1
|
Guo J, Zhou W, Ma X, Li Y, Zhang H, Wei J, Du S, Jin T. Genetic Variability of CYP4F2, CYP2D6, CYP2E1, and ACE in the Chinese Yi Population. Biochem Genet 2024:10.1007/s10528-024-10748-y. [PMID: 38850376 DOI: 10.1007/s10528-024-10748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/17/2024] [Indexed: 06/10/2024]
Abstract
Genetic polymorphisms of very important pharmacogenes (VIP) are a significant factor contributing to inter-individual variability in drug therapy. The purpose of this study was to identify significantly different loci in the Yi population and to enrich their pharmacogenomic information. 54 VIP variants were selected from the Pharmacogenomics Knowledge Base (PharmGKB) and genotyped in 200 Yi individuals. Then, we compared their genotype distribution between the Yi population and the other 26 populations using the χ2 test. Compared with the other 26 populations, the genotype frequencies of 4 single nucleotide polymorphisms (SNPs), rs2108622 (CYP4F2), rs1065852 (CYP2D6), rs2070676 (CYP2E1), and rs4291 (ACE), had significant differences in the Yi population. For example, the TT genotype frequency of rs2108622 (8.1%) was higher than that of African populations, and the AA genotype frequency of rs1065852 (27.3%) was higher than that of other populations except East Asians. We also found that the Yi populations differed the least from East Asians and the most from Africans. Furthermore, the differences in these variants might be related to the effectiveness and toxicity risk of using warfarin, iloperidone, cisplatin cyclophosphamide, and other drugs in the Yi population. Our data complement the pharmacogenomic information of the Yi population and provide theoretical guidance for their personalized treatment.
Collapse
Affiliation(s)
- Jinping Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wenqian Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xiaoya Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yujie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Huan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jie Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Shuli Du
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China.
- College of Life Science, Northwest University, Xi'an, 710127, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China.
- College of Life Science, Northwest University, Xi'an, 710127, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
2
|
Guo L, Zhang W, Meng W, Zhao W, Hao J, Hu X, Jin T. Very important pharmacogenes polymorphism landscape and potential clinical relevance in the Chinese Mongolian. Gene 2023; 850:146960. [DOI: 10.1016/j.gene.2022.146960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
3
|
Zhang T, Li Q, Dong B, Liang X, Jia M, Bai J, Yu J, Fu S. Genetic Polymorphism of Drug Metabolic Gene CYPs, VKORC1, NAT2, DPYD and CHST3 of Five Ethnic Minorities in Heilongjiang Province, Northeast China. Pharmgenomics Pers Med 2021; 14:1537-1547. [PMID: 34876832 PMCID: PMC8643223 DOI: 10.2147/pgpm.s339854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Genetic variability in genes encoding drug-metabolizing enzymes may contribute to the heterogeneity of drug responses in different populations. Extensive research in pharmacogenomics in major populations around the world provides us with a great deal of information about drug-related genetic polymorphisms. Objective The purpose of this study was to detect the genetic variation of drug-metabolism-related genes in the five ethnic minorities Daur, Hezhen, Ewenki, Mongolian and Manchu in China, and to analyze the distribution differences among ethnic groups. Methods We genotyped 32 SNPs of drug metabolism genes in 882 healthy Chinese volunteers from five ethnic groups. The genotype frequency and allele frequency of the five ethnic groups were calculated, and the different variants among the five ethnic groups were compared by chi-square test. Genetic parameters were analyzed using Popgene software. The genetic structure of five ethnic minorities was analyzed by principal component analysis, and compared with 26 populations. Results We found that SNPs of genes related to drug metabolism existed diversity in different populations. Among them, rs8192766 and rs9419082 in CYP2E1 showed statistical differences between Daur and Manchu, and NAT2 rs1801280 showed statistical differences between Hezhen and Mongolian. In addition, the five populations we studied had the smallest differences with EAS populations. There was haplotype diversity in CHST3, VKORC1, CYP1A2 and CYP2E1 genes in the five ethnic minorities, and these haplotype polymorphisms were related to the use of corresponding drug doses. Cluster analysis shows that the five ethnic minorities in Heilongjiang Province are clustered together with the EAS populations. Conclusion These results suggest that understanding the diversity of drug-related genetic markers is critical for individualized drug gene therapy programs in ethnic minorities in China as well as in populations highly mixed with these ethnic groups.
