1
|
Zhou Y, Tu C, Coutton C, Tang J, Tian S, Tang S, Martinez G, Zhou D, Tebbakh C, Wang J, Zouari R, Zhou X, Ben Mustapha SF, Wang X, Wu B, Geng X, Liu S, Jin L, Shi H, Tan YQ, Ray PF, Wang L, Yang X, Zhang F, Liu C. Homozygous deleterious variants in MYCBPAP induce asthenoteratozoospermia involving abnormal acrosome biogenesis, manchette structure and sperm tail assembly in humans and mice. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2757-7. [PMID: 39704931 DOI: 10.1007/s11427-024-2757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 12/21/2024]
Abstract
Asthenoteratozoospermia is a common cause of male infertility. To further define the genetic causes underlying asthenoteratozoospermia, we performed whole-exome sequencing in a cohort of Han Chinese men with asthenoteratozoospermia. Homozygous deleterious variants of MYCBPAP were first identified in two unrelated Chinese cases. Replication analyses in a French cohort revealed an additional asthenoter-atozoospermia-affected case harboring a homozygous nonsense variant in MYCBPAP. All of the identified MYCBPAP variants were absent or extremely rare in the public human genome databases. Further functional assays indicated remarkably reduced abundance of MYCBPAP in the spermatozoa from MYCBPAP-associated cases. Subsequently, we generated a Mycbpap knockout (Mycbpap-/-) mouse model, which also exhibited male infertility with reduced sperm motility and abnormal morphologies in sperm heads and flagella. Further investigations demonstrated that Mycbpap-/- male mice presented disrupted acrosome biogenesis and abnormally elongated manchette during spermiogenesis. Intriguingly, proteomic analyses indicated that the proteins related to spermatogenesis, acrosomal and flagellar functions were significantly down-regulated in the testes from Mycbpap-/- male mice. Endogenous immunoprecipitation combined with mass spectrometry revealed interactions of MYCBPAP with a ribosome elimination related protein ARMC3 and central apparatus proteins including CFAP65 and CFAP70. Furthermore, MYCBPAP-associated male infertility in humans and mice could be partially overcome by using intracytoplasmic sperm injections. Collectively, these findings illustrate the essential role of MYCBPAP in normal spermatogenesis and homozygous deleterious variants in MYCBPAP can be considered as a genetic diagnostic indicator for infertile men with asthenoteratozoospermia. Our study will provide effective guidance for genetic counseling, clinical diagnosis and assisted reproduction treatments of MYCBPAP-associated male infertility.
Collapse
Affiliation(s)
- Yiling Zhou
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410008, China
| | - Charles Coutton
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé-Allée des Alpes, La Tronche, 38700, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, 38000, France
| | - Jianan Tang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China
| | - Shixiong Tian
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Shuyan Tang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China
| | - Guillaume Martinez
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé-Allée des Alpes, La Tronche, 38700, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, 38000, France
| | - Dapeng Zhou
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China
| | - Célia Tebbakh
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé-Allée des Alpes, La Tronche, 38700, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, 38000, France
| | - Jiaxiong Wang
- State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China
- Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, 1003, Tunisia
| | - Xuehai Zhou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | | | - Xuemei Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China
| | - Bangguo Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Xinyan Geng
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Shuang Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China
| | - Huijuan Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, 200237, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410008, China
| | - Pierre F Ray
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé-Allée des Alpes, La Tronche, 38700, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, 38000, France
| | - Lingbo Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine and offspring health, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China.
