1
|
Sun Y, Cao Z, Zhang P, Wei C, Li J, Wu Y, Zhou Y. IFN regulatory factor 3 of golden pompano and its NLS domain are involved in antibacterial innate immunity and regulate the expression of type I interferon (IFNa3). Front Immunol 2023; 14:1128196. [PMID: 36817435 PMCID: PMC9933344 DOI: 10.3389/fimmu.2023.1128196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The transcription factor interferon regulatory factor 3 (IRF3) plays an important role in host defence against viral infections. However, its role during bacterial infection in teleosts remains unclear. In the present study, we evaluated the antibacterial effects of Trachinotus ovatus IRF3 (TroIRF3) and how it regulates type I interferon (IFN). Methods Subcellular localisation experiments, overexpression, and quantitative real-time PCR (qRT-PCR) were performed to examine the nuclear localisation signal (NLS) of TroIRF3 and its role in the antibacterial regulatory function of TroIRF3. We assessed the binding activity of TroIRF3 to the IFNa3 promoter by luciferase reporter assay. Results and Discussion The results showed that TroIRF3 was constitutively expressed at high levels in the gill and liver. TroIRF3 was significantly upregulated and transferred from the cytoplasm to the nucleus after Vibrio harveyi infection. By overexpressing TroIRF3, the fish were able to inhibit the replication of V. harveyi, whereas knocking it down increased bacterial replication. Moreover, the overexpression of TroIRF3 increased type I interferon (IFNa3) production and the IFN signalling molecules. The NLS, which is from the 64-127 amino acids of TroIRF3, contains the basic amino acids KR74/75 and RK82/84. The results proved that NLS is required for the efficient nuclear import of TroIRF3 and that the NLS domain of TroIRF3 consists of the key amino acids KR74/75 and RK82/84. The findings also showed that NLS plays a key role in the antibacterial immunity and upregulation of TroIFNa3 induced by TroIRF3. Moreover, TroIRF3 induces TroIFNa3 promoter activity, whereas these effects are inhibited when the NLS domain is deficient. Overall, our results suggested that TroIRF3 is involved in the antibacterial immunity and regulation of type I IFN in T. ovatus and that the NLS of TroIRF3 is vital for IRF3-mediated antibacterial responses, which will aid in understanding the immune role of fish IRF3.
Collapse
Affiliation(s)
- Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Panpan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Caoying Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Jianlong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China,*Correspondence: Ying Wu, ; Yongcan Zhou,
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China,*Correspondence: Ying Wu, ; Yongcan Zhou,
| |
Collapse
|
2
|
Chen DD, Jiang JY, Lu LF, Zhang C, Zhou XY, Li ZC, Zhou Y, Li S. Zebrafish Uba1 Degrades IRF3 through K48-Linked Ubiquitination to Inhibit IFN Production. THE JOURNAL OF IMMUNOLOGY 2021; 207:512-522. [PMID: 34193603 DOI: 10.4049/jimmunol.2100125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023]
Abstract
Fish IFN regulatory factor 3 (IRF3) is a crucial transcription factor in the IFN activation signaling pathway, which leads to IFN production and a positive cycle. Unrestricted IFN expression results in hyperimmune responses and therefore, IFN must be tightly regulated. In the current study, we found that zebrafish Ub-activating enzyme (Uba1) negatively regulated IRF3 via the K-48 ubiquitin proteasome degradation of IRF3. First, ifn expression stimulated by spring viraemia of carp virus infection was blunted by the overexpression of Uba1 and enhanced by Uba1 knockdown. Afterward, we found that Uba1 was localized in the cytoplasm, where it interacted with and degraded IRF3. Functional domains analysis revealed that the C-terminal ubiquitin-fold domain was necessary for IRF3 degradation by Uba1 and the N-terminal DNA-binding domain of IRF3 was indispensable for the degradation by Uba1.The degradation of IRF3 was subsequently impaired by treatment with MG132, a ubiquitin proteasome inhibitor. Further mechanism analysis revealed that Uba1 induced the K48-linked Ub-proteasomal degradation of IRF3. Finally, the antiviral capacity of IRF3 was significantly attenuated by Uba1. Taken together, our study reveals that zebrafish Uba1 interacts with and activates the ubiquitinated degradation of IRF3, providing evidence of the IFN immune balance mechanism in fish.
