1
|
Shen X, Yan H, Hu M, Zhou H, Wang J, Gao R, Liu Q, Wang X, Liu Y. The potential regulatory role of the non-coding RNAs in regulating the exogenous estrogen-induced feminization in Takifugu rubripes gonad. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107022. [PMID: 39032423 DOI: 10.1016/j.aquatox.2024.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Estrogen plays a pivotal role in the early stage of sex differentiation in teleost. However, the underlying mechanisms of estrogen-induced feminization process are still needed for further clarification. Here, the comparative analysis of whole-transcriptome RNA sequencing was conducted between 17beta-Estradiol induced feminized XY (E-XY) gonads and control gonads (C) in Takifugu rubripes. A total of 57 miRNAs, 65 lncRNAs, and 4 circRNAs were found to be expressed at lower levels in control-XY (C-XY) than that in control-XX (C-XX), and were up-regulated in XY during E2-induced feminization process. The expression levels of 24 miRNAs, and 55 lncRNAs were higher in C-XY than that in C-XX, and were down-regulated in E2-treated XY. Furthermore, a correlation analysis was performed between miRNA-seq and mRNA-seq data. In C-XX/C-XY, 114 differential expression (DE) miRNAs were predicted to target to 904 differential expression genes (DEGs), while in C-XY/E-XY, 226 DEmiRNAs were predicted to target to 2,048 DEGs. In C-XX/C-XY, and C-XY/E-XY, KEGG pathway enrichment analysis showed that those targeted genes were mainly enriched in MAPK signaling, calcium signaling, steroid hormone biosynthesis and ovarian steroidogenesis pathway. Additionally, the competitive endogenous RNA (ceRNA) regulatory network was constructed by 24 miRNAs, 21 lncRNAs, 4 circRNAs and 5 key sex-related genes. These findings suggested that the expression of critical genes in sex differentiation were altered in E2-treated XY T. rubripes may via the lncRNA-miRNA-mRNA regulation network to facilitate the differentiation and maintenance of ovaries. Our results provide a new insight into the comprehensive understanding of the effects of estrogen signaling pathways on sex differentiation in teleost gonads.
Collapse
Affiliation(s)
- Xufang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Hongwei Yan
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China.
| | - Mingtao Hu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China
| | - Huiting Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China
| | - Jia Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China
| | - Rui Gao
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, 116023, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, Liaoning 116023, China
| |
Collapse
|
2
|
Zhang R, Zhang S, Li T, Li H, Zhang H, Zheng W. RNA sequencing identifies an ovary-enriched microRNA, miR-311-3p, involved in ovarian development and fecundity by targeting Endophilin B1 in Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2023; 79:688-700. [PMID: 36239581 DOI: 10.1002/ps.7236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis, is a highly invasive pest in East Asia and the Pacific. With the development of pesticides resistance, environment-friendly pesticides are urgently needed. MicroRNAs (miRNAs) are critical regulators of numerous biological processes, including reproduction. Thus, it is significant to identify reproductive-related miRNAs in this notorious pest to facilitate its control, such as RNAi-based biopesticides targeting essential miRNAs. RESULTS A high-throughput sequencing was carried out to identify miRNAs involved in reproduction from the ovary and fat body at four developmental stages [1 day (d), 5, 9, and 13 days post-eclosion] in female B. dorsalis. Results showed that 98 and 74 miRNAs were differentially expressed in ovary and fat body, respectively, during sexual maturation. Gene ontology analysis showed that target genes involved in oogenesis and lipid particle accounted for 33% and 15% of the total targets, respectively. Among these differentially expressed miRNAs, we found by qPCR that miR-311-3p was enriched in the ovary and down-regulated during sexual maturation. Injection of agomir-miR-311-3p resulted in arrested ovarian development, reduced egg deposition and progeny viability. Endophilin B1 was confirmed to be the target of miR-311-3p, via dual-luciferase assay and expression profiling. Knockdown of Endophilin B1 resulted in reproductive defects similar to those caused by injection of miR-311-3p agomir. Thus, miR-311-3p might play a critical role in female reproduction by targeting Endophilin B1. CONCLUSION Our data not only provides knowledge on the abundance of reproductive-related miRNAs and target genes, but also promotes new control strategies for this pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengfeng Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianran Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haozhe Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Tan S, Huang Y, Xiong J, Gao X, Ren H, Gao S. Identification and Comparative Analysis of the miRNAs in Gonads of High-altitude Species, Batrachuperus tibetanus. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
