1
|
Rehman S, Parent M, Storey KB. Histone Arginine Methylation as a Regulator of Gene Expression in the Dehydrating African Clawed Frog ( Xenopus laevis). Genes (Basel) 2024; 15:1156. [PMID: 39336747 PMCID: PMC11431520 DOI: 10.3390/genes15091156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The African clawed frog (Xenopus laevis) endures prolonged periods of dehydration while estivating underground during the dry season. Epigenetic modifications play crucial roles in regulating gene expression in response to environmental changes. The elucidation of epigenetic changes relevant to survival could serve as a basis for further studies on organ preservation under extreme stress. The current study examined the relative protein levels of key enzymes involved in the arginine methylation of histones in the liver and kidney tissues of control versus dehydrated (35 ± 1%) X. laevis through immunoblotting. Protein arginine methyltransferases (PRMT) 4, 5, and 6 showed significant protein level decreases of 35 ± 3%, 71 ± 7%, and 25 ± 5%, respectively, in the liver tissues of the dehydrated frogs relative to controls. In contrast, PRMT7 exhibited an increase of 36 ± 4%. Similarly, the methylated histone markers H3R2m2a, H3R8m2a, and H3R8m2s were downregulated by 34 ± 11%, 15 ± 4%, and 42 ± 12%, respectively, in the livers of dehydrated frogs compared to controls. By contrast, the kidneys of dehydrated frogs showed an upregulation of histone markers. H3R2m2a, H3R8m2a, H3R8m2s, and H4R3m2a were significantly increased by 126 ± 12%, 112 ± 7%, 47 ± 13%, and 13 ± 3%, respectively. These changes can play vital roles in the metabolic reorganization of X. laevis during dehydration, and are likely to increase the chances of survival. In turn, the tissue-specific regulation of the histone arginine methylation mechanism suggests the importance of epigenetic regulation in the adaptation of X. laevis for whole-body dehydration.
Collapse
Affiliation(s)
| | | | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.R.)
| |
Collapse
|
2
|
Bloskie T, Taiwo OO, Storey KB. Reversible Histone Modifications Contribute to the Frozen and Thawed Recovery States of Wood Frog Brains. Biomolecules 2024; 14:839. [PMID: 39062553 PMCID: PMC11275241 DOI: 10.3390/biom14070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Epigenetic regulation, notably histone post-translational modification (PTM), has emerged as a major transcriptional control of gene expression during cellular stress adaptation. In the present study, we use an acid extraction method to isolate total histone protein and investigate dynamic changes in 23 well-characterized histone methylations/acetylations in the brains of wood frogs subject to 24-h freezing and subsequent 8-h thawed recovery conditions. Our results identify four histone PTMs (H2BK5ac, H3K14ac, H3K4me3, H3K9me2) and three histone proteins (H1.0, H2B, H4) that were significantly (p < 0.05) responsive to freeze-thaw in freeze-tolerant R. sylvatica brains. Two other permissive modifications (H3R8me2a, H3K9ac) also trended downwards following freezing stress. Together, these data are strongly supportive of the proposed global transcriptional states of hypometabolic freeze tolerance and rebounded thawed recovery. Our findings shed light on the intricate interplay between epigenetic regulation, gene transcription and energy metabolism in wood frogs' adaptive response to freezing stress.
Collapse
Affiliation(s)
| | | | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; (T.B.); (O.O.T.)
| |
Collapse
|
3
|
Abdelnour SA, Naiel MAE, Said MB, Alnajeebi AM, Nasr FA, Al-Doaiss AA, Mahasneh ZMH, Noreldin AE. Environmental epigenetics: Exploring phenotypic plasticity and transgenerational adaptation in fish. ENVIRONMENTAL RESEARCH 2024; 252:118799. [PMID: 38552831 DOI: 10.1016/j.envres.2024.118799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Epigenetics plays a vital role in the interaction between living organisms and their environment by regulating biological functions and phenotypic plasticity. Considering that most aquaculture activities take place in open or natural habitats that are vulnerable to environmental changes. Promising findings from recent research conducted on various aquaculture species have provided preliminary evidence suggesting a link between epigenetic mechanisms and economically valuable characteristics. Environmental stressors, including climate changes (thermal stress, hypoxia, and water salinity), anthropogenic impacts such as (pesticides, crude oil pollution, nutritional impacts, and heavy metal) and abiotic factors (infectious diseases), can directly trigger epigenetic modifications in fish. While experiments have confirmed that many epigenetic alterations caused by environmental factors have plastic responses, some can be permanently integrated into the genome through genetic integration and promoting rapid transgenerational adaptation in fish. These environmental factors might cause irregular DNA methylation patterns in genes related to many biological events leading to organs dysfunction by inducing alterations in genes related to oxidative stress or apoptosis. Moreover, these environmental issues alter DNA/histone methylation leading to decreased reproductive competence. This review emphasizes the importance of understanding the effects of environmentally relevant issues on the epigenetic regulation of phenotypic variations in fish. The goal is to expand our knowledge of how epigenetics can either facilitate or hinder species' adaptation to these adverse conditions. Furthermore, this review outlines the areas that warrant further investigation in understanding epigenetic reactions to various environmental issues.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia; Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
| | - Afnan M Alnajeebi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fahd A Nasr
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Amin A Al-Doaiss
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Zeinab M H Mahasneh
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
4
|
Rehman S, Storey KB. Dynamics of epigenetic regulation in Dryophytes versicolor skeletal muscle: Lysine methylation and acetylation involvement in metabolic rate depression. J Therm Biol 2024; 122:103865. [PMID: 38761482 DOI: 10.1016/j.jtherbio.2024.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
For the breadth of the winter, Dryophytes versicolor can survive full body freezing utilizing a phenomenon known as metabolic rate depression (MRD). Epigenetic transcriptional control on gene expression, such as histone methylation and acetylation, can aid in implementing a balance between permissive and restricted chromatin required to endure this stress. As such, this study explores the interplay between histone lysine methyl and acetyl transferases (HKMTs, HATs), as well as the abundance of various acetyl-lysine and methyl-lysine moieties on histone H3 and H4. Results showing that overexpression of transcriptionally repressive marks, and under expression of active ones, suggest a negative effect on overall gene transcription in skeletal muscle tissue.