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Chunyu Liu
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| |
Collapse
|
2
|
Harima R, Sasaki T, Kaneko T, Aso F, Takashima H, Toyama T, Hara K, Tanemura K, Saito Y. Ccdc152 is not necessary for male fertility, but contributes to maintaining sperm morphology. J Reprod Dev 2024; 70:396-404. [PMID: 39462603 DOI: 10.1262/jrd.2024-058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Selenoprotein P (SeP) is synthesized in the liver and plays a vital role in maintaining selenium homeostasis via transport throughout the body. Previous studies have shown that SeP-deficient mice have severely reduced expression of selenoproteins essential for testicular function, leading to male infertility. We previously reported that the high expression of Ccdc152 in hepatocytes acts as a lncRNA, suppressing SeP expression in the liver. Ccdc152 reduces SeP translation by binding to SeP mRNA and decreasing its interaction with SECIS-binding protein 2. Although Ccdc152 is highly expressed in testes, its function remains unclear. Therefore, this study aimed to elucidate the role of Ccdc152 in the testes. Using the CRISPR/Cas9 system, we generated mice lacking all exons of Ccdc152 and found that SeP expression levels in the liver and plasma, as well as overall selenium homeostasis, remained unchanged. No significant differences were observed in the expression of glutathione peroxidase 1/4 or level of selenium in the testes. Subsequent investigation of the impact on male reproductive function revealed no abnormalities in sperm motility or Mendelian ratios of the offspring. However, a slight decrease in testicular weight and an increased rate of sperm malformations in the epididymis were observed. RNA-seq and pathway analyses identified the reduced expression of multiple genes related to kinesin and reproductive pathways. Based on these findings, Ccdc152 may not be essential for male reproductive function, but it may enhance reproductive capabilities by maintaining the expression of genes necessary for reproduction.
Collapse
Affiliation(s)
- Ryua Harima
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Takahiro Sasaki
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Takayuki Kaneko
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan
| | - Fuka Aso
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hayato Takashima
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
3
|
Gribbins KM, Rajaguru S, Rheubert JL, Trauth SE. The Ultrastructure of Spermiogenesis Within the Seminiferous Epithelium of the Texas Horned Lizard, Phrynosoma cornutum (Phrynosomatidae). J Morphol 2024; 285:e70008. [PMID: 39543840 DOI: 10.1002/jmor.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Currently, there is limited histological data for spermatid morphologies within the testes of squamates. There are only 10 species of lizard that have complete ultrastructural data across the entire process of spermiogenesis, including several species of Sceloporus. These studies have shown that differences can be seen between spermatids of saurians within the same family or genus. Thus, the present study continues to test the hypothesis that differences exist in spermatid morphology between species within the same family. We collected five Phrynosoma cornutum males from Arizona. Their testes were extracted and processed with standard TEM techniques. Many of the characteristics of spermiogenesis within P. cornutum are conserved and similar in morphology to other phrynosomatid lizards. These similarities include the development of the acrosome, perforatorium, subacrosomal cone, nuclear rostrum, and epinuclear lucent zone. However, there were also differences observed in P. cornutum spermatids that are distinct compared to other phyrnosomatids. For example, P. cornutum spermatids include a wider and more robust perforatorium and less spiraling of the chromatin during condensation than that of other phrynosomatid lizards. The present results corroborate previous studies and indicate that even with morphological conservation within saurian spermatids, character differences between species can be recognized. Further studies on spermiogenesis are required to judge the relevance of these ontogenetic changes in terms of using them in amniotic or squamate spermatid/spermatozoa phylogenic analysis.
Collapse
Affiliation(s)
- Kevin M Gribbins
- Department of Biology, University of Indianapolis, Indianapolis, Indiana, USA
| | | | | | - Stanley E Trauth
- Department of Biological Sciences, Arkansas State University (Emeritus), State University, Arkansas, USA
| |
Collapse
|
4
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2024:10.1038/s41585-024-00952-1. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
5
|
Li Q, Huang Y, Zhang S, Gong F, Lu G, Lin G, Dai J. Homozygous ACTL9 mutations cause irregular mitochondrial sheath arrangement and abnormal flagellum assembly in spermatozoa and male infertility. J Assist Reprod Genet 2024; 41:2271-2278. [PMID: 38963606 PMCID: PMC11405356 DOI: 10.1007/s10815-024-03171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE To identify novel variants in ACTL9 and new phenotypes responsible for male infertility. METHODS Genomic DNA was extracted from peripheral blood samples for whole-exome sequencing (WES). Computer-assisted sperm analysis (CASA) was used to test the motility of spermatozoa. The ultrastructure of flagella and the mitochondrial sheath were assessed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Immunostaining was used to validate the localization and expression of ACTL9 and ACTL7A. An Actl9-mutated mouse model was used to validate the phenotypes by CASA and TEM. RESULTS We identified novel homozygous variants in ACTL9 in two independent Chinese families. Spermatozoa with ACTL9 mutations showed decreased CASA parameters and a higher proportion of spermatozoa with abnormal morphology, exhibiting coiled flagella and a thickened midpiece. The spermatozoa were characterized by chaotic or irregular '9+2' structures and irregular mitochondrial sheath arrangements in the flagellum. Actl9 knock-in mice also showed abnormal CASA parameters and irregular '9+2' structures in flagella. CONCLUSIONS Our study expands the mutation spectrum and phenotypic spectrum of ACTL9.