A Comprehensive Sequencing Analysis of Testis-Born miRNAs in Immature and Mature Indigenous Wandong Cattle ( Bos taurus). Genes (Basel) 2022; 13:genes13122185. [PMID: 36553452 PMCID: PMC9777600 DOI: 10.3390/genes13122185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Micro RNAs (miRNAs) have been recognized as important regulators that are indispensable for testicular development and spermatogenesis. miRNAs are endogenous transcriptomic elements and mainly regulate the gene expression at post-transcriptional levels; however, the key role of miRNA in bovine testicular growth is not clearly understood. Thus, supposing to unveil the transcriptomics expression changes in the developmental processes of bovine testes, we selected three immature calves and three sexually mature bulls of the local Wandong breed for testicular-tissue sample collection. The cDNA libraries of experimental animals were established for RNA-sequencing analysis. We detected the miRNA expression in testes by using high-throughput sequencing technology, and bioinformatics analysis followed. The differentially expressed (DE) data showed that 151 miRNAs linked genes were significantly DE between immature and mature bull testes. Further, in detail, 64 were significantly up-regulated and 87 were down-regulated in the immature vs. mature testes (p-value < 0.05). Pathway analyses for miRNA-linked genes were performed and identified JAG2, BCL6, CFAP157, PHC2, TYRO3, SEPTIN6, and BSP3; these genes were involved in biological pathways such as TNF signaling, T cell receptor, PI3KAkt signaling, and functions affecting testes development and spermatogenesis. The DE miRNAs including MIR425, MIR98, MIR34C, MIR184, MIR18A, MIR136, MIR15A, MIR1388 and MIR210 were associated with cattle-bull sexual maturation and sperm production. RT-qPCR validation analysis showed a consistent correlation to the sequencing data findings. The current study provides a good framework for understanding the mechanism of miRNAs in the development of testes and spermatogenesis.
Collapse
|
5
|
Zhang X, Wu W, Zhou J, Li L, Jiang H, Chen J. MiR-34b/c play a role in early sex differentiation of Amur sturgeon, Acipenser schrenckii. Front Zool 2022; 19:23. [PMID: 36163040 PMCID: PMC9511750 DOI: 10.1186/s12983-022-00469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Background Sex differentiation can be viewed as a controlled regulatory balance between sex differentiation-related mRNAs and post-transcriptional mechanisms mediated by non-coding RNAs. In mammals, increasing evidence has been reported regarding the importance of gonad-specific microRNAs (miRNAs) in sex differentiation. Although many fishes express a large number of gonadal miRNAs, the effects of these sex-biased miRNAs on sex differentiation in teleost fish remain unknown. Previous studies have shown the exclusive and sexually dimorphic expression of miR-34b/c in the gonads of the Amur sturgeon (Acipenser schrenckii), suggesting its potential role in the sex differentiation process. Results Using quantitative real-time PCR (qPCR), we observed that miR-34b/c showed consistent spatiotemporal expression patterns; the expression levels significantly increased during early sex differentiation. Using in situ hybridization, miR-34c was found to be located in the germ cells. In primary germ cells in vitro, the group subjected to overexpression and inhibition of miR-34c showed significantly higher proliferation ability and lower apoptosis, respectively, compared to the corresponding control group. Luciferase reporter assays using the ar-3′UTR-psiCHECK-2 luciferase vector suggested a targeted regulatory interaction between miR-34b/c and the 3′UTR of the androgen receptor (ar) mRNA. Furthermore, miR-34b/c and ar showed negative expression patterns during early sex differentiation. Additionally, a negative feedback regulation pattern was observed between foxl2 expression in the ovaries and amh and sox9 expression in the testes during early sex differentiation. Conclusions This study sheds new light on the roles of miR-34b/c in gonad development of Amur sturgeon, and provides the first comprehensive evidence that the gonad-predominant microRNAs may have a major role in sex differentiation in teleost fish. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-022-00469-6.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wenhua Wu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