Collapse
Affiliation(s)
- Saif Rehman
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
5
|
Bloskie T, Storey KB. Histone H3 and H4 Modifications Point to Transcriptional Suppression as a Component of Winter Freeze Tolerance in the Gall Fly Eurosta solidaginis. Int J Mol Sci 2023; 24:10153. [PMID: 37373302 DOI: 10.3390/ijms241210153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The goldenrod gall fly (Eurosta solidaginis) is a well-studied model of insect freeze tolerance. In situations of prolonged winter subzero temperatures, larvae of E. solidaginis accept ice penetration throughout extracellular spaces while protecting the intracellular environment by producing extreme amounts of glycerol and sorbitol as cryoprotectants. Hypometabolism (diapause) is implemented, and energy use is reprioritized to essential pathways. Gene transcription is one energy-expensive process likely suppressed over the winter, in part, due to epigenetic controls. The present study profiled the prevalence of 24 histone H3/H4 modifications of E. solidaginis larvae after 3-week acclimations to decreasing environmental temperatures (5 °C, -5 °C and -15 °C). Using immunoblotting, the data show freeze-mediated reductions (p < 0.05) in seven permissive histone modifications (H3K27me1, H4K20me1, H3K9ac, H3K14ac, H3K27ac, H4K8ac, H3R26me2a). Along with the maintenance of various repressive marks, the data are indicative of a suppressed transcriptional state at subzero temperatures. Elevated nuclear levels of histone H4, but not histone H3, were also observed in response to both cold and freeze acclimation. Together, the present study provides evidence for epigenetic-mediated transcriptional suppression in support of the winter diapause state and freeze tolerance of E. solidaginis.
Collapse
Affiliation(s)
- Tighe Bloskie
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
6
|
Lin R, Wu J, You Z, Xu D, Li C, Wang W, Qian G. Induction of Hibernation and Changes in Physiological and Metabolic Indices in Pelodiscus sinensis. BIOLOGY 2023; 12:biology12050720. [PMID: 37237532 DOI: 10.3390/biology12050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Pelodiscus sinensis (P. sinensis) is a commonly cultivated turtle species with a habit of hibernation. To study the changes in histone expression and methylation of P. sinensis during hibernation induction, a model was established by artificial induction. Physiological and metabolic indices were measured, and the expression and localization of histone (H1, H2A, H2B, H3, and H4) and methylation-related genes (ASH2L, KMT2A, KMT2E, KDM1A, KDM1B, and KDM5A) were measured by quantitative PCR, immunohistochemistry, and Western blot analysis. The results indicated that the metabolism, antioxidation index, and relative expression of histone methyltransferase were significantly decreased (p < 0.05), whereas the activity and expression of histone demethyltransferase were significantly increased (p < 0.05). Although our results showed significant changes in physiological and gene expression after hibernation induction, we could not confirm that P. sinensis entered deep hibernation. Therefore, for the state after cooling-induced hibernation, cold torpor might be a more accurate description. The results indicate that the P. sinensis can enter cold torpor through artificial induction, and the expression of histones may promote gene transcription. Unlike histones expressed under normal conditions, histone methylation may activate gene transcription during hibernation induction. Western blot analysis revealed that the ASH2L and KDM5A proteins were differentially expressed in the testis at different months (p < 0.05), which may perform a role in regulating gene transcription. The immunohistochemical localization of ASH2L and KDM5A in spermatogonia and spermatozoa suggests that ASH2L and KDM5A may perform a role in mitosis and meiosis. In conclusion, this study is the first to report changes in histone-related genes in reptiles, which provides insight for further studies on the physiological metabolism and histone methylation regulation of P. sinensis during the hibernation induction and hibernation period.
Collapse
Affiliation(s)
- Runlan Lin
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Jiahao Wu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Ziyi You
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Dongjie Xu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Caiyan Li
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Wang
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
7
|
Ingelson-Filpula WA, Cheng H, Eaton L, Pamenter ME, Storey KB. Small RNA sequencing in hypoxic naked mole-rat hearts suggests microRNA regulation of RNA- and translation-related processes. FEBS Lett 2022; 596:2821-2833. [PMID: 36120811 DOI: 10.1002/1873-3468.14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) regularly endures intermittent periods of hypoxia in its burrows, surviving in part due to metabolic rate depression (MRD)-a strategy of conserving cellular resources by downregulating nonessential gene expression and reorganizing cellular processes. MicroRNA (miRNA) are short, noncoding RNAs already implicated for their roles in numerous models of extreme environmental stress; given their rapid, reversible nature, they are ideal for implementing MRD. We performed small RNA sequencing on cardiac tissue from normoxic vs. 24 h hypoxic naked mole-rats, and used bioinformatics to predict eighteen miRNAs which may be differentially regulated during hypoxia. Gene Ontology and KEGG pathway mapping further suggest these miRNAs play roles in largely translation-related functions, including RNA processing and catabolism.
Collapse
Affiliation(s)
- W Aline Ingelson-Filpula
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Hang Cheng
- Biology Department, University of Ottawa, Marie-Curie Pvt, Ottawa, Ontario, K1N 9A7, Canada
| | - Liam Eaton
- Biology Department, University of Ottawa, Marie-Curie Pvt, Ottawa, Ontario, K1N 9A7, Canada
| | - Matthew E Pamenter
- Biology Department, University of Ottawa, Marie-Curie Pvt, Ottawa, Ontario, K1N 9A7, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
8
|
DNA Hypomethylation May Contribute to Metabolic Recovery of Frozen Wood Frog Brains. EPIGENOMES 2022; 6:epigenomes6030017. [PMID: 35893013 PMCID: PMC9326605 DOI: 10.3390/epigenomes6030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Transcriptional suppression is characteristic of extreme stress responses, speculated to preserve energetic resources in the maintenance of hypometabolism. In recent years, epigenetic regulation has become heavily implicated in stress adaptation of many animals, including supporting freeze tolerance of the wood frog (Rana sylvatica). However, nervous tissues are frequently lacking in these multi-tissue analyses which warrants investigation. The present study examines the role of DNA methylation, a core epigenetic mechanism, in the response of wood frog brains to freezing. We use immunoblot analysis to track the relative expression of DNA methyltransferases (DNMT), methyl-CpG-binding domain (MBD) proteins and ten-eleven-translocation (TET) demethylases across the freeze-thaw cycle in R. sylvatica brain, including selected comparisons to freeze-associated sub-stresses (anoxia and dehydration). Global methyltransferase activities and 5-hmC content were also assessed. The data show coordinated evidence for DNA hypomethylation in wood frog brains during freeze-recovery through the combined roles of depressed DNMT3A/3L expression driving lowered DNMT activity and increased TET2/3 levels leading to elevated 5-hmC genomic content (p < 0.05). Raised levels of DNMT1 during high dehydration were also noteworthy. The above suggest that alleviation of transcriptionally repressive 5-mC DNA methylation is a necessary component of the wood frog freeze-thaw cycle, potentially facilitating the resumption of a normoxic transcriptional state as frogs thaw and resume normal metabolic activities.