Collapse
Affiliation(s)
- Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Jing-Yu Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; .,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
3
|
Zhao X, Xiao T, Jin S, Wang J, Wang J, Luo H, Li R, Sun T, Zou J, Li Y. Characterization and immune function of the interferon-β promoter stimulator-1 in the barbel chub, Squaliobarbus curriculus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103571. [PMID: 31837379 DOI: 10.1016/j.dci.2019.103571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
To elucidate the immunity-protecting role of the interferon-β promoter stimulator-1 (ScIPS-1) in barbel chub Squaliobarbus curriculus, the full-length cDNA of ScIPS-1 was cloned and expression levels in response to stimulation were investigated. In addition, the function of ScIPS-1 and its domains were analyzed. The full-length cDNA of ScIPS-1 is 2524 bp and encodes 601 aa. The N-terminal caspase activation and recruitment domain, central proline-rich domain, C-terminal transmembrane domain, C2HC-zinc finger, and Cwf21 domains were identified. The mRNA level of ScIPS-1 was the highest in the kidney, whereas the highest protein level was observed in the liver. The ScIPS-1 expressions were significantly up-regulated after lipopolysaccharide and poly I:C treatment. The ScIPS-1 protein level was up-regulated at 12 h in the head kidney and was up-regulated at 12 h and then down-regulated from 12 to 48 h in the liver after grass carp reovirus (GCRV) infection. The CiIFN and CiMx transcription levels were significantly enhanced in pEGFP-C1-IPS-1 and pcDNA3.1-ΔCwf21 overexpressing cells after GCRV infection. The results indicate that ScIPS-1 may function in the immune response against pathogens and provide a basis for achieving resistance to diseases in fish breeding.
Collapse
Affiliation(s)
- Xin Zhao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Shengzhen Jin
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jing'an Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hong Luo
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Rui Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Tong Sun
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jun Zou
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
4
|
Li Y, Jin S, Zhao X, Luo H, Li R, Li D, Xiao T. Sequence and expression analysis of the cytoplasmic pattern recognition receptor melanoma differentiation-associated gene 5 from the barbel chub Squaliobarbus curriculus. FISH & SHELLFISH IMMUNOLOGY 2019; 94:485-496. [PMID: 31494278 DOI: 10.1016/j.fsi.2019.08.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
MDA5 is a cytoplasmic viral double-stranded RNA recognition receptor that plays a pivotal role in the aquatic animal innate immune system. To decipher the role of MDA5 of Squaliobarbus curriculus (ScMDA5) in the immune response, full-length cDNA of ScMDA5 was cloned using the RACE technology, mRNA and protein expression levels of ScMDA5 signalling pathway members in response to stimulation were detected and effects of overexpression of ScMDA5 on the immune response were investigated. ScMDA5 comprises 3597 bp and is composed of an open reading frame (2958 nucleotides long) that translates into a putative peptide of 985 amino acid residues. ScMDA5 possesses two N-terminal caspase-recruiting domains, DEAD-like helicases superfamily, helicase superfamily C-terminal and RIG-I_C-RD domains, and differences in these domains among species were mainly observed with respect to their length and location. ScMDA5 was closely clustered with those of Carassius auratus, Ctenopharyngodon idellus and Mylopharyngodon piceus. ScMDA5 transcripts were most abundant in the spleen and the lowest in the liver. Expression levels of ScMDA5 in healthy tissues were significantly correlated with those of ScIRF3, ScIRF7 and ScIFN. Besides, mRNA expression levels of ScIRF3 were significantly correlated with those of ScIRF7 (0.956, P < 0.01). Expression level changes, including downregulation, upregulation and initial upregulation followed by downregulation, were found in ScMDA5 signalling pathway molecules in tissues after grass carp reovirus infection. Protein levels of ScMDA5 were the highest in the liver and the lowest in the spleen in detected healthy tissues. Overexpression of ScMDA5 led to significantly enhanced CiIRF7 and CiMx transcription in grass carp ovary cells (P < 0.05). The results of this study helped to clarify the role of ScMDA5 in the immune reaction against grass carp reovirus and provided fundamental information for fish breeding to achieve strong resistance to infection.
Collapse
Affiliation(s)
- Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China
| | - Shengzhen Jin
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Zhao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Hong Luo
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Rui Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Dongfang Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China.
| |
Collapse
|
5
|
Li Z, Chen J, Li P, Li XY, Lu L, Li S. Functional characterization of dark sleeper (Odontobutis obscura) IRF3 in IFN regulation. FISH & SHELLFISH IMMUNOLOGY 2019; 89:411-419. [PMID: 30978449 DOI: 10.1016/j.fsi.2019.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
The dark sleeper, Odontobutis obscura (O. obscura), is a commercially important species of freshwater sleeper native to East Asia. However, its molecular biology system is unexplored, including the interferon (IFN) signaling pathway, which is crucial to the antiviral response. In this study, we characterised the IFN regulation pattern of dark sleeper interferon regulatory factor 3 (OdIRF3), supplementing evidence of the conservation of this classical pathway in fish. First, the open reading frame (ORF) of OdIRF3 was cloned from the liver tissue by Rapid amplification of cDNA ends (RACE). Amino acid sequence analysis suggested that OdIRF3 is homologous with other fish IRF3 and that the N-terminal DNA-binding domain (DBD) and the C-terminal IRF-association domain (IAD) are conserved. Then, the cellular distribution demonstrated that OdIRF3 is located in the cytoplasm region and transfers into the nuclear region under stimulation. For the function identification, OdIRF3 activated several types of IFN promoters and induced downstream interferon stimulated genes (ISGs) expression. Finally, the overexpression of OdIRF3 significantly decreased viral proliferation. Taken together, these data systematically characterised the sequence, cellular location, and function in IFN expression of OdIRF3, shedding light on the molecular biology mechanism of the dark sleeper.