6
|
Tang R, Xu C, Zhu Y, Yan J, Yao Z, Zhou W, Gui L, Li M. Identification and expression analysis of sex biased miRNAs in chinese hook snout carp Opsariichthys bidens. Front Genet 2022; 13:990683. [PMID: 36118893 PMCID: PMC9478731 DOI: 10.3389/fgene.2022.990683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 12/22/2022] Open
Abstract
As an economically important fish, Opsariichthys bidens has obvious sexual dimorphism and strong reproductive capacity, but no epigenetics study can well explain its phenotypic variations. In recent years, many microRNAs involved in the regulation of reproductive development have been explored. In this study, the small RNA libraries of O. bidens on the testis and ovary were constructed and sequenced. A total of 295 known miRNAs were obtained and 100 novel miRNAs were predicted. By comparing testis and ovary libraries, 115 differentially expressed (DE) miRNAs were selected, of which 53 were up-regulated and 62 were down-regulated. A total of 64 GO items (padj < 0.01) and 206 KEGG pathways (padj < 0.01) were enriched in the target gene of miRNA. After that, the expression levels of nine DE miRNAs, including let-7a, miR-146b, miR-18c, miR-202-5p, miR-135c, miR-9-5p, miR-34c-3p, miR-460-5p and miR-338 were verified by qRT-PCR. Furthermore, bidirectional prediction of DE miRNAs and sex-related genes was carried out and the targeting correlation between miR-9-5p and nanos1 was verified by Dual-Luciferase reporter assay. Our findings identified the differentially expressed miRNA and paved the way to new possibilities for the follow-up study on the mechanism of miRNA-mRNA interaction in the gonads of O. bidens.
Collapse
Affiliation(s)
- Rongkang Tang
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Cong Xu
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yefei Zhu
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Ziliang Yao
- Lishui Fishery Technical Extension Station, Lishui, Zhejiang, China
| | - Wenzong Zhou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Lang Gui
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- *Correspondence: Lang Gui, ; Mingyou Li,
| | - Mingyou Li
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- *Correspondence: Lang Gui, ; Mingyou Li,
| |
Collapse
|
7
|
Wang Y, Liu X, Yu L, Hong X, Zhao J, Zhu J, Yuan J, Li W, Zhu X. Identification and analysis of novel microRNAs provide insights to reproductive capacity of the cultured Asian yellow pond turtle Mauremys mutica. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100890. [PMID: 34404014 DOI: 10.1016/j.cbd.2021.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The crucial roles of miRNAs in regulating animal growth, development, and disease resistance have been extensively reported, but their roles in relation to the reproductive capacity of aquatic animals (numbers of eggs laid and hatchlings), especially reptiles, remain unclear. In this study, high-throughput sequencing technology was used to screen miRNAs related to reproductive capacity based on the construction of a cDNA library of ovaries from higher-fecundity (HF) and lower-fecundity (LF) M. mutica. The results showed that 15,767,494 (93.98%) and 14,137,621 (94.17%) high-quality reads were obtained from the HF and LF groups, respectively. We screened 131 miRNAs that were differentially expressed between the HF and LF groups, of which 78 were upregulated and 53 were downregulated compared with the M. mutica reference genome. GO and KEGG pathway enrichment analyses of the target genes of differentially expressed miRNAs revealed significant differences in the enrichment frequencies of genes associated with ATP binding and proteolysis between the HF and LF groups, while the tricarboxylic acid cycle, glucagon signaling pathway and vitamin B6 metabolic pathway were shown to potentially help determine reproductive capacity. Ten miRNAs were verified by qRT-PCR to confirm the reliability and accuracy of the sequencing results, and a miRNA-mRNA target gene interaction network was constructed. These results will further our understanding of the regulatory mechanism of miRNAs in regards to turtle reproductive capacity.