Collapse
Affiliation(s)
- Qi Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China
| | - Yilian Huang
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Shen Zhang
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410078, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410078, China
| | - Fei Gong
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410078, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410078, China
| | - Guangxiu Lu
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410078, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410078, China
| | - Ge Lin
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, 410078, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410078, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410078, China
| | - Jing Dai
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China.
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410078, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410078, China.
| |
Collapse
|
6
|
Wei X, Wang X, Yang C, Gao Y, Zhang Y, Xiao Y, Ju Z, Jiang Q, Wang J, Liu W, Li Y, Gao Y, Huang J. CFAP58 is involved in the sperm head shaping and flagellogenesis of cattle and mice. Development 2024; 151:dev202608. [PMID: 38602507 DOI: 10.1242/dev.202608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 04/12/2024]
Abstract
CFAP58 is a testis-enriched gene that plays an important role in the sperm flagellogenesis of humans and mice. However, the effect of CFAP58 on bull semen quality and the underlying molecular mechanisms involved in spermatogenesis remain unknown. Here, we identified two single-nucleotide polymorphisms (rs110610797, A>G and rs133760846, G>T) and one indel (g.-1811_ g.-1810 ins147bp) in the promoter of CFAP58 that were significantly associated with semen quality of bulls, including sperm deformity rate and ejaculate volume. Moreover, by generating gene knockout mice, we found for the first time that the loss of Cfap58 not only causes severe defects in the sperm tail, but also affects the manchette structure, resulting in abnormal sperm head shaping. Cfap58 deficiency causes an increase in spermatozoa apoptosis. Further experiments confirmed that CFAP58 interacts with IFT88 and CCDC42. Moreover, it may be a transported cargo protein that plays a role in stabilizing other cargo proteins, such as CCDC42, in the intra-manchette transport/intra-flagellar transport pathway. Collectively, our findings reveal that CFAP58 is required for spermatogenesis and provide genetic markers for evaluating semen quality in cattle.
Collapse
Affiliation(s)
- Xiaochao Wei
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Xiuge Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Chunhong Yang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Yaping Gao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Yaran Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Yao Xiao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Zhihua Ju
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Qiang Jiang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Jinpeng Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Wenhao Liu
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Yanqin Li
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Yundong Gao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| | - Jinming Huang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P. R. China
| |
Collapse
|
7
|
Wang Y, Huang X, Sun G, Chen J, Wu B, Luo J, Tang S, Dai P, Zhang F, Li J, Wang L. Coiled-coil domain-containing 38 is required for acrosome biogenesis and fibrous sheath assembly in mice. J Genet Genomics 2024; 51:407-418. [PMID: 37709195 DOI: 10.1016/j.jgg.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
During spermiogenesis, haploid spermatids undergo dramatic morphological changes to form slender sperm flagella and cap-like acrosomes, which are required for successful fertilization. Severe deformities in flagella cause a male infertility syndrome, multiple morphological abnormalities of the flagella (MMAF), while acrosomal hypoplasia in some cases leads to sub-optimal embryonic developmental potential. However, evidence regarding the occurrence of acrosomal hypoplasia in MMAF is limited. Here, we report the generation of base-edited mice knocked out for coiled-coil domain-containing 38 (Ccdc38) via inducing a nonsense mutation and find that the males are infertile. The Ccdc38-KO sperm display acrosomal hypoplasia and typical MMAF phenotypes. We find that the acrosomal membrane is loosely anchored to the nucleus and fibrous sheaths are disorganized in Ccdc38-KO sperm. Further analyses reveal that Ccdc38 knockout causes a decreased level of TEKT3, a protein associated with acrosome biogenesis, in testes and an aberrant distribution of TEKT3 in sperm. We finally show that intracytoplasmic sperm injection overcomes Ccdc38-related infertility. Our study thus reveals a previously unknown role for CCDC38 in acrosome biogenesis and provides additional evidence for the occurrence of acrosomal hypoplasia in MMAF.
