeding (0.05 mL/10 g body weight); the three GTF treatment groups were fed with a diet containing 0.1, 0.5, or 1.0 g/kg of GTF, and the S. agalactiae solution was intraperitoneally injected after 60 d of feeding (0.05 mL/10 g body weight). After 48 h injection, blood and liver tissues were collected to measure biochemical parameters and mRNA levels to evaluate the liver protection of GTFs. Compared with the control group, the serum levels of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), alkaline phosphatase (AKP) and glucose (GLU) in the streptococcal infection group increased significantly, while the levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) decreased significantly; observations of pathological sections showed obvious damage to the liver tissue structure in response to streptococcal infection. S. agalactiae can also cause fatty liver injury, affecting the function of fatty acid β-oxidation and biosynthesis in the liver of tilapia, and also causing damage to function of the immune system. The addition of GTFs to the diet could improve oxidative stress injury caused by S. agalactiae in tilapia liver tissue to different degrees, promote the β-oxidation of fatty acids in the liver, accelerate the lipid metabolism in the liver, and repair the damaged liver tissue. GTFs have a good protective effect on liver injury caused by streptococcus.
Collapse
Affiliation(s)
- Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haojun Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhijuan Nie
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Bingwen Xi
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Guojun Yin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yuzhong Ma
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
6
|
Ha HJ, Park HH. Molecular basis of apoptotic DNA fragmentation by DFF40. Cell Death Dis 2022; 13:198. [PMID: 35236824 PMCID: PMC8891305 DOI: 10.1038/s41419-022-04662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 11/09/2022]
Abstract
AbstractAlthough the functions of CIDE domain-containing proteins, including DFF40, DFF45, CIDE-A, CIDE-B, and FSP27, in apoptotic DNA fragmentation and lipid homeostasis have been studied extensively in mammals, the functions of four CIDE domain-containing proteins identified in the fly, namely DREP1, 2, 3, and 4, have not been explored much. Recent structural study of DREP4, a fly orthologue of mammalian DFF40 (an endonuclease involved in apoptotic DNA fragmentation), showed that the CIDE domain of DREP4 (and DFF40) forms filament-like assembly, which is critical for the corresponding function. The current study aimed to investigate the mechanism of filament formation of DREP4 CIDE and to characterize the same. DREP4 CIDE was shown to specifically bind to histones H1 and H2, an event important for the nuclease activity of DREP4. Based on the current experimental results, we proposed the mechanism underlying the process of apoptotic DNA fragmentation.
Collapse
|
7
|
Cahill T, Cope H, Bass JJ, Overbey EG, Gilbert R, da Silveira WA, Paul AM, Mishra T, Herranz R, Reinsch SS, Costes SV, Hardiman G, Szewczyk NJ, Tahimic CGT. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight. Int J Mol Sci 2021; 22:ijms22179470. [PMID: 34502375 PMCID: PMC8430797 DOI: 10.3390/ijms22179470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
| | - Henry Cope
- Nottingham Biomedical Research Centre (BRC), School of Computer Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - Joseph J. Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
| | - Eliah G. Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Rachel Gilbert
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Willian Abraham da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Biological Sciences, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent ST4 2DF, UK
| | - Amber M. Paul
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Tejaswini Mishra
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas–CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Sigrid S. Reinsch
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathaniel J. Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Candice G. T. Tahimic
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- Correspondence:
| |
Collapse
|
8
|
Martins FF, Aguila MB, Mandarim-de-Lacerda CA. Eicosapentaenoic and docosapentaenoic acids lessen the expression of PPARγ/Cidec affecting adipogenesis in cultured 3T3-L1 adipocytes. Acta Histochem 2020; 122:151504. [PMID: 31955908 DOI: 10.1016/j.acthis.2020.151504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022]
Abstract
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have benefits in the metabolism of adipose tissue. However, its contribution to the adipogenesis is not entirely elucidated. The study aimed to evaluate the effects of EPA and DHA on adipogenesis, especially in the PPARγ (peroxisome proliferator-activated receptor-gamma) and Cidec (cell death-inducing DFFA-like effector c) pathway. Twenty-four hours after confluence, 3T3-L1 adipocytes were treated with EPA (100 μM), DHA (50μM) and EPA (100μM) + DHA (50μM) and at the end of differentiation (day 11) the cells were collected for analysis. Cell viability analysis indicated that the concentrations used for EPA and DHA did not cause cytotoxicity in cultured 3T3l1 adipocytes. The treatments have lessened the triacylglycerol accumulation in the adipocyte cytoplasm that, compared to the control group, were EPA-32%, DHA-38%, EPA + DHA -24%. The double-labeling immunofluorescence showed a signal attenuation of protein expressions of PPARγ, CIDEC, and SREBP-1c (sterol regulatory element-binding protein). EPA and DHA had a significant impact on the expression of cleaved CASPASE 3, which increases cell apoptosis and gene expressions of Pparγ and Cidec in the treated groups. Also, there was a reduction of C/ebpα (CCAAT/enhancer-binding protein alpha), Cd36 (cluster differentiation 36), and Foxo1 (forkhead box O). In conclusion, the study determined the ability of both EPA and DHA, alone or combined, in the adipogenesis modulation in cultured 3T3-L1 adipocytes, affecting the cell differentiation, maturation, and consequently, reducing adipogenesis via PPARγ-CIDEC suppression.
