1
|
Mafi A, Keshavarzmotamed A, Hedayati N, Boroujeni ZY, Reiter RJ, Dehmordi RM, Aarabi MH, Rezaee M, Asemi Z. Melatonin targeting non-coding RNAs in cancer: Focus on mechanisms and potential therapeutic targets. Eur J Pharmacol 2023; 950:175755. [PMID: 37119959 DOI: 10.1016/j.ejphar.2023.175755] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Despite, melatonin is mainly known as a regulatory factor for circadian rhythm, its notable role in other fundamental biological processes, such as redox homeostasis and programmed cell death, has been found. In this line, a growing body of evidence indicated that melatonin could apply an inhibitory effect on the tumorigenic processes. Hence, melatonin might be considered an efficient adjuvant agent for cancer treatment. Besides, the physiological and pathological functions of non-coding RNAs (ncRNAs) in various disease, particularly cancers, have been expanded over the past two decades. It is well-established that ncRNAs can modulate the gene expression at various levels, thereby, ncRNAs. can regulate the numerous biological processes, including cell proliferation, cell metabolism, apoptosis, and cell cycle. Recently, targeting the ncRNAs expression provides a novel insight in the therapeutic approaches for cancer treatment. Moreover, accumulating investigations have revealed that melatonin could impact the expression of different ncRNAs in a multiple disorders, including cancer. Therefore, in the precent study, we discuss the potential roles of melatonin in modulating the expression of ncRNAs and the related molecular pathways in different types of cancer. Also, we highlighted its importance in therapeutic application and translational medicine in cancer treatment.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Zahra Yeganeh Boroujeni
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Xu C, Yang H, Li C, Wu Z, Ma Y. Melatonin Increases Proliferation and Decreases Apoptosis of GC-1 spg Cells by Upregulating the Expression of circTec. Reprod Sci 2023; 30:135-144. [PMID: 35426037 DOI: 10.1007/s43032-022-00937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/02/2022] [Indexed: 01/11/2023]
Abstract
Melatonin has been shown to be beneficial for the motility of human sperm, although its mechanism remains to be uncovered. Circular RNAs (circRNAs) have been shown to regulate cellular function in many diseases. However, there has been no relevant research on the effect of melatonin on sperm circRNAs. In this study, we aimed to explore the changes in circRNAs after melatonin treatment of GC-1 spg cells and identify key functional circRNAs. The results showed that melatonin enhanced the proliferation and reduced the apoptosis of GC-1 spg cells. A total of 1423 circRNAs were found to be significantly differentially expressed between groups with and without melatonin treatment. Of these circRNAs, 702 were upregulated and 721 were downregulated. circTec was one of the upregulated circRNAs. Suppressing the expression of circTec significantly reduced cell proliferation and mammalian target of rapamycin (mTOR) signaling pathway activation but promoted melatonin-treated GC-1 spg cell apoptosis. In conclusion, melatonin increased the expression of circTec to exert its physiological effects on GC-1 spg cells, possibly by activating the mTOR signaling pathway. These results enhance our understanding of the biological function of circTec and its regulation by melatonin in spermatogenesis and infertility.
Collapse
Affiliation(s)
- Changlong Xu
- Department of Reproductive Medical Center, the Second Nanning People's Hospital, No. 13 Dancun Road, Nanning, 530031, China.
| | - Hua Yang
- Department of Reproductive Medical Center, the Second Nanning People's Hospital, No. 13 Dancun Road, Nanning, 530031, China
| | - Chunyuan Li
- Department of Reproductive Medical Center, the Second Nanning People's Hospital, No. 13 Dancun Road, Nanning, 530031, China
| | - Zhuo Wu
- Department of Reproductive Medical Center, the Second Nanning People's Hospital, No. 13 Dancun Road, Nanning, 530031, China
| | - Yafeng Ma
- Department of Obstetrics and Gynecology, Wuxiang Hospital of Nanning Second People's Hospital, Nanning, 530031, China
| |
Collapse
|
3
|
Mihanfar A, Yousefi B, Azizzadeh B, Majidinia M. Interactions of melatonin with various signaling pathways: implications for cancer therapy. Cancer Cell Int 2022; 22:420. [PMID: 36581900 PMCID: PMC9798601 DOI: 10.1186/s12935-022-02825-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022] Open
Abstract
Melatonin is a neuro-hormone with conserved roles in evolution. Initially synthetized as an antioxidant molecule, it has gained prominence as a key molecule in the regulation of the circadian rhythm. Melatonin exerts its effect by binding to cytoplasmic and intra-nuclear receptors, and is able to regulate the expression of key mediators of different signaling pathways. This ability has led scholars to investigate the role of melatonin in reversing the process of carcinogenesis, a process in which many signaling pathways are involved, and regulating these pathways may be of clinical significance. In this review, the role of melatonin in regulating multiple signaling pathways with important roles in cancer progression is discussed, and evidence regarding the beneficence of targeting malignancies with this approach is presented.