Collapse
|
9
|
Bloskie T, Storey KB. Epigenetics of the frozen brain: roles for lysine methylation in hypometabolism. FEBS Lett 2022; 596:2007-2020. [PMID: 35770350 DOI: 10.1002/1873-3468.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/08/2022]
Abstract
Wood frog (Rana sylvatica) freeze tolerance necessitates metabolic rate depression, where costly processes such as gene transcription are commonly suppressed. Epigenetic mechanisms, such as histone lysine methylation, have recently been implicated in hypometabolic states of various animals, although they are underreported in nervous tissues. In the present study, we track the expression of eight lysine methyltransferases, as well as the activity on, and abundance of putative histone products across the freeze-thaw cycle and freeze-associated sub-stresses (anoxia, dehydration) of wood frog brains. Our results suggest that hypomethylation of transcriptionally repressive H3K9 may be a key facet of metabolic recovery during the thawing of nervous tissue, which we speculate may have a positive effect on global gene transcription. Some non-histone roles for lysine methylation are also proposed.
Collapse
Affiliation(s)
- Tighe Bloskie
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
10
|
Muscles in Winter: The Epigenetics of Metabolic Arrest. EPIGENOMES 2021; 5:epigenomes5040028. [PMID: 34968252 PMCID: PMC8715459 DOI: 10.3390/epigenomes5040028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The winter months are challenging for many animal species, which often enter a state of dormancy or hypometabolism to “wait out” the cold weather, food scarcity, reduced daylight, and restricted mobility that can characterize the season. To survive, many species use metabolic rate depression (MRD) to suppress nonessential metabolic processes, conserving energy and limiting tissue atrophy particularly of skeletal and cardiac muscles. Mammalian hibernation is the best recognized example of winter MRD, but some turtle species spend the winter unable to breathe air and use MRD to survive with little or no oxygen (hypoxia/anoxia), and various frogs endure the freezing of about two-thirds of their total body water as extracellular ice. These winter survival strategies are highly effective, but create physiological and metabolic challenges that require specific biochemical adaptive strategies. Gene-related processes as well as epigenetic processes can lower the risk of atrophy during prolonged inactivity and limited nutrient stores, and DNA modifications, mRNA storage, and microRNA action are enacted to maintain and preserve muscle. This review article focuses on epigenetic controls on muscle metabolism that regulate MRD to avoid muscle atrophy and support winter survival in model species of hibernating mammals, anoxia-tolerant turtles and freeze-tolerant frogs. Such research may lead to human applications including muscle-wasting disorders such as sarcopenia, or other conditions of limited mobility.
Collapse
|
11
|
Wijenayake S, Storey KB. The role of humanin in natural stress tolerance: An underexplored therapeutic avenue. Biochim Biophys Acta Gen Subj 2021; 1866:130022. [PMID: 34626747 DOI: 10.1016/j.bbagen.2021.130022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The discovery of humanin (HN/MTRNR2) 20 years ago blazed a trail to identifying mitochondrial derived peptides with biological function. SCOPE Humanin is associated with pro-survival, cytoprotective, anti-inflammatory, and anti-oxidative properties and may play a role in reducing neurodegenerative and metabolic disease progression. Although the role of humanin in vitro and in vivo laboratory models is well characterized, the regulation of humanin in natural models that encounter lethal cytotoxic and oxidative insults, as part of their natural history, require immediate research. In this review, we discuss the conservation of humanin-homologues across champion hibernators, anoxia and freeze-tolerant vertebrates and postulate on the putative roles of humanin in non-model species. SIGNIFICANCE We hope characterization of humanin in animals that are naturally immune to cellular insults, that are otherwise lethal for non-tolerant species, will elucidate key biomarkers and cytoprotective pathways with therapeutic potential and help differentiate pro-survival mechanisms from cellular consequences of stress.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, Richardson College for the Environment and Science Complex, University of Winnipeg, Winnipeg, Manitoba, Canada; Department of Biological Sciences and the Center for Environmental Epigenetics and Development, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
12
|
Hartman C, Legoff L, Capriati M, Lecuyer G, Kernanec PY, Tevosian S, D'Cruz SC, Smagulova F. Epigenetic Effects Promoted by Neonicotinoid Thiacloprid Exposure. Front Cell Dev Biol 2021; 9:691060. [PMID: 34295895 PMCID: PMC8290843 DOI: 10.3389/fcell.2021.691060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022] Open
Abstract
Background Neonicotinoids, a widely used class of insecticide, have attracted much attention because of their widespread use that has resulted in the decline of the bee population. Accumulating evidence suggests potential animal and human exposure to neonicotinoids, which is a cause of public concern. Objectives In this study, we examined the effects of a neonicotinoid, thiacloprid (thia), on the male reproductive system. Methods The pregnant outbred Swiss female mice were exposed to thia at embryonic days E6.5 to E15.5 using “0,” “0.06,” “0.6,” and “6” mg/kg/day doses. Adult male progeny was analyzed for morphological and cytological defects in the testes using hematoxylin and eosin (H&E) staining. We also used immunofluorescence, Western blotting, RT-qPCR and RNA-seq techniques for the analyses of the effects of thia on testis. Results We found that exposure to thia causes a decrease in spermatozoa at doses “0.6” and “6” and leads to telomere defects at all tested doses. At doses “0.6” and “6,” thia exposure leads to an increase in meiotic pachytene cells and a decrease in lumen size, these changes were accompanied by increased testis-to-body weight ratios at high dose. By using RNA-seq approach we found that genes encoding translation, ATP production, ATP-dependent proteins and chromatin-modifying enzymes were deregulated in testes. In addition, we found that exposure to thia results in a decrease in H3K9me3 levels in spermatocytes. The changes in H3K9me3 were associated with a dramatic increase in activity of retroelements. Conclusion Our study suggests that gestational exposure to thia affects epigenetic mechanisms controlling meiosis which could lead to deleterious effects on male spermatogenesis.