Collapse
Affiliation(s)
- Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Xiaoyou Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Jian Zhao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Junxian Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Ju Yuan
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China.
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China.
| |
Collapse
|
8
|
Sex bias miRNAs in Cynoglossus semilaevis could play a role in transgenerational inheritance. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100853. [PMID: 33992844 DOI: 10.1016/j.cbd.2021.100853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
Alterations of non-coding RNA profiling in spermatozoa are candidate mechanisms related to changes in paternal environment and progeny. Transgenerational inheritance of sex in pseudomales of Cynoglossus semilaevis, a fish with significant sex dimorphism, is a typical example of non-Mendelian inheritance. In the present study, miRNA profiles of spermatozoa were compared between male and pseudomale of C. semilaevis. Differential miRNAs in sperm from F0 and F1 generation also provides clues for revealing the possible role of non-coding RNA mediated transgenerational inheritance. Four sexual bias miRNAs, dre-miR-26a-5p, dre-miR-27b-3p, dre-miR-125b-5p,pol-199a-5p, were identified and verified in F0 and F1 generation of C. semilaevis. All of them were highly expressed in male sperm compared with pseudomale sperm. Function of target genes indicates that target genes of these differential RNAs are highly correlated with sex differentiation, gametogenesis and maintenance of secondary sexual characteristics. In a word, identification of epigenetic markers in gametes has great prospects in predicting susceptibility and properties in offsprings, and providing an indicator of parentalgenetic property.
Collapse
|
9
|
Song P, Yue Q, Fu Q, Li X, Li X, Zhou R, Chen X, Tao C. Integrated analysis of miRNA-mRNA interaction in ovaries of Turpan Black Sheep during follicular and luteal phases. Reprod Domest Anim 2020; 56:46-57. [PMID: 33098173 DOI: 10.1111/rda.13848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
To investigate the regulatory mechanism of the follicular-luteal phase transition in Turpan black sheep (Ovis aries), the genome-wide expression patterns of microRNAs (miRNAs) and genes were investigated in ovaries of six sheep (3 years and single lamb with 3 consecutive births) during follicular and luteal phases of the oestrous cycle. Bioinformatic analysis was used to screen potential miRNAs and genes related to Turpan black sheep ovarian function. RT-qPCR was used to validate the sequencing results. In total, we identified 139 known and 71 novel miRNAs in the two phases with miRNA-seq, and a total of 19 miRNAs were significantly differentially expressed, of which 7 were up-regulated and 12 were down-regulated in the follicular phase compared with luteal phase. A total of 150 genes were significantly differentially expressed, including 63 up-regulated and 87 down-regulated in the follicular phase compared with the luteal phase by RNA-seq data analysis. Those DEGs were significantly enriched in 103 GO terms and several KEGG pathways, including metabolic pathway, ovarian steroidogenesis, steroid hormone biosynthesis and oestrogen signalling pathway. In addition, we created a miRNA-mRNA regulatory network to further elucidate the mechanism of follicular-luteal transition. Finally, we identified key miRNAs and genes including miR-143, miR-99a, miR-150, miR-27a, miR-125b, STAR, STAT1, which might play crucial roles in reproductive hormone biosynthesis and follicular development. The miRNA-mRNA interactive network clearly illustrates molecular basis involving in follicular-luteal transition.