Collapse
Affiliation(s)
- Tingting Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, People's Republic of China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China
| | - Qiuyan Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, People's Republic of China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China.,Editorial Department of International Journal of Genetics, Harbin Medical University, Harbin, People's Republic of China
| | - Bonan Dong
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, People's Republic of China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China
| | - Xiao Liang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, People's Republic of China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China
| | - Mansha Jia
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, People's Republic of China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China
| | - Jingcui Yu
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China.,Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, People's Republic of China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China
| |
Collapse
|
4
|
Genetic analysis of pharmacogenomic VIP variants in the Wa population from Yunnan Province of China. BMC Genom Data 2021; 22:51. [PMID: 34798807 PMCID: PMC8605568 DOI: 10.1186/s12863-021-00999-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background The variation of drug responses and target does among individuals is mostly determined by genes. With the development of pharmacogenetics and pharmacogenomics, the differences in drug response between different races seem to be mainly caused by the genetic diversity of pharmacodynamics and pharmacokinetics genes. Very important pharmacogenetic (VIP) variants mean that genes or variants play important and vital roles in drug response, which have been listed in pharmacogenomics databases, such as Pharmacogenomics Knowledge Base (PharmGKB). The information of Chinese ethnic minorities such as the Wa ethnic group is scarce. This study aimed to uncover the significantly different loci in the Wa population in Yunnan Province of China from the perspective of pharmacogenomics, to provide a theoretical basis for the future medication guidance, and to ultimately achieve the best treatment in the future. Results In this study, we recruited 200 unrelated healthy Wa adults from the Yunnan province of China, selected 52 VIP variants from the PharmGKB for genotyping. We also compared the genotype frequency and allele distribution of VIP variants between Wa population and the other 26 populations from the 1000 Genomes Project (http://www.1000Genomes.org/). Next, χ2 test was used to determine the significant points between these populations. The study results showed that compared with the other 26 population groups, five variants rs776746 (CYP3A5), rs4291 (ACE), rs3093105 (CYP4F2), rs1051298 (SLC19A1), and rs1065852 (CYP2D6) had higher frequencies in the Wa population. The genotype frequencies rs4291-TA, rs3093105-CA, rs1051298-AG and rs1065852-GA were higher than those of the other populations, and the allele distributions of rs4291-T and rs3093105-C were significantly different. Additionally, the difference between the Wa ethnic group and East Asian populations, such as CDX, CHB, and CHS, was the smallest. Conclusions Our research results show that there is a significant difference in the distribution of VIP variants between the Wa ethnic group and the other 26 populations. The study results will have an effect on supplementing the pharmacogenomics information for the Wa population and providing a theoretical basis for individualised medication for the Wa population. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00999-8.
Collapse
|
5
|
Genetic variation of pharmacogenomic VIP variants in Zhuang nationality of southern China. THE PHARMACOGENOMICS JOURNAL 2020; 21:60-68. [PMID: 32699276 DOI: 10.1038/s41397-020-0177-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/18/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022]
Abstract
Drug gene polymorphisms are strongly associated with disease. Previous studies have shown that the frequency of drug genes varies in different populations. At present, there are no reports about the polymorphism of the drug genome in the Zhuang population in southern China. This study conducted a pharmacogenomics study on the Zhuang population in southern China. Therefore, we conducted genotyping on 105 Zhuang samples, and compared the genotyping results with those of other 11 ethnic groups after statistical analysis. Our results show that, compared with the 11 populations in the HapMap data set, the differences between the CYP2E1 rs2070676 and CYP2D6 rs1065852 of the Zhuang nationality are the largest. This study fills in the blank of the drug genome information of the Zhuang nationality in southern China. The two sites of Rs2070676 (CYP2E1) and rs1065852 (CYP2D6) provide a reliable basis for the prediction of the efficacy of certain drugs. Its main purpose is to provide theoretical basis for safe drug use in the Zhuang region of southern China.
Collapse
|
6
|
Koshy L, Harikrishnan S, Sudhakaran PR. Prioritizing rs7294 as a mirSNP contributing to warfarin dosing variability. Pharmacogenomics 2020; 21:257-267. [PMID: 31973625 DOI: 10.2217/pgs-2019-0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The role of mirSNPs in the 3'UTR of VKORC1, CYP2C9 and CYP4F2 genes that could influence warfarin dose variability via a discrete miRNA-mediated mechanism remains unexplained. Methods: Genotypic data in the 1000 Genomes dataset were analyzed for pair-wise linkage disequilibrium and allelic enrichment. Results: MirSNP rs7294 in the 3'UTR of VKORC1 gene displayed varying strengths of linkage disequilibrium with rs9923231 and rs9934438 across populations, albeit consistently associated with higher warfarin dose requirements based on genome-wide association studies, meta-analysis and population-based association studies. In silico analysis predicted altered hybrid stability for the hsa-miR-133a-3p conserved binding site, providing evidence for miRNA-mediated gene regulation. Conclusion: The results support the inclusion of rs7294 as a functional variable for population-specific dosing algorithms to improve dosing accuracy.