Collapse
Affiliation(s)
- Colin Hartman
- EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail - UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Louis Legoff
- EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail - UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Martina Capriati
- EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail - UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Gwendoline Lecuyer
- EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail - UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Pierre-Yves Kernanec
- EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail - UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Sergei Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Shereen Cynthia D'Cruz
- EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail - UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Fatima Smagulova
- EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail - UMR_S 1085, Université de Rennes 1, Rennes, France
| |
Collapse
|
13
|
Léger JAD, Athanasio CG, Zhera A, Chauhan MF, Simmons DBD. Hypoxic responses in Oncorhynchus mykiss involve angiogenesis, lipid, and lactate metabolism, which may be triggered by the cortisol stress response and epigenetic methylation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100860. [PMID: 34126312 DOI: 10.1016/j.cbd.2021.100860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The incidence of hypoxia in water bodies is increasing more rapidly than aquatic life can adapt. This study aimed to determine the effects of hypoxia on fish physiology, as well as protein expression through proteomics. To do this, 40 rainbow trout were divided into normoxic control (11.5 mg/L dissolved oxygen) and hypoxic treatment (5 mg/L dissolved oxygen) tanks for a period of 7 days. Fish were then anesthetized and blood was sampled. Fish were then euthanized and heart and liver samples were taken. Blood glucose, cortisol and lipid, body and liver mass, fork length, hematocrit and, blood cell counts and global heart methylation were measured. Red blood cell counts were significantly lower, while hematocrit and mean corpuscular volume were significantly higher in the hypoxic treatment. Global DNA methylation was significantly decreased in hypoxic heart tissue. Plasma cortisol and 18:1 monoacylglyerol increased, while 15:0-18:1 phosphatidylethanolamine, and 18:1 lysophosphatidylethanolamine decreased in plasma of rainbow trout under hypoxic conditions. Plasma proteomics revealed 70 significantly altered proteins (p < 0.05) in the hypoxia treatment (Data are available via ProteomeXchange with identifier PXD026589). Many of these molecular changes appear to be related to the observed increase in red blood cell volume and epigenetic modifications, as well as to angiogenesis, lipid, and glucose metabolism. This study highlights a range of cellular and molecular responses in the blood and plasma of freshwater fish that may be phenotypic adaptions to hypoxia, and that could aid in diagnosing the health status of wild fish populations using several, potential, discovered biomarkers.
Collapse
Affiliation(s)
- Jessica A D Léger
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| | - Camila G Athanasio
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada
| | - Aaleen Zhera
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| | - Mohammed Faiz Chauhan
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| | - Denina B D Simmons
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada.
| |
Collapse
|
14
|
Lukinović V, Biggar KK. Deconvoluting complex protein interaction networks through reductionist strategies in peptide biochemistry: Modern approaches and research questions. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110616. [PMID: 34000427 DOI: 10.1016/j.cbpb.2021.110616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Following the decoding of the first human genome, researchers have vastly improved their understanding of cell biology and its regulation. As a result, it has become clear that it is not merely genetic information, but the aberrant changes in the functionality and connectivity of its encoded proteins that drive cell response to periods of stress and external cues. Therefore, proper utilization of refined methods that help to describe protein signalling or regulatory networks (i.e., functional connectivity), can help us understand how change in the signalling landscape effects the cell. However, given the vast complexity in 'how and when' proteins communicate or interact with each other, it is extremely difficult to define, characterize, and understand these interaction networks in a tangible manner. Herein lies the challenge of tackling the functional proteome; its regulation is encoded in multiple layers of interaction, chemical modification and cell compartmentalization. To address and refine simple research questions, modern reductionist strategies in protein biochemistry have successfully used peptide-based experiments; their summation helping to simplify the overall complexity of these protein interaction networks. In this way, peptides are powerful tools used in fundamental research that can be readily applied to comparative biochemical research. Understanding and defining how proteins interact is one of the key aspects towards understanding how the proteome functions. To date, reductionist peptide-based research has helped to address a wide range of proteome-related research questions, including the prediction of enzymes substrates, identification of posttranslational modifications, and the annotation of protein interaction partners. Peptide arrays have been used to identify the binding specificity of reader domains, which are able to recognise the posttranslational modifications; forming dynamic protein interactions that are dependent on modification state. Finally, representing one of the fastest growing classes of inhibitor molecules, peptides are now begin explored as "disruptors" of protein-protein interactions or enzyme activity. Collectively, this review will discuss the use of peptides, peptide arrays, peptide-oriented computational biochemistry as modern reductionist strategies in deconvoluting the functional proteome.
Collapse
Affiliation(s)
- Valentina Lukinović
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
15
|
Breedon SA, Hadj-Moussa H, Storey KB. Nrf2 activates antioxidant enzymes in the anoxia-tolerant red-eared slider turtle, Trachemys scripta elegans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:426-435. [PMID: 33773070 DOI: 10.1002/jez.2458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/26/2021] [Accepted: 03/13/2021] [Indexed: 12/30/2022]
Abstract
The freshwater red-eared slider turtle, Trachemys scripta elegans, experiences weeks to months of anoxia at the bottom of ice-locked bodies of water in the winter. While this introduces anoxia-reoxygenation cycles similar to the ischemia-reperfusion events that mammals experience, T. s. elegans does not suffer any apparent tissue damage. To survive prolonged anoxia and prevent cellular damage associated with reactive oxygen species, these turtles have developed numerous adaptions, including highly effective antioxidant defenses. Herein, we examined the subcellular localization and protein expression of nuclear factor erythroid-2-related factor 2 (Nrf2), a central transcription factor responsible for modulating cellular antioxidant responses, that was found to be upregulated and localized to the nucleus in anoxic turtles. Additionally, we examined protein levels of glutathione S-transferases (GSTs) and manganese superoxide dismutase (MnSOD) antioxidant enzymes in anoxic liver, kidney, heart, and skeletal muscle tissues. MnSOD levels were significantly higher in heart and muscle during anoxia, and the four GST isozymes (GSTK1, GSTT1, GSTP1, and GSTM3) were elevated in a tissue-specific manner during anoxia and/or aerobic recovery. Together, these results indicate that Nrf2 is likely involved in activating downstream antioxidant genes in response to anoxic stress. These results provide a possible Nrf2-mediated transcriptional mechanism that supports existing findings of enhanced antioxidant defenses that allow T. s. elegans to cope with anoxia-reoxygenation cycles, and subsequent oxidative stress.