Collapse
Affiliation(s)
- Pengyan Song
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qiaoxian Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qiang Fu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiangyun Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xujing Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiaoyong Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Cross I, García E, Rodríguez ME, Arias-Pérez A, Portela-Bens S, Merlo MA, Rebordinos L. The genomic structure of the highly-conserved dmrt1 gene in Solea senegalensis (Kaup, 1868) shows an unexpected intragenic duplication. PLoS One 2020; 15:e0241518. [PMID: 33137109 PMCID: PMC7605655 DOI: 10.1371/journal.pone.0241518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/15/2020] [Indexed: 01/17/2023] Open
Abstract
Knowing the factors responsible for sex determination in a species has significant theoretical and practical implications; the dmrt1 gene (Doublesex and Mab-3 (DM)-related Transcription factor 1) plays this role in diverse animal species. Solea senegalensis is a commercially important flat fish in which females grow 30% faster than males. It has 2n = 42 chromosomes and an XX / XY chromosome system for sex determination, without heteromorph chromosomes but with sex proto-chromosome. In the present study, we are providing the genomic structure and nucleotide sequence of dmrt1 gene obtained from cDNA from male and female adult gonads. A cDNA of 2027 containing an open-reading frame (ORF) of 1206 bp and encoding a 402 aa protein it is described for dmrt1 gene of S. senegalensis. Multiple mRNA isoforms indicating a high variable system of alternative splicing in the expression of dmrt1 of the sole in gonads were studied. None isoforms could be related to sex of individuals. The genomic structure of the dmrt1 of S. senegalensis showed a gene of 31400 bp composed of 7 exons and 6 introns. It contains an unexpected duplication of more than 10399 bp, involving part of the exon I, exons II and III and a SINE element found in the sequence that it is proposed as responsible for the duplication. A mature miRNA of 21 bp in length was localized at 336 bp from exon V. Protein-protein interacting networks of the dmrt1 gene showed matches with dmrt1 protein from Cynoglossus semilaevis and a protein interaction network with 11 nodes (dmrt1 plus 10 other proteins). The phylogenetic relationship of the dmrt1 gene in S. senegalensis is consistent with the evolutionary position of its species. The molecular characterization of this gene will enhance its functional analysis and the understanding of sex differentiation in Solea senegalensis and other flatfish.
Collapse
Affiliation(s)
- Ismael Cross
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Emilio García
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - María E. Rodríguez
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | | | | | - Manuel A. Merlo
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | | |
Collapse
|
11
|
Ding H, Liu M, Zhou C, You X, Su T, Yang Y, Xu D. Integrated analysis of miRNA and mRNA expression profiles in testes of Duroc and Meishan boars. BMC Genomics 2020; 21:686. [PMID: 33008286 PMCID: PMC7531090 DOI: 10.1186/s12864-020-07096-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. RESULTS In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 (PLCβ1) gene was verified to be a target of ssc-mir-423-5p. CONCLUSIONS This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.
Collapse
Affiliation(s)
- Haisheng Ding
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Min Liu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changfan Zhou
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiangbin You
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tao Su
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Youbing Yang
- College of Animal Science and Technology, Henan University of Science & Technology, Luoyang, 471023, People's Republic of China
| | - Dequan Xu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
12
|
Li S, Lin G, Fang W, Gao D, Huang J, Xie J, Lu J. Identification and Comparison of microRNAs in the Gonad of the Yellowfin Seabream ( Acanthopagrus Latus). Int J Mol Sci 2020; 21:E5690. [PMID: 32784462 PMCID: PMC7461063 DOI: 10.3390/ijms21165690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Yellowfin seabream (Acanthopagrus latus) is a commercially important fish in Asian coastal waters. Although natural sex reversal has been described in yellowfin seabream, the mechanisms underlying sexual differentiation and gonadal development in this species remain unclear. MicroRNAs (miRNAs) have been shown to play crucial roles in gametogenesis and gonadal development. Here, two libraries of small RNAs, constructed from the testes and ovaries of yellowfin seabream, were sequenced. Across both gonads, we identified 324 conserved miRNAs and 92 novel miRNAs: 67 ovary-biased miRNAs, including the miR-200 families, the miR-29 families, miR-21, and miR-725; and 88 testis-biased miRNAs, including the let-7 families, the miR-10 families, miR-7, miR-9, and miR-202-3p. GO (Gene Ontology) annotations and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses of putative target genes indicated that many target genes were significantly enriched in the steroid biosynthesis pathway and in the reproductive process. Our integrated miRNA-mRNA analysis demonstrated a putative negatively correlated expression pattern in yellowfin seabream gonads. This study profiled the expression patterns of sex-biased miRNAs in yellowfin seabream gonads, and provided important molecular resources that will help to clarify the miRNA-mediated post-transcriptional regulation of sexual differentiation and gonadal development in this species.