Collapse
|
9
|
Breitfeld J, Kehr S, Müller L, Stadler PF, Böttcher Y, Blüher M, Stumvoll M, Kovacs P. Developmentally Driven Changes in Adipogenesis in Different Fat Depots Are Related to Obesity. Front Endocrinol (Lausanne) 2020; 11:138. [PMID: 32273869 PMCID: PMC7115744 DOI: 10.3389/fendo.2020.00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Subcutaneous (sc) and visceral (vis) adipose tissue (AT) contribute to the variability in pathophysiological consequences of obesity and adverse fat distribution. To gain insights into the molecular mechanisms distinguishing vis and sc fat, we compared the transcriptome during differentiation of immortalized adipocytes from murine epididymal (epi) and inguinal (ing) AT. RNA was extracted on different days of adipogenesis (-2, 0, 2, 4, 6, 8) and analyzed using Clariom™ D mouse assays (Affymetrix) covering >214,900 transcripts in >66,100 genes. Transcript Time Course Analysis revealed 137 differentially expressed genes. The top genes with most divergent expression dynamics included developmental genes like Alx1, Lhx8, Irx1/2, Hoxc10, Hoxa5/10, and Tbx5/15. According to pathway analysis the majority of the genes were enriched in pathways related to AT development. Finally, in paired samples of human vis and sc AT (N = 63), several of these genes exhibited depot-specific variability in expression which correlated closely with body mass index and/or waist-to-hip ratio. In conclusion, intrinsically programmed differences in gene expression patterns during adipogenesis suggest that fat depot specific regulation of adipogenesis contributes to individual risk of obesity.
Collapse
Affiliation(s)
- Jana Breitfeld
- University of Leipzig Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- *Correspondence: Jana Breitfeld
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Luise Müller
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Facultad de Ciencias, Universidad National de Colombia, Bogotá, Colombia
- Santa Fe Institute, Santa Fe, NM, United States
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Yvonne Böttcher
- University of Leipzig Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Molecular Biology, Akershus Universitetssykehus, Lørenskog, Norway
| | - Matthias Blüher
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter Kovacs
- University of Leipzig Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Peter Kovacs
| |
Collapse
|
10
|
Genome-wide analysis reveals the effects of artificial selection on production and meat quality traits in Qinchuan cattle. Genomics 2019; 111:1201-1208. [DOI: 10.1016/j.ygeno.2018.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/23/2018] [Accepted: 09/30/2018] [Indexed: 12/18/2022]
|
11
|
Zhang S, Wang L, Zan L. Investigation into the underlying molecular mechanisms of white adipose tissue through comparative transcriptome analysis of multiple tissues. Mol Med Rep 2019; 19:959-966. [PMID: 30569103 PMCID: PMC6323223 DOI: 10.3892/mmr.2018.9740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 11/14/2018] [Indexed: 01/17/2023] Open
Abstract
Adipose tissue has a primary role in lipid and glucose metabolism as a storage site for fatty acids, and also functions as an endocrine organ, producing large numbers of hormones and cytokines. Adipose dysfunction triggers a number of obesity‑associated health problems. The aim of the present study was, therefore, to investigate the molecular mechanisms of white adipose tissue (WAT). The GSE9954 microarray data were downloaded from the Gene Expression Omnibus. Adipose‑specific genes were identified through limma package analysis, based on samples of WAT and 17 other types of non‑adipose tissue obtained from mice. Process and pathway enrichment analyses were performed for these genes. Finally, protein‑protein interaction (PPI) and co‑expression networks were constructed and analyzed. In total, 202 adipose‑specific genes were identified, which were involved in key biological processes (including fat cell differentiation and lipid metabolic process) and one key pathway [namely, the adenine monophosphate‑activated protein kinase (AMPK) signaling pathway]. Construction of the PPI network and further molecular complex detection revealed the presence of 17 key genes, including acetyl‑CoA carboxylase α, peroxisome proliferator‑activated receptor (PPAR) γ and leptin, that were involved in the AMPK, PPAR and insulin signaling pathways. In addition, amine oxidase copper containing 3 and adrenoceptor beta 3 were communication hubs in the co‑expression network of adipose‑specific genes. In conclusion, the present study promotes our understanding of the underlying molecular mechanisms of WAT, and may offer an insight into the prevention and treatment of obesity‑associated diseases caused by adipose dysfunction.
Collapse
Affiliation(s)
- Song Zhang
- Key Laboratory of Animal Biotechnology, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi 712100, P.R. China
| | - Li Wang
- Key Laboratory of Animal Biotechnology, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi 712100, P.R. China
| | - Linsen Zan
- Key Laboratory of Animal Biotechnology, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi 712100, P.R. China
- Department of Agriculture Cattle Laboratory, National Beef Cattle Improvement Center, Northwest A&F University, Xianyang, Shaanxi 712100, P.R. China
- Molecular Breeding Laboratory, Shaanxi Beef Cattle Engineering Research Center, Northwest A&F University, Xianyang, Shaanxi 712100, P.R. China
| |
Collapse
|