Collapse
Affiliation(s)
- Sarah A Breedon
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Hanane Hadj-Moussa
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Wijenayake S, Storey KB. Oxidative Damage? Not a Problem! The Characterization of Humanin-like Mitochondrial Peptide in Anoxia Tolerant Freshwater Turtles. Protein J 2021; 40:87-107. [PMID: 33387248 DOI: 10.1007/s10930-020-09944-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 11/30/2022]
Abstract
Mitochondria was long thought to be an "end function" organelle that regulated the metabolic flux and apoptosis in the cell. However, with the discovery of the mitochondrial peptide (MDP) humanin (HN/MTRNR2), the cytoprotective and pro-survival applications of MDPs have taken the forefront of therapeutic and diagnostic research. However, the regulation of humanin-like MDPs in natural model systems that can tolerate lethal environmental and cytotoxic insults remains to be investigated. Red-eared sliders are champion anaerobes that can withstand three continuous months of anoxia followed by rapid bouts of oxygen reperfusion without incurring cellular damage. Freshwater turtles employ extensive physiological and biochemical strategies to combat anoxia, with metabolic rate depression and a global enhancement of antioxidant and cytoprotective pathways being the two most important contributors. The main aim of this study was to uncover and characterize the humanin-homologue in freshwater turtles as well as investigate the differential regulation of humanin in response to short and long-term oxygen deprivation. In this study we have used de novo and homology-based protein modelling to elucidate the putative structure of humanin in red-eared sliders as well as an ELISA and western immunoblotting to confirm the protein abundance in the turtle brain and six peripheral tissues during control, 5 h, and 20 h anoxia (n = 4/group). We found that a humanin-homologue (TSE-humanin) is present in red-eared sliders and it may play a cytoprotective role against oxidative damage.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.,Department of Biological Sciences and Center for Environmental Epigenetics and Development, University of Toronto, Toronto, ON, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada. .,Department of Chemistry, Institute of Biochemistry, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
17
|
Sheldon KS, Padash M, Carter AW, Marshall KE. Different amplitudes of temperature fluctuation induce distinct transcriptomic and metabolomic responses in the dung beetle Phanaeus vindex. J Exp Biol 2020; 223:jeb233239. [PMID: 33139393 DOI: 10.1242/jeb.233239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Most studies exploring molecular and physiological responses to temperature have focused on constant temperature treatments. To gain a better understanding of the impact of fluctuating temperatures, we investigated the effects of increased temperature variation on Phanaeus vindex dung beetles across levels of biological organization. Specifically, we hypothesized that increased temperature variation is energetically demanding. We predicted that thermal sensitivity of metabolic rate and energetic reserves would be reduced with increasing fluctuation. To test this, we examined the responses of dung beetles to constant (20°C), low fluctuation (20±5°C), or high fluctuation (20±12°C) temperature treatments using respirometry, assessment of energetic reserves and HPLC-MS-based metabolomics. We found no significant differences in metabolic rate or energetic reserves, suggesting increased fluctuations were not energetically demanding. To understand why there was no effect of increased amplitude of temperature fluctuation on energetics, we assembled and annotated a de novo transcriptome, finding non-overlapping transcriptomic and metabolomic responses of beetles exposed to different fluctuations. We found that 58 metabolites increased in abundance in both fluctuation treatments, but 15 only did so in response to high-amplitude fluctuations. We found that 120 transcripts were significantly upregulated following acclimation to any fluctuation, but 174 were upregulated only in beetles from the high-amplitude fluctuation treatment. Several differentially expressed transcripts were associated with post-translational modifications to histones that support a more open chromatin structure. Our results demonstrate that acclimation to different temperature fluctuations is distinct and may be supported by increasing transcriptional plasticity. Our results indicate for the first time that histone modifications may underlie rapid acclimation to temperature variation.
Collapse
Affiliation(s)
- Kimberly S Sheldon
- Department of Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996, USA
| | - Mojgan Padash
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Amanda W Carter
- Department of Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996, USA
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
18
|
Yang Y, Zheng Y, Sun L, Chen M. Genome-Wide DNA Methylation Signatures of Sea Cucumber Apostichopus japonicus during Environmental Induced Aestivation. Genes (Basel) 2020; 11:genes11091020. [PMID: 32877994 PMCID: PMC7565549 DOI: 10.3390/genes11091020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Organisms respond to severe environmental changes by entering into hypometabolic states, minimizing their metabolic rates, suspending development and reproduction, and surviving critical ecological changes. They come back to an active lifestyle once the environmental conditions are conducive. Marine invertebrates live in the aquatic environment and adapt to environmental changes in their whole life. Sea cucumbers and sponges are only two recently known types of marine organisms that aestivate in response to temperature change. Sea cucumber has become an excellent model organism for studies of environmentally-induced aestivation by marine invertebrates. DNA methylation, the most widely considered epigenetic marks, has been reported to contribute to phenotypic plasticity in response to environmental stress in aquatic organisms. Most of methylation-related enzymes, including DNA methyltransferases, Methyl-CpG binding domain proteins, and DNA demethylases, were up-regulated during aestivation. We conducted high-resolution whole-genome bisulfite sequencing of the intestine from sea cucumber at non-aestivation and deep-aestivation stages. Further DNA methylation profile analysis was also conducted across the distinct genomic features and entire transcriptional units. A different elevation in methylation level at internal exons was observed with clear demarcation of intron/exon boundaries during transcriptional unit scanning. The lowest methylation level occurs in the first exons, followed by the last exons and the internal exons. A significant increase in non-CpG methylation (CHG and CHH) was observed within the intron and mRNA regions in aestivation groups. A total of 1393 genes were annotated within hypermethylated DMRs (differentially methylated regions), and 749 genes were annotated within hypomethylated DMRs. Differentially methylated genes were enriched in the mRNA surveillance pathway, metabolic pathway, and RNA transport. Then, 24 hypermethylated genes and 15 hypomethylated genes were Retrovirus-related Pol polyprotein from transposon (RPPT) genes. This study provides further understanding of epigenetic control on environmental induced hypometabolism in aquatic organisms.