Collapse
Affiliation(s)
- Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
- Southern Marine Sciences and Engineering Guangdong Laboratory, Zhuhai 519082, China
| |
Collapse
|
13
|
Zhang X, Zhou J, Li L, Huang W, Ahmad HI, Li H, Jiang H, Chen J. Full-length transcriptome sequencing and comparative transcriptomic analysis to uncover genes involved in early gametogenesis in the gonads of Amur sturgeon ( Acipenser schrenckii). Front Zool 2020; 17:11. [PMID: 32308726 PMCID: PMC7147073 DOI: 10.1186/s12983-020-00355-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Sturgeons (Acipenseriformes) are polyploid chondrostean fish that constitute an important model species for studying development and evolution in vertebrates. To better understand the mechanisms of reproduction regulation in sturgeon, this study combined PacBio isoform sequencing (Iso-Seq) with Illumina short-read RNA-seq methods to discover full-length genes involved in early gametogenesis of the Amur sturgeon, Acipenser schrenckii. RESULTS A total of 50.04 G subread bases were generated from two SMRT cells, and herein 164,618 nonredundant full-length transcripts (unigenes) were produced with an average length of 2782 bp from gonad tissues (three testes and four ovaries) from seven 3-year-old A. schrenckii individuals. The number of ovary-specific expressed unigenes was greater than those of testis (19,716 vs. 3028), and completely different KEGG pathways were significantly enriched between the ovary-biased and testis-biased DEUs. Importantly, 60 early gametogenesis-related genes (involving 755 unigenes) were successfully identified, and exactly 50% (30/60) genes of those showed significantly differential expression in testes and ovaries. Among these, the Amh and Gsdf with testis-biased expression, and the Foxl2 and Cyp19a with ovary-biased expression strongly suggested the important regulatory roles in spermatogenesis and oogenesis of A. schrenckii, respectively. We also found the four novel Sox9 transcript variants, which increase the numbers of regulatory genes and imply function complexity in early gametogenesis. Finally, a total of 236,672 AS events (involving 36,522 unigenes) were detected, and 10,556 putative long noncoding RNAs (lncRNAs) and 4339 predicted transcript factors (TFs) were also respectively identified, which were all significantly associated with the early gametogenesis of A. schrenckii. CONCLUSIONS Overall, our results provide new genetic resources of full-length transcription data and information as a genomic-level reference for sturgeon. Crucially, we explored the comprehensive genetic characteristics that differ between the testes and ovaries of A. schrenckii in the early gametogenesis stage, which could provide candidate genes and theoretical basis for further the mechanisms of reproduction regulation of sturgeon.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Wenzhong Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Hafiz Ishfaq Ahmad
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Huiming Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| |
Collapse
|
14
|
Liu M, Huang J, Zhang G, Liu X, An J. Analysis of miRNAs in the Heads of Different Castes of the Bumblebee Bombus lantschouensis (Hymenoptera: Apidae). INSECTS 2019; 10:E349. [PMID: 31623265 PMCID: PMC6835379 DOI: 10.3390/insects10100349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
Bumblebees are important insect pollinators for many wildflowers and crops. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that regulate different biological functions in insects. In this study, the miRNAs in the heads of the three castes of the bumblebee Bombus lantschouensis were identified and characterized by small RNA deep sequencing. The significant differences in the expression of miRNAs and their target genes were analyzed. The results showed that the length of the small RNA reads from males, queens, and workers was distributed between 18 and 30 nt, with a peak at 22 nt. A total of 364 known and 89 novel miRNAs were identified from the heads of the three castes. The eight miRNAs with the highest expressed levels in males, queens, and workers were identical, although the order of these miRNAs based on expression differed. The male vs. queen, male vs. worker, and worker vs. queen comparisons identified nine, fourteen, and four miRNAs with significant differences in expression, respectively. The different castes were clustered based on the differentially expressed miRNAs (DE miRNAs), and the expression levels of the DE miRNAs obtained by RT-qPCR were consistent with the read counts obtained through Solexa sequencing. The putative target genes of these DE miRNAs were enriched in 29 Gene Ontology (GO) terms, and catalytic activity was the most enriched GO term, as demonstrated by its association with 2837 target genes in the male vs. queen comparison, 3535 target genes in the male vs. worker comparison, and 2185 target genes in the worker vs. queen comparison. This study highlights the characteristics of the miRNAs in the three B. lantschouensis castes and will aid further studies on the functions of miRNAs in bumblebees.