Collapse
Affiliation(s)
- Ainaz Mihanfar
- grid.412763.50000 0004 0442 8645Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- grid.412888.f0000 0001 2174 8913Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bita Azizzadeh
- grid.449129.30000 0004 0611 9408Department of Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Majidinia
- grid.412763.50000 0004 0442 8645Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Wang Y, Wang Z, Shao C, Lu G, Xie M, Wang J, Duan H, Li X, Yu W, Duan W, Yan X. Melatonin may suppress lung adenocarcinoma progression via regulation of the circular noncoding RNA hsa_circ_0017109/miR-135b-3p/TOX3 axis. J Pineal Res 2022; 73:e12813. [PMID: 35661247 DOI: 10.1111/jpi.12813] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/10/2022] [Accepted: 06/03/2022] [Indexed: 12/01/2022]
Abstract
Melatonin is a hormone synthesized in the pineal gland and has widespread physiological and pharmacological functions. Moreover, it can activate protective receptor-dependent processes. These processes can prevent tissue carcinogenesis and inhibit malignant tumor progression and metastasis. Therefore, we investigated the regulatory effects of melatonin on dysregulated circular RNAs in human lung adenocarcinoma (LUAD) cells. In this study, we treated LUAD cells with melatonin and measured the expression of hsa_circ_0017109, miR-135b-3p, and TOX3 by quantitative reverse transcription polymerase chain reaction. Colony formation and cell counting kit-8 assays were used to determine cell proliferation. The wound-healing assay and Transwell experiment were carried out to evaluate the migration potential and invasive capacity of LUAD cells. Also, cell apoptosis was detected using a cell apoptosis kit, and protein production was identified by Western blot. It was suggested that melatonin could inhibit LUAD progression in vivo and in vitro, and the role of TOX3 in this process was explored. Additionally, hsa_circ_0017109 was found to sponge miR-135b-3p, a downstream factor of circ_0017109, which was demonstrated to target TOX3 in LUAD cells and could promote the Hippo pathway and epithelial-mesenchymal transition pathway. To summarize, we demonstrated that melatonin decreases the expression of circ_0017109 and suppresses the non-small-cell lung cancer cell migration, invasion, and proliferation through decreasing TOX3 expression via direct activation of miR-135b-3p.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Guofang Lu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, China
| | - Jian Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Xi'an International Medical Center Hospital, Xi'an, China
| | - Wanpeng Yu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital of Fourth Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Yi S, Yang Y. Melatonin attenuates low shear stress-induced pyroptosis and endothelial cell dysfunction via the RORα/miR-223/STAT-3 signalling pathway. Exp Ther Med 2021; 22:1392. [PMID: 34650640 PMCID: PMC8506941 DOI: 10.3892/etm.2021.10828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells sense changes in blood flow shear stress and affect the progression of atherosclerotic plaques. Pyroptosis is an inflammatory form of cell death and has been implicated in cardiovascular diseases. Melatonin and its nuclear receptor retinoid-related orphan receptor α (RORα) have protective effects on the development of atherosclerosis. To date, whether melatonin can prevent endothelial cell pyroptosis and dysfunction in pathological shear stress remains unclear. In the present study, human umbilical vein endothelial cells (ECs) were cultured under low shear stress conditions (5 dyne/cm2) for 24 h and treated with or without melatonin (2 µmol/l). The binding sites of the microRNA (miR)-223 promoter and RORα were predicted using the JASPAR website. Expression of pyroptosis-related proteins, including cleaved N-terminal gasdermin D, caspase-1, intercellular adhesion molecule 1 (ICAM-1) and nitric oxide (NO) were assessed. The results indicated that low shear stress increased pyroptosis and ICAM-1 expression, whereas it decreased NO levels. Melatonin alleviated pyroptosis and ICAM-1 expression and increased the production of NO in ECs. Further assessment revealed that low-level shear stress decreased RORα protein and mRNA expression, whereas melatonin would bind to RORα and thereby promoted miR-223 transcription in ECs. The present study also identified signal transducer and activator of transcription 3 (STAT-3) as a potential target gene of miR-223-3p. When transfected with miR-223 inhibitor, ECs up-regulated the expression of pyroptosis-related proteins and ICAM-1, and down-regulated NO levels. By contrast, silencing STAT-3 expression diminished the protective effect of miR-223. These results indicated that melatonin prevented ECs from undergoing pyroptosis and alleviated dysfunction via the RORα/miR-223/STAT-3 signalling pathway. This information could aid in the development of novel therapeutic approaches and provide new insights into atherosclerosis.
Collapse
Affiliation(s)
- Sui Yi
- The Intensive Care Unit Department, Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Yang Yang
- The Neurology Department, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
6
|
Yan Q, Huang H, Lu S, Ou B, Feng J, Shan W, Li H, Wang Z, Hong A, Ma Y. PACAP ameliorates fertility in obese male mice via PKA/CREB pathway‐dependent Sirt1 activation and p53 deacetylation. J Cell Physiol 2020; 235:7465-7483. [DOI: 10.1002/jcp.29651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/04/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Qiuxia Yan
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
- Center for Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuan China
| | - Hongke Huang
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Shiyin Lu
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Biqian Ou
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Jia Feng
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Wailan Shan
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Huixian Li
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Zixian Wang
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - An Hong
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Yi Ma
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| |
Collapse
|
7
|
Computational methods for Gene Regulatory Networks reconstruction and analysis: A review. Artif Intell Med 2019; 95:133-145. [DOI: 10.1016/j.artmed.2018.10.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023]
|