Collapse
Affiliation(s)
- Yujia Yang
- Laboratory for Evolution and Development, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266071, China;
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao 266003, China
- Correspondence: (L.S.); (M.C.)
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266071, China;
- Correspondence: (L.S.); (M.C.)
| |
Collapse
|
19
|
Dynamic regulation of histone H3 lysine (K) acetylation and deacetylation during prolonged oxygen deprivation in a champion anaerobe. Mol Cell Biochem 2020; 474:229-241. [PMID: 32729004 DOI: 10.1007/s11010-020-03848-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
Trachemys scripta elegans can survive up to three months of absolute anoxia at 3 °C and recover with minimal cellular damage. Red-eared sliders employ various physiological and biochemical adaptations to survive anoxia with metabolic rate depression (MRD) being the most prominent adaptation. MRD is mediated by epigenetic, transcriptional, post-transcriptional, and post-translational mechanisms aimed at shutting down cellular processes that are not needed for anoxia survival, while reprioritizing ATP towards cell processes that are vital for anaerobiosis. Histone acetylation/deacetylation are epigenetic modifications that maintain a proper balance between permissive chromatin and restricted chromatin, yet very little is known about protein regulation and enzymatic activity of the writers and erasers of acetylation during natural anoxia tolerance. As such, this study explored the interplay between transcriptional activators, histone acetyltransferases (HATs), and transcriptional repressors, sirtuins (SIRTs), along with three prominent acetyl-lysine (K) moieties of histone H3 in the liver of red-eared sliders. Western immunoblotting was used to measure acetylation levels of H3-K14, H3-K18, and H3-K56, as well as protein levels of histone H3-total, HATs, and nuclear SIRTs in the liver in response to 5 h and 20 h anoxia. Global and nuclear enzymatic activity of HATs and enzymatic activity of nuclear SIRTs were also measured. Overall, a strong suppression of HATs-mediated H3 acetylation and SIRT-mediated deacetylation was evident in the liver of red-eared sliders that could play an important role in ATP conservation as part of the overall reduction in metabolic rate.
Collapse
|
20
|
Criscitiello MF, Kraev I, Petersen LH, Lange S. Deimination Protein Profiles in Alligator mississippiensis Reveal Plasma and Extracellular Vesicle-Specific Signatures Relating to Immunity, Metabolic Function, and Gene Regulation. Front Immunol 2020; 11:651. [PMID: 32411128 PMCID: PMC7198796 DOI: 10.3389/fimmu.2020.00651] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Alligators are crocodilians and among few species that endured the Cretaceous-Paleogene extinction event. With long life spans, low metabolic rates, unusual immunological characteristics, including strong antibacterial and antiviral ability, and cancer resistance, crocodilians may hold information for molecular pathways underlying such physiological traits. Peptidylarginine deiminases (PADs) are a group of calcium-activated enzymes that cause posttranslational protein deimination/citrullination in a range of target proteins contributing to protein moonlighting functions in health and disease. PADs are phylogenetically conserved and are also a key regulator of extracellular vesicle (EV) release, a critical part of cellular communication. As little is known about PAD-mediated mechanisms in reptile immunology, this study was aimed at profiling EVs and protein deimination in Alligator mississippiensis. Alligator plasma EVs were found to be polydispersed in a 50-400-nm size range. Key immune, metabolic, and gene regulatory proteins were identified to be posttranslationally deiminated in plasma and plasma EVs, with some overlapping hits, while some were unique to either plasma or plasma EVs. In whole plasma, 112 target proteins were identified to be deiminated, while 77 proteins were found as deiminated protein hits in plasma EVs, whereof 31 were specific for EVs only, including proteins specific for gene regulatory functions (e.g., histones). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed KEGG pathways specific to deiminated proteins in whole plasma related to adipocytokine signaling, while KEGG pathways of deiminated proteins specific to EVs included ribosome, biosynthesis of amino acids, and glycolysis/gluconeogenesis pathways as well as core histones. This highlights roles for EV-mediated export of deiminated protein cargo with roles in metabolism and gene regulation, also related to cancer. The identification of posttranslational deimination and EV-mediated communication in alligator plasma revealed here contributes to current understanding of protein moonlighting functions and EV-mediated communication in these ancient reptiles, providing novel insight into their unusual immune systems and physiological traits. In addition, our findings may shed light on pathways underlying cancer resistance, antibacterial and antiviral resistance, with translatable value to human pathologies.
Collapse
Affiliation(s)
- Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, United States
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, United Kingdom
| | - Lene H. Petersen
- Department of Marine Biology, Texas A&M University at Galvestone, Galveston, TX, United States
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
21
|
Protein lysine methylation in the regulation of anoxia tolerance in the red eared slider turtle, Trachemys scripta elegans. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100660. [PMID: 32066095 DOI: 10.1016/j.cbd.2020.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/23/2022]
Abstract
The red eared slider turtle (Trachemys scripta elegans) is a champion vertebrate facultative anaerobe, capable of surviving for several months under conditions of exceptionally low oxygen availability. The ability of the turtle to facilitate this impressive tolerance to oxygen restriction is accomplished through a dramatic reduction in non-essential cellular processes. This is done in an attempt to conserve limited ATP stores and match demand in the anoxic state, with ATP supplied primarily through anaerobic glycolysis. Determining both the non-essential and the essential cellular processes that are deemed to be anoxia-responsive in the turtle has been an intense area of study over the past few decades. As a result, recent advancements have established the influence of global metabolic controls, such as post-transcriptional and post-translational regulation of gene expression in anoxia adaptation. A remaining question is whether or not epigenetic-level regulatory mechanisms are also utilized to allow for local control over gene expression. Recently, research has begun to document lysine methylation as an anoxia-responsive post-translational histone modification, as the activities of a number of methyl-lysine regulatory enzymes are extraordinarily sensitive to oxygen availability. As a result, oxygen-dependent methyl-lysine regulatory enzymes have been of particular interest to several recent studies of animal oxygen sensitivity, including the freshwater turtle. This review will introduce the concept of lysine methylation as an oxygen-sensitive protein modification as well as a prospectus on how this modification may contribute to anoxia tolerance in the turtle.