Collapse
Affiliation(s)
- Yaling Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xueying Huang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guoying Sun
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Jingwen Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Bangguo Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jiahui Luo
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Shuyan Tang
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Peng Dai
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Feng Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingbo Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.
| |
Collapse
|
8
|
Ma Y, Wu B, Chen Y, Ma S, Wang L, Han T, Lin X, Yang F, Liu C, Zhao J, Li W. CCDC146 is required for sperm flagellum biogenesis and male fertility in mice. Cell Mol Life Sci 2023; 81:1. [PMID: 38038747 PMCID: PMC11072088 DOI: 10.1007/s00018-023-05025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/19/2023] [Accepted: 10/28/2023] [Indexed: 12/02/2023]
Abstract
Multiple morphological abnormalities of the flagella (MMAF) is a severe disease of male infertility, while the pathogenetic mechanisms of MMAF are still incompletely understood. Previously, we found that the deficiency of Ccdc38 might be associated with MMAF. To understand the underlying mechanism of this disease, we identified the potential partner of this protein and found that the coiled-coil domain containing 146 (CCDC146) can interact with CCDC38. It is predominantly expressed in the testes, and the knockout of this gene resulted in complete infertility in male mice but not in females. The knockout of Ccdc146 impaired spermiogenesis, mainly due to flagellum and manchette organization defects, finally led to MMAF-like phenotype. Furthermore, we demonstrated that CCDC146 could interact with both CCDC38 and CCDC42. It also interacts with intraflagellar transport (IFT) complexes IFT88 and IFT20. The knockout of this gene led to the decrease of ODF2, IFT88, and IFT20 protein levels, but did not affect CCDC38, CCDC42, or ODF1 expression. Additionally, we predicted and validated the detailed interactions between CCDC146 and CCDC38 or CCDC42, and built the interaction models at the atomic level. Our results suggest that the testis predominantly expressed gene Ccdc146 is essential for sperm flagellum biogenesis and male fertility, and its mutations might be associated with MMAF in some patients.
Collapse
Affiliation(s)
- Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liying Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Tingting Han
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Xiaolei Lin
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Fulin Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Chen J, Wang Y, Wu B, Shi H, Wang L. Experimental and molecular support for Cfap70 as a causative gene of 'multiple morphological abnormalities of the flagella' with male infertility†. Biol Reprod 2023; 109:450-460. [PMID: 37458246 DOI: 10.1093/biolre/ioad076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 07/12/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple morphological abnormalities of the flagella, a severe form of asthenozoospermia, can lead to male infertility. Recent studies have implicated an association between human CFAP70 deficiency and multiple morphological abnormalities of the flagella; however, the underlying biological mechanism and supporting experimental evidence in animal models remain unclear. To address this gap, we used CRISPR/Cas9 technology to generate Cfap70-deficient mice to investigate the relationship between Cfap70 deficiency and multiple morphological abnormalities of the flagella. Our findings show that the loss of CFAP70 leads to multiple morphological abnormalities of the flagella and spermiogenesis defects. Specifically, the lack of CFAP70 impairs sperm flagellum biogenesis and head shaping during spermiogenesis. Late-step spermatids from Cfap70-deficient mouse testis exhibited club-shaped sperm heads and abnormal disassembly of the manchette. Furthermore, we found that CFAP70 interacts with DNAI1 and DNAI2; Cfap70 deficiency also reduces the level of AKAP3 in sperm flagella, indicating that CFAP70 may participate in the flagellum assembly and transport of flagellar components. These findings provide compelling evidence implicating Cfap70 as a causative gene of multiple morphological abnormalities of the flagella and highlight the consequences of CFAP70 loss on flagellum biogenesis.