Collapse
Affiliation(s)
- Meijuan Liu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Guangshuo Zhang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Xiaofeng Liu
- School of Life Science, Peking University, Beijing 100871, China.
| | - Jiandong An
- School of Life Science, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Jiang L, Bi D, Ding H, Ren Q, Wang P, Kan X. Identification and comparative profiling of gonadal microRNAs in the adult pigeon ( Columba livia). Br Poult Sci 2019; 60:638-648. [PMID: 31343256 DOI: 10.1080/00071668.2019.1639140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. MicroRNAs are small noncoding RNA molecules that play crucial roles in gene expression. However, the comparative profiling of testicular and ovarian microRNAs in birds are rarely reported, particularly in pigeon.2. In this study, Illumina next-generation sequencing technology was used to sequence miRNA libraries of the gonads from six healthy adult utility pigeons. A total of 344 conserved known miRNAs and 32 novel putative miRNAs candidates were detected. Compared with those of ovaries, 130 differentially expressed (DE) miRNAs were identified in the testes. Among them, 70 miRNAs showed down-regulation in the ovaries, while another 60 miRNAs were up-regulated.3. Combining the results of the expression of target gene measurements and pathway enrichment analyses, it was revealed that some DEmiRNAs from the gonad samples involved in sexual differentiation and development (such as cli-miR-210-3p and cli-miR-214-3p) could down-regulate AR (androgen receptor). Cli-miR-181b-5p, cli-miR-9622-3p and cli-miR-145-5p were highly expressed in both the ovaries and testes, which could co-target HOXC9, and were related to regulation of primary metabolic processes. KEGG enrichment analysis showed that DEmiRNAs may play biological and sex-related roles in pigeon gonads.4. The expression profiles of testicular and ovarian miRNA in adult pigeon gonads are presented for the first time, and the findings may contribute to a better understanding of gonadal expression in poultry.
Collapse
Affiliation(s)
- L Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - D Bi
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - H Ding
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Q Ren
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - P Wang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - X Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
16
|
Yuan L, Li L, Zhang X, Jiang H, Chen J. Identification and differential expression of piRNAs in the gonads of Amur sturgeon ( Acipenser schrenckii). PeerJ 2019; 7:e6709. [PMID: 31106045 PMCID: PMC6499119 DOI: 10.7717/peerj.6709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/04/2019] [Indexed: 12/19/2022] Open
Abstract
Objective Sturgeons are considered living fossils, and have a very high conservation and economic value. Studies on the molecular mechanism of sturgeon gonadal development and sex differentiation would not only aid in understanding vertebrate sex determination but also benefit sturgeon aquaculture. Piwi-interacting RNAs (piRNAs) have been shown to function in germline or gonadal development. In this study, we performed small RNA deep sequencing and microarray hybridization to identify potential sturgeon piRNAs. Methods Male and female sturgeon gonads were collected and used for small RNA sequencing on an Illumina HiSeq platform with the validation of piRNA expression by microarray chip. The program Bowtie and k-mer scheme were performed to filter small RNA reads and discover potential sturgeon piRNAs. A known piRNA database, the coding sequence (CDS), 5' and 3' untranslated region (UTR) database of the A. Schrenckii transcriptome, Gene Ontology (GO) database and KEGG pathway database were searched subsequently to analyze the potential bio-function of sturgeon piRNAs. Results A total of 875,679 putative sturgeon piRNAs were obtained, including 93 homologous to known piRNAs and hundreds showing sex-specific and sex-biased expression. Further analysis showed that they are predominant in both the ovaries and testes and those with a sex-specific expression pattern are nearly equally distribution between sexes. This may imply a relevant role in sturgeon gonadal development. KEGG pathway and GO annotation analyses indicated that they may be related to sturgeon reproductive processes. Conclusion Our study provides the first insights into the gonadal piRNAs in a sturgeon species and should serve as a useful resource for further elucidation of the gene regulation involved in the sex differentiation of vertebrates. These results should also facilitate the technological development of early sex identification in sturgeon aquaculture.