Collapse
|
22
|
Biggar KK, Zhang J, Storey KB. Navigating oxygen deprivation: liver transcriptomic responses of the red eared slider turtle to environmental anoxia. PeerJ 2019; 7:e8144. [PMID: 31788367 PMCID: PMC6883951 DOI: 10.7717/peerj.8144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/01/2019] [Indexed: 01/15/2023] Open
Abstract
The best facultative anaerobes among vertebrates are members of the genera Trachemys (pond slider turtles) and Chrysemys (painted turtles), and are able to survive without oxygen for up to 12 to 18 weeks at ∼3 °C. In this study, we utilized RNAseq to profile the transcriptomic changes that take place in response to 20 hrs of anoxia at 5 °C in the liver of the red eared slide turtle (Trachemys scripta elegans). Sequencing reads were obtained from at least 18,169 different genes and represented a minimum 49x coverage of the C. picta bellii exome. A total of 3,105 genes showed statistically significant changes in gene expression between the two animal groups, of which 971 also exhibited a fold change equal to or greater than 50% of control normoxic values. This study also highlights a number of anoxia-responsive molecular pathways that are may be important to navigating anoxia survival. These pathways were enriched in mRNA found to significantly increase in response to anoxia and included molecular processes such as DNA damage repair and metabolic reprogramming. For example, our results indicate that the anoxic turtle may utilize succinate metabolism to yield a molecule of GTP in addition to the two molecules that results from lactate production, and agrees with other established models of anoxia tolerance. Collectively, our analysis provides a snapshot of the molecular landscape of the anoxic turtle and may provide hints into the how this animal is capable of surviving this extreme environmental stress.
Collapse
Affiliation(s)
- Kyle K. Biggar
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jing Zhang
- The hospital for sick children, Neuroscience and Mental Health, Toronto, Ontario, Canada
| | - Kenneth B. Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Hawkins LJ, Storey KB. Advances and applications of environmental stress adaptation research. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110623. [PMID: 31778815 DOI: 10.1016/j.cbpa.2019.110623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Evolution has produced animals that survive extreme fluctuations in environmental conditions including freezing temperatures, anoxia, desiccating conditions, and prolonged periods without food. For example, the wood frog survives whole-body freezing every winter, arresting all gross physiological functions, but recovers functions upon thawing in the spring. Likewise, many small mammals hibernate for months at a time with minimal metabolic activity, organ perfusion, and movement, yet do not suffer significant muscle atrophy upon arousal. These conditions and the biochemical adaptations employed to deal with them can be viewed as Nature's answer to problems that humans wish to answer, particularly in a biomedical context. This review focuses on recent advances in the field of animal environmental stress adaptation, starting with an emphasis on new areas of research such as epigenetics and microRNA. We then examine new and emerging technologies such as genome editing, novel sequencing applications, and single cell analysis and how these can push us closer to a deeper understanding of biochemical adaptation. Next, evaluate the potential contributions of new high-throughput technologies (e.g. next-generation sequencing, mass spectrometry proteomics) to better understanding the adaptations that support these extreme phenotypes. Concluding, we examine some of the human applications that can be gained from understanding the principles of biochemical adaptation including organ preservation and treatments for conditions such as ischemic stroke and muscle disuse atrophy.
Collapse
Affiliation(s)
- Liam J Hawkins
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
24
|
Analysis of global and gene-specific acetylation of histones in the liver of American bullfrog (Rana catesbeiana) tadpoles acclimated to low temperature. J Therm Biol 2019; 84:488-495. [PMID: 31466790 DOI: 10.1016/j.jtherbio.2019.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/19/2019] [Accepted: 08/04/2019] [Indexed: 11/22/2022]
Abstract
Severe environmental stressors such as low temperatures can affect gene expression by changing epigenetic states. American bullfrog (Rana catesbeiana) can overwinter as tadpoles, which can be active even in winter. However, the molecular mechanisms of epigenetic controls by which the tadpoles acclimate to low temperature are still unclear. In this study, we aimed to clarify the molecular mechanisms of global and gene-specific epigenetic regulations of low-temperature acclimation. We found that the global acetylation was decreased in the liver of bullfrog tadpoles acclimated to low temperature. The amounts of transcripts for two histone acetyltransferases were higher in the liver of tadpoles acclimated to low temperature than in those acclimated to warm temperature, while we observed no significant differences in the amounts of transcripts for histone deacetylases. We also found that the amounts of transcripts and acetylated histones on the specific temperature-responsive genes scd and cyp7a1 whose transcripts were increased and decreased, respectively, in response to low temperature were positively correlated. Cellular acetyl-CoA levels were higher in the liver of tadpoles acclimated to low temperature than in those acclimated to warm temperature. These results contradicted the states of histone acetylation, suggesting that bullfrog tadpoles have different epigenetic mechanisms to modify the histones when compared with those of other organisms such as reptiles and mammals, even though the relationship between the transcript amount and the states of histone acetylation on temperature-responsive genes was similar to that of mammals.
Collapse
|
25
|
Giraud-Billoud M, Rivera-Ingraham GA, Moreira DC, Burmester T, Castro-Vazquez A, Carvajalino-Fernández JM, Dafre A, Niu C, Tremblay N, Paital B, Rosa R, Storey JM, Vega IA, Zhang W, Yepiz-Plascencia G, Zenteno-Savin T, Storey KB, Hermes-Lima M. Twenty years of the ‘Preparation for Oxidative Stress’ (POS) theory: Ecophysiological advantages and molecular strategies. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:36-49. [DOI: 10.1016/j.cbpa.2019.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022]
|
26
|
The expression of genes involved in excitatory and inhibitory neurotransmission in turtle (Trachemys scripta) brain during anoxic submergence at 21 °C and 5 °C reveals the importance of cold as a preparatory cue for anoxia survival. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:55-70. [DOI: 10.1016/j.cbd.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 11/20/2022]
|
27
|
Zhang J, Hawkins LJ, Storey KB. DNA methylation and regulation of DNA methyltransferases in a freeze-tolerant vertebrate. Biochem Cell Biol 2019; 98:145-153. [PMID: 31116953 DOI: 10.1139/bcb-2019-0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The wood frog is one of the few freeze-tolerance vertebrates. This is accomplished in part by the accumulation of cryoprotectant glucose, metabolic rate depression, and stress response activation. These may be achieved by mechanisms such as DNA methylation, which is typically associated with transcriptional repression. Hyperglycemia is also associated with modifications to epigenetic profiles, indicating an additional role that the high levels of glucose play in freeze tolerance. We sought to determine whether DNA methylation is affected during freezing exposure, and whether this is due to the wood frog's response to hyperglycemia. We examined global DNA methylation and DNA methyltransferases (DNMTs) in the liver and muscle of frozen and glucose-loaded wood frogs. The results showed that levels of 5-methylcytosine (5mC) increased in the muscle, suggesting elevated DNA methylation during freezing. DNMT activities also decreased in muscle during thawing, glucose loading, and in vitro glucose experiments. Liver DNMT activities were similar to muscle; however, a varied response to DNMT levels and a decrease in 5mC highlight the metabolic role the liver plays during freezing. Glucose was also shown to decrease DNMT activity levels in the wood frog, in vitro, elucidating a potentially novel regulatory mechanism. Together these results suggest an interplay between freeze tolerance and hyperglycemic regulation of DNA methylation.