Collapse
Affiliation(s)
- Zhuocong Li
- University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jian Chen
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Pei Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Longfeng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
6
|
Jin S, Zhao X, Wang H, Su J, Wang J, Ding C, Li Y, Xiao T. Molecular characterization and expression of TLR7 and TLR8 in barbel chub (Squaliobarbus curriculus): Responses to stimulation of grass carp reovirus and lipopolysaccharide. FISH & SHELLFISH IMMUNOLOGY 2018; 83:292-307. [PMID: 30218823 DOI: 10.1016/j.fsi.2018.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
The barbel chub (Squaliobarbus curriculus) is a kind of small size commercial fish species that is widely spread in Asia and has shown significant resistance to disease. In this study, the full-length cDNA sequences of Toll-like receptor (TLR) 7 and 8 from S. curriculus, designated as ScTLR7 and ScTLR8, were cloned, and their differences in the structure and the responses to the grass carp (GCRV) infection and lipopolysaccharide stimulation were investigated. The full-length 3715 base pair (bp) cDNA of ScTLR7 contained a complete open reading frame of 3162 bp and encoded a putative polypeptide of 1053 amino acid residues. The full-length 4624 base pair (bp) cDNA of ScTLR8 contained a complete open reading frame of 3072 bp and encoded a putative polypeptide of 1023 amino acid residues. ScTLR7 and ScTLR8 consisted of N-terminal signal peptide, leucine-rich repeats (LRRs), and Toll/IL-1 Receptors domain. LRR motifs of ScTLR7 and ScTLR8 bend into horseshoe-like solenoid structure, while the number of LRRs between the two genes is different. Phylogenetic analysis showed that both the ScTLR7 and ScTLR8 were closely clustered with Ctenopharyngodon idellus and Megalobrama amblycephala. Quantitative real-time polymerase chain reaction analysis showed that the expression levels of ScTLR7 in S. curriculus were most abundant in the brain followed by the spleen and heart, and the lowest in the intestine. The highest expression level of ScTLR8 was observed in spleen and the lowest in the liver. After LPS stimulation, the relative expression levels of both ScTLR7 and ScTLR8 exhibited an overall trend of up-regulation. The expression levels of type I-IFN showed an overall trend of down-regulation at time points of 12, 24, 72 and 168 h compared to that of 6 h after LPS stimulation. Compared to 6 h post GCRV infection, the transcription level of ScTLR7 was up-regulated from 12 to 168 h, and transcription levels of ScTLR8, MyD88, and type I-IFN were firstly up-regulated from 12 to 72 h, and then down-regulated from 72 to 168 h. Correlation analysis showed that expression level of ScTLR7 in the spleen was significantly positively correlated with that of MyD88 (Pearson correlation coefficient: 0.909, P: 0.033), and a significantly positive correlation was also observed between expression levels of MyD88 and type I IFN (Pearson correlation coefficient: 0.962, P: 0.009), after GCRV stimulation. These results indicate that ScTLR7 and ScTLR8 may play important roles in the responses to the grass carp (GCRV) infection and lipopolysaccharide stimulation and trigger different downstream immune signal pathways.
Collapse
Affiliation(s)
- Shengzhen Jin
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xin Zhao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Hongquan Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China
| | - Jianming Su
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jing'an Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China.
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China.
| |
Collapse
|
7
|
Zhang W, Li Z, Jia P, Liu W, Yi M, Jia K. Interferon regulatory factor 3 from sea perch (Lateolabrax japonicus) exerts antiviral function against nervous necrosis virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:200-205. [PMID: 30016710 DOI: 10.1016/j.dci.2018.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Interferon (IFN) regulatory factor 3 (IRF3) is a major regulator contributing to the host away from viral infection. Here, an IRF3 gene from sea perch (LjIRF3) was identified and its role in regulating early apoptosis signaling and IFN response was investigated during red spotted grouper nervous necrosis virus (RGNNV) infection. The cDNA of LjIRF3 encoded a putative 465 amino acids protein, containing a DNA binding domain, an IRF association domain and a serine-rich domain. Phylogenetic analysis suggested that LjIRF3 shared the closest genetic relationship with Epinephelus coioides IRF3. LjIRF3 was constitutively expressed in all examined tissues with the highest expression level in the liver. Upon RGNNV infection, mRNA transcript level of LjIRF3 was significantly up-regulated in vivo and in vitro, indicating the involvement of LjIRF3 in immune response to RGNNV infection. Furthermore, overexpression of LjIRF3 significantly suppressed RGNNV replication in vitro, meanwhile significantly up-regulating the expression of IFNI and IFN stimulated genes and resulting in the activation of caspase 3 and 9 proteases in the early stage of RGNNV infection. In short, these results demonstrated that LjIRF3 exerted antiviral function against RGNNV infection via triggering early apoptotic cell death and inducing IRF3-dependent IFN immune response.
Collapse
Affiliation(s)
- Wanwan Zhang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Zelin Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Peng Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|