Collapse
Affiliation(s)
- Jingwen Chen
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, School of Pharmacy, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Yaling Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Bangguo Wu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, School of Pharmacy, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huijuan Shi
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, School of Pharmacy, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Lingbo Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Potgieter S, Eddy C, Badrinath A, Chukrallah L, Lo T, Mohanty G, Visconti PE, Snyder EM. ADAD1 is required for normal translation of nuclear pore and transport protein transcripts in spermatids of Mus musculus†. Biol Reprod 2023; 109:340-355. [PMID: 37399121 PMCID: PMC10502568 DOI: 10.1093/biolre/ioad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/23/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023] Open
Abstract
ADAD1 is a testis-specific RNA-binding protein expressed in post-meiotic spermatids whose loss leads to defective sperm and male infertility. However, the drivers of the Adad1 phenotype remain unclear. Morphological and functional analysis of Adad1 mutant sperm showed defective DNA compaction, abnormal head shaping, and reduced motility. Mutant testes demonstrated minimal transcriptome changes; however, ribosome association of many transcripts was reduced, suggesting ADAD1 may be required for their translational activation. Further, immunofluorescence of proteins encoded by select transcripts showed delayed protein accumulation. Additional analyses demonstrated impaired subcellular localization of multiple proteins, suggesting protein transport is also abnormal in Adad1 mutants. To clarify the mechanism giving rise to this, the manchette, a protein transport microtubule network, and the LINC (linker of nucleoskeleton and cytoskeleton) complex, which connects the manchette to the nuclear lamin, were assessed across spermatid development. Proteins of both displayed delayed translation and/or localization in mutant spermatids implicating ADAD1 in their regulation, even in the absence of altered ribosome association. Finally, ADAD1's impact on the NPC (nuclear pore complex), a regulator of both the manchette and the LINC complex, was examined. Reduced ribosome association of NPC encoding transcripts and reduced NPC protein abundance along with abnormal localization in Adad1 mutants confirmed ADAD1's impact on translation is required for a NPC in post-meiotic germ cells. Together, these studies lead to a model whereby ADAD1's influence on nuclear transport leads to deregulation of the LINC complex and the manchette, ultimately generating the range of physiological defects observed in the Adad1 phenotype.
Collapse
Affiliation(s)
- Sarah Potgieter
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Christopher Eddy
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Aditi Badrinath
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Lauren Chukrallah
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Toby Lo
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Gayatri Mohanty
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Elizabeth M Snyder
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
11
|
Zhu H, Wen Z, Zhang A, Liu D, Wang H, Cheng Y, Yang X, Xiao Y, Li J, Sun D, Wu B, Gao J. RhoGDIα regulates spermatogenesis through Rac1/cofilin/F-actin signaling. Commun Biol 2023; 6:214. [PMID: 36823181 PMCID: PMC9950379 DOI: 10.1038/s42003-023-04579-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Spermatogenesis is an extremely complex process, and any obstruction can cause male infertility. RhoGDIα has been identified as a risk of male sterility. In this study, we generate RhoGDIα knockout mice, and find that the males have severely low fertility. The testes from RhoGDIα-/- mice are smaller than that in WT mice. The numbers of spermatogonia and spermatocytes are decreased in RhoGDIα-/- testis. Spermatogenesis is compromised, and spermatocyte meiosis is arrested at zygotene stage in RhoGDIα-/- mice. Acrosome dysplasia is also observed in sperms of the mutant mice. At the molecular level, RhoGDIα deficiency activate the LIMK/cofilin signaling pathway, inhibiting F-actin depolymerization, impairing testis and inducing low fertility in mouse. In addition, the treatment of RhoGDIα-/- mice with Rac1 inhibitor NSC23766 alleviate testis injury and improve sperm quality by inhibiting the LIMK/cofilin/F-actin pathway during spermatogenesis. Together, these findings reveal a previously unrecognized RhoGDIα/Rac1/F-actin-dependent mechanism involved in spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Zongzhuang Wen
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Dongyue Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Hongxiang Wang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Yin Cheng
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Xing Yang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Yu Xiao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Jianyuan Li
- Key Laboratory of Male Reproductive Health, National Health and Family Planning Commission, Beijing, 100081, China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China.
| |
Collapse
|
12
|
Sultana T, Iwamori T, Iwamori N. TSNAXIP1 is required for sperm head formation and male fertility. Reprod Med Biol 2023; 22:e12520. [PMID: 37389156 PMCID: PMC10304756 DOI: 10.1002/rmb2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/04/2023] [Accepted: 05/21/2023] [Indexed: 07/01/2023] Open
Abstract
Purpose TRANSLIN (TSN) and its binding partner TSNAX have been reported to contribute to a wide spectrum of biological activities including spermatogenesis. TSN accompanies specific mRNA transport in male germ cells through intercellular bridges. A testis-expressed protein TSNAXIP1 was reported to interact with TSNAX. However the role of TSNAXIP1 in spermatogenesis remained unclear. This study aimed to elucidate the role of TSNAXIP1 in spermatogenesis and male fertility in mice. Methods TSNAXIP1 knockout (KO) mice were generated using the CRISPR-Cas9 system. The fertility, spermatogenesis, and sperm of TSNAXIP1 KO males were analyzed. Results TSNAXIP1, and especially its domains, are highly conserved between mouse and human. Tsnaxip1 was expressed in testis, but not in ovary. TSNAXIP1 KO mice were generated, and TSNAXIP1 KO males were found to be sub-fertile with smaller testis and lower sperm count. Although no overt abnormalities were observed during spermatogenesis, lack of TSNAXIP1 induced sperm head malformation, resulting in a unique flower-shaped sperm head. Moreover, abnormal anchorage of the sperm neck was frequently observed in TSNAXIP1 null sperm. Conclusion A testis-expressed gene TSNAXIP1 has important roles in sperm head morphogenesis and male fertility. Moreover, TSNAXIP1 could be a causative gene for human infertility.