Collapse
Affiliation(s)
- Linda Koshy
- Inter-University Centre for Genomics & Gene Technology, Department of Biotechnology, University of Kerala, Trivandrum-695 581, Kerala, India
| | - S Harikrishnan
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum-695 011, Kerala, India
| | - P R Sudhakaran
- Inter-University Centre for Genomics & Gene Technology, Department of Biotechnology, University of Kerala, Trivandrum-695 581, Kerala, India.,Department of Computational Biology & Bioinformatics, University of Kerala, Trivandrum-695 581, Kerala, India
| |
Collapse
|
7
|
Guillemin A, Duchesne R, Crauste F, Gonin-Giraud S, Gandrillon O. Drugs modulating stochastic gene expression affect the erythroid differentiation process. PLoS One 2019; 14:e0225166. [PMID: 31751364 PMCID: PMC6872177 DOI: 10.1371/journal.pone.0225166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022] Open
Abstract
To better understand the mechanisms behind cells decision-making to differentiate, we assessed the influence of stochastic gene expression (SGE) modulation on the erythroid differentiation process. It has been suggested that stochastic gene expression has a role in cell fate decision-making which is revealed by single-cell analyses but studies dedicated to demonstrate the consistency of this link are still lacking. Recent observations showed that SGE significantly increased during differentiation and a few showed that an increase of the level of SGE is accompanied by an increase in the differentiation process. However, a consistent relation in both increasing and decreasing directions has never been shown in the same cellular system. Such demonstration would require to be able to experimentally manipulate simultaneously the level of SGE and cell differentiation in order to observe if cell behavior matches with the current theory. We identified three drugs that modulate SGE in primary erythroid progenitor cells. Both Artemisinin and Indomethacin decreased SGE and reduced the amount of differentiated cells. On the contrary, a third component called MB-3 simultaneously increased the level of SGE and the amount of differentiated cells. We then used a dynamical modelling approach which confirmed that differentiation rates were indeed affected by the drug treatment. Using single-cell analysis and modeling tools, we provide experimental evidence that, in a physiologically relevant cellular system, SGE is linked to differentiation.
Collapse
Affiliation(s)
- Anissa Guillemin
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Supérieure - Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique: UMR5239, Institut National de la Santé et de la Recherche Médicale: U1210 - Ecole Normale Supérieure de Lyon 46 allée d’Italie 69007 Lyon, France
| | - Ronan Duchesne
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Supérieure - Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique: UMR5239, Institut National de la Santé et de la Recherche Médicale: U1210 - Ecole Normale Supérieure de Lyon 46 allée d’Italie 69007 Lyon, France
- Inria Dracula, Villeurbanne, France
| | - Fabien Crauste
- Inria Dracula, Villeurbanne, France
- Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400, Talence, France
| | - Sandrine Gonin-Giraud
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Supérieure - Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique: UMR5239, Institut National de la Santé et de la Recherche Médicale: U1210 - Ecole Normale Supérieure de Lyon 46 allée d’Italie 69007 Lyon, France
| | - Olivier Gandrillon
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Supérieure - Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique: UMR5239, Institut National de la Santé et de la Recherche Médicale: U1210 - Ecole Normale Supérieure de Lyon 46 allée d’Italie 69007 Lyon, France
- Inria Dracula, Villeurbanne, France
| |
Collapse
|
8
|
Zhang C, Jiang X, Chen W, Li Q, Yun F, Yang X, Dai R, Cheng Y. Population genetic difference of pharmacogenomic VIP gene variants in the Lisu population from Yunnan Province. Medicine (Baltimore) 2018; 97:e13674. [PMID: 30593137 PMCID: PMC6314765 DOI: 10.1097/md.0000000000013674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Individual differences in drug clinical response are related to pharmacogenomics. The genetic variation of drug-metabolizing enzymes, drug receptors, and their downstream protein genes is the main factor causing individual differences in drug response. The genetic backgrounds among different ethnic groups are quite different. In this study, we aimed to detect the distribution difference of genotype frequency in very important pharmacogenetic (VIP) gene variants in the Lisu.Using the chi-squared test, we compared the genotype frequencies of the VIP variants in 105 Lisu people with those in 26 populations from the 1000 Genome project separately. Bonferroni's multiple adjustment was also conducted (P < .05/(26*49)). Moreover, Arlequin v3.5 and Structure v2.3.4 software were used to analyze the genetic distance and genetic structure.There were 9, 9, 11, 12, 11, 11, 9, 17, 13, 13, 16, 5, 3, 5, 3, 4, 17, 14, 16, 17, 16, 10, 13, 12, 10, and 9 single nucleotide polymorphisms that differed in frequency distribution, when Lisu people compared with the 26 populations separately. Only CYP2E1 rs2070676 was different in the Lisu population compared with the 26 groups from the 1000 Genome project. PTGS2 rs5275 and CYP2D6 rs1065852 were different in the Lisu population compared with most of the populations. Additionally, genetic backgrounds of Lisu and Han Chinese in Beijing were closest according to the lowest F-statistics value and resemblance in genetic structures.Our results complete the information of the Lisu population in pharmacogenomics database.
Collapse
Affiliation(s)
- Chan Zhang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology
| | - Xiaochun Jiang
- Department of Blood Transfusion, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Wanlu Chen
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology
| | - Qi Li
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology
| | - Fubin Yun
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology
| | - Xin Yang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology
| | - Run Dai
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology
| | - Yujing Cheng
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology
| |
Collapse
|