Collapse
Affiliation(s)
- Lihong Yuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| |
Collapse
|
17
|
micro-RNAs dependent regulation of DNMT and HIF1α gene expression in thrombotic disorders. Sci Rep 2019; 9:4815. [PMID: 30894555 PMCID: PMC6426883 DOI: 10.1038/s41598-018-38057-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/21/2018] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in a wide variety of cellular processes and post-transcriptionally regulate several mechanism and diseases. However, contribution of miRNAs functioning during hypoxia and DNA methylation together is less understood. The current study was aimed to find a shared miRNAs signature upstream to hypoxia (via HIF gene family members) and methylation (via DNMT gene family members). This was followed by the global validation of the hypoxia related miRNA signature using miRNA microarray meta-analysis of the hypoxia induced human samples. We further concluded the study by looking into thrombosis related terms and pathways enriched during protein-protein interaction (PPI) network analysis of these two sets of gene family. Network prioritization of these shared miRNAs reveals miR-129, miR-19band miR-23b as top regulatory miRNAs. A comprehensive meta-analysis of microarray datasets of hypoxia samples revealed 29 differentially expressed miRNAs. GSEA of the interacting genes in the DNMT-HIF PPI network indicated thrombosis associated pathways including “Hemostasis”, “TPO signaling pathway” and “angiogenesis”. Interestingly, the study has generated a novel database of candidate miRNA signatures shared between hypoxia and methylation, and their relation to thrombotic pathways, which might aid in the development of potential therapeutic biomarkers.
Collapse
|
18
|
Núñez-Acuña G, Gallardo-Escárate C. Characterization of the salmon louse Lepeophtheirus salmonis miRNome: Sex-biased differences related to the coding and non-coding RNA interplay. Mar Genomics 2019; 45:38-47. [PMID: 30772247 DOI: 10.1016/j.margen.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
The salmon louse Lepeophtheirus salmonis is a marine ectoparasite that has a detrimental impact on salmon farms. Genomic knowledge of adult stages is critical to understand the reproductive success and lifecycle completion of this species. Here, we report a comprehensive characterization of the L. salmonis miRNome with emphasis on the sex-differences of the parasite. Small-RNA sequencing was conducted on males and females, and mRNA-sequencing was also conducted to identify miRNA-targets at these stages. Based on bioinformatics analyses, 3101 putative miRNAs were found in L. salmonis, including precursors and variants. The most abundant and over-expressed miRNAs belonged to the bantam, mir-100, mir-1, mir-263a and mir-276 families, while the most differentially expressed mRNAs corresponded to genes related to reproduction and other biological processes involved in cell-differentiation. Target analyses revealed that the most up-regulated miRNAs in males can act by inhibiting the expression of genes related to female differentiation such as vitellogenin genes. Target prediction and expression patterns suggested a pivotal role of miRNAs in the reproductive development of L. salmonis.
Collapse
Affiliation(s)
- Gustavo Núñez-Acuña
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile.
| |
Collapse
|