Collapse
Affiliation(s)
- Tasrin Sultana
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental SciencesKyushu UniversityFukuokaJapan
| | - Tokuko Iwamori
- Laboratory of Zoology, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Naoki Iwamori
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental SciencesKyushu UniversityFukuokaJapan
- Laboratory of Zoology, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| |
Collapse
|
13
|
Dai J, Chen Y, Li Q, Zhang T, Zhou Q, Gong F, Lu G, Zheng W, Lin G. Pathogenic variant in ACTL7A causes severe teratozoospermia characterized by bubble-shaped acrosomes and male infertility. Mol Hum Reprod 2022; 28:6648105. [PMID: 35863052 DOI: 10.1093/molehr/gaac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/04/2022] [Indexed: 11/12/2022] Open
Abstract
Teratozoospermia is a common factor associated with male infertility. However, teratozoospermia characterized by bubble-shaped acrosomes (BSAs) has not yet been identified in men and the causative genes are unknown. The present study is of a patient with severe teratozoospermia characterized by BSA and carrying a variant (c.1204G>A, p. Gly402Ser) of actin-like 7A (ACTL7A). For further verification, we generated an Actl7a-mutated mouse model (p.Gly407Ser) carrying an equivalent variant to that in the patient. We found that homozygous Actl7a-mutated (Actl7aMut/Mut) male mice were sterile, and all their sperm showed acrosomal abnormalities. We detected, by transmission electron microscopy, that during acrosomal biogenesis the acrosome detaches from the nuclear membrane in Actl7aMut/Mut mice. Furthermore, mutant ACTL7A failed to attach to the acroplaxome and was discharged by cytoplasmic droplets, which led to the absence of ACTL7A in epididymal spermatozoa in mice. The mutant sperm failed to activate the oocyte, and sperm-borne oocyte activation factor PLCζ discharge accompanied by ACTL7A was observed, leading to total fertilization failure (TFF). Immunoprecipitation followed by liquid chromatography-mass spectrometry showed that several differentially expressed proteins participate in acrosome assembly and actin filament organization. Furthermore, assisted oocyte activation by calcium ionophore exposure successfully overcame TFF in the couple with an ACTL7A pathogenic variant. Our study defined a novel phenotype of an acrosomal abnormality characterized by BSA, revealed the underlying mechanism of a pathogenic variant in ACTL7A, and provided a genetic marker and potential therapeutic option for male infertility.
Collapse
Affiliation(s)
- Jing Dai
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, ChangSha, 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, 410078, China
| | - Yongzhe Chen
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, ChangSha, 410078, China
| | - Qi Li
- Xiangya Hospital Central South University, ChangSha, 410008, China
| | - Tianlei Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, 410078, China
| | - Qinwei Zhou
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, 410078, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, ChangSha, 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, 410078, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, 410078, China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, 410078, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, ChangSha, 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China.,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, ChangSha, 410078, China
| |
Collapse
|
14
|
Zhang R, Wu B, Liu C, Zhang Z, Wang X, Wang L, Xiao S, Chen Y, Wei H, Jiang H, Gao F, Yuan L, Li W. CCDC38 is required for sperm flagellum biogenesis and male fertility in mice. Development 2022; 149:275684. [DOI: 10.1242/dev.200516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022]
Abstract
ABSTRACT
The sperm flagellum is essential for male fertility, and defects in flagellum biogenesis are associated with male infertility. Deficiency of coiled-coil domain-containing (CCDC) 42 (CCDC42) is specifically associated with malformation of mouse sperm flagella. Here, we find that the testis-specific protein CCDC38 interacts with CCDC42, localizing on the manchette and sperm tail during spermiogenesis. Inactivation of CCDC38 in male mice results in a distorted manchette, multiple morphological abnormalities of the flagella of spermatozoa and eventually male sterility. Furthermore, we find that CCDC38 interacts with intraflagellar transport protein 88 (IFT88), as well as outer dense fibrous 2 (ODF2), and the knockout of Ccdc38 reduces transport of ODF2 to the flagellum. Altogether, our results uncover the essential role of CCDC38 in sperm flagellum biogenesis, and suggest that some mutations of these genes might be associated with male infertility in humans.