Collapse
Affiliation(s)
- Jing Zhang
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Liam J Hawkins
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
28
|
Murillo-Rodríguez E, Arankowsky-Sandoval G, Barros JA, Rocha NB, Yamamoto T, Machado S, Budde H, Telles-Correia D, Monteiro D, Cid L, Veras AB. Sleep and Neurochemical Modulation by DZNep and GSK-J1: Potential Link With Histone Methylation Status. Front Neurosci 2019; 13:237. [PMID: 30930741 PMCID: PMC6428769 DOI: 10.3389/fnins.2019.00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022] Open
Abstract
Histone methylation/demethylation plays an important modulatory role in chromatin restructuring, RNA transcription and is essential for controlling a plethora of biological processes. Due to many human diseases have been related to histone methylation/demethylation, several compounds such as 3-deazaneplanocin A (DZNep) or 3-((6-(4,5-Dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoic acid; N-[2-(2-pyridinyl)-6-(1,2,4,5-tetrahydro-3H-3-benzazepin-3-yl)-4-pyrimidinyl]-β-Alanine (GSK-J1), have been designed to inhibit histone methylase or suppress histone demethylase, respectively. In the present study, we investigated the effects on the sleep-wake cycle and sleep-related neurochemical levels after systemic injections of DZNep or GSK-J1 given during the light or dark phase in rats. DZNep dose-dependently (0.1, 1.0, or 10 mg/kg, i.p.) prolonged wakefulness (W) duration while decreased slow wave sleep (SWS) and rapid eye movement sleep (REMS) time spent during the lights-on period with no changes observed in dark phase. In opposite direction, GSK-J1 (0.1, 1.0, or 10 mg/kg, i.p.) injected at the beginning of the lights-on period induced no statistical changes in W, SWS, or REMS whereas if administered at darkness, we found a diminution in W and an enhancement in SWS and REMS. Finally, brain microdialysis experiments in freely moving animals were used to evaluate the effects of DZNep or GSK-J1 treatments on contents of sleep-related neurochemicals. The results showed that DZNep boosted extracellular levels of dopamine, norepinephrine, epinephrine, serotonin, adenosine, and acetylcholine if injected at the beginning of the lights-on period whereas GSK-J1 exerted similar outcomes but when administered at darkness. In summary, DZNep and GSK-J1 may control the sleep-wake cycle and sleep-related neurochemicals through histone methylation/demethylation activity.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Mexico.,Intercontinental Neuroscience Research Group, Mérida, Mexico
| | - Gloria Arankowsky-Sandoval
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi" Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Jorge Aparecido Barros
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Post-graduation Program of Psychology of Health, NACNeuro, Dom Bosco Catholic University, Campo Grande, Mato Grosso del Sur, Brazil
| | - Nuno Barbosa Rocha
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,School of Health, Polytechnic Institute of Porto, Porto, Portugal
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Laboratory of Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira University, Niterói, Brazil
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany.,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Diogo Telles-Correia
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,University of Lisbon, Faculty of Medicine, Lisbon, Portugal
| | - Diogo Monteiro
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Sport Science School of Rio Maior- Polytechnic Institute of Santarém, Rio Maior, Portugal.,Research Center in Sport, Health and Human Development-CIDESD, Vila Real, Portugal
| | - Luis Cid
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Sport Science School of Rio Maior- Polytechnic Institute of Santarém, Rio Maior, Portugal.,Research Center in Sport, Health and Human Development-CIDESD, Vila Real, Portugal
| | - André Barciela Veras
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Post-graduation Program of Psychology of Health, NACNeuro, Dom Bosco Catholic University, Campo Grande, Mato Grosso del Sur, Brazil
| |
Collapse
|
29
|
English SG, Hadj-Moussa H, Storey KB. MicroRNAs regulate survival in oxygen-deprived environments. J Exp Biol 2018; 221:jeb.190579. [DOI: 10.1242/jeb.190579] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022]
Abstract
Some animals must endure prolonged periods of oxygen deprivation to survive. One such extreme model is the Northern Crayfish (Orconectes virilis), that regularly survives year-round hypoxic and anoxic stresses in its warm stagnant summer waters and in its cold, ice-locked winter waters. To elucidate the molecular underpinnings of anoxia-resistance in this natural model, we surveyed the expression profiles of 76 highly-conserved microRNAs in crayfish hepatopancreas and tail muscle from normoxic, acute 2hr anoxia, and chronic 20hr anoxia exposures. MicroRNAs are known to regulate a diverse array of cellular functions required for environmental stress adaptations, and here we explore their role in anoxia tolerance. The tissue-specific anoxia responses observed herein, with 22 anoxia-responsive microRNAs in hepatopancreas and only 4 changing microRNAs in muscle, suggest that microRNAs facilitate a reprioritization of resources to preserve crucial organ functions. Bioinformatic microRNA target enrichment analysis predicted that the anoxia-downregulated microRNAs in hepatopancreas targeted hippo-signalling, suggesting that cell proliferation and apoptotic signalling are highly regulated in this liver-like organ during anoxia. Compellingly, miR-125-5p, miR-33-5p, and miR-190-5p, all known to target the master regulator of oxygen deprivation responses HIF1 (Hypoxia Inducible Factor-1), were anoxia-downregulated in hepatopancreas. The anoxia-increased transcript levels of the oxygen dependent subunit HIF1α, highlight a potential critical role for miRNA-HIF targeting in facilitating a successful anoxia response. Studying the cytoprotective mechanisms in place to protect against the challenges associated with surviving in oxygen-poor environments is critical to elucidating microRNAs’ vast and substantial role in the regulation of metabolism and stress in aquatic invertebrates.
Collapse
Affiliation(s)
- Simon G. English
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|