Collapse
Affiliation(s)
- Ruidan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences 1 , Beijing 100101 , China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University 2 , Guangzhou 510623 , China
- University of the Chinese Academy of Sciences 3 , Beijing 100049 , China
| | - Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences 1 , Beijing 100101 , China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University 2 , Guangzhou 510623 , China
- University of the Chinese Academy of Sciences 3 , Beijing 100049 , China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences 1 , Beijing 100101 , China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University 2 , Guangzhou 510623 , China
| | - Zhe Zhang
- Peking University Third Hospital 4 Department of Urology , , Beijing 100191 , China
- Peking University Third Hospital 5 Department of Andrology , , Beijing 100191 , China
- Peking University Third Hospital 6 Department of Reproductive Medicine Center , , Beijing 100191 , China
- Peking University Third Hospital 7 Department of Human Sperm Bank , , Beijing 100191 , China
| | - Xiuge Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences 1 , Beijing 100101 , China
- University of the Chinese Academy of Sciences 3 , Beijing 100049 , China
| | - Liying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences 1 , Beijing 100101 , China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University 2 , Guangzhou 510623 , China
| | - Sai Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences 1 , Beijing 100101 , China
- University of the Chinese Academy of Sciences 3 , Beijing 100049 , China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences 1 , Beijing 100101 , China
- University of the Chinese Academy of Sciences 3 , Beijing 100049 , China
| | - Huafang Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences 1 , Beijing 100101 , China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University 2 , Guangzhou 510623 , China
| | - Hui Jiang
- Peking University Third Hospital 4 Department of Urology , , Beijing 100191 , China
- Peking University Third Hospital 5 Department of Andrology , , Beijing 100191 , China
- Peking University Third Hospital 6 Department of Reproductive Medicine Center , , Beijing 100191 , China
- Peking University Third Hospital 7 Department of Human Sperm Bank , , Beijing 100191 , China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences 1 , Beijing 100101 , China
- University of the Chinese Academy of Sciences 3 , Beijing 100049 , China
| | - Li Yuan
- Savaid Medical School, University of Chinese Academy of Sciences 8 , Beijing 100049 , China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences 1 , Beijing 100101 , China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University 2 , Guangzhou 510623 , China
| |
Collapse
|
15
|
Zhu H, Zhu Y, Sun C, Jiang F. A Preliminary Study on the Evaluation of Human Sperm Head Morphology with a Domestic Digital Holographic Image System. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:130-135. [PMID: 36939764 PMCID: PMC9590537 DOI: 10.1007/s43657-022-00046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
The head of sperm was imaged with domestic digital holographic microscopy (DHM), and then the quantitative three-dimensional size information of normal sperm and teratozoospermic sperm was compared and analyzed. DHM sperm imaging and repeated quantitative evaluation were used to determine the morphology of the sperm head in two patients with teratozoospermia and four volunteers with normal semen parameters. Sixty and 139 sperm of teratozoospermia patients and normal people were photographed by digital hologram, respectively. The differences in head height and width were compared and statistically analyzed. The sperm head height of the teratozoospermia group was 3.06 ± 1.66 μm, which was significantly lower than that of the normal sperm group (4.54 ± 1.60 μm, p < 0.01), but there was no significant difference in the head width between the two groups. Compared with the traditional two-dimensional optical microscope observation method, the DHM system can provide three-dimensional quantitative information for the sperm head and thus may help in the comprehensive clinical evaluation of the sperm head structure.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Urology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
| | - Yong Zhu
- Human Sperm Bank of Fudan University, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
| | - Can Sun
- Human Sperm Bank of Fudan University, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
| | - Feng Jiang
- Shanghai JiAi Genetics and IVF Institute China-USA Center, Shanghai, 200011 China
| |
Collapse
|
16
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
17
|
Expression and functional analysis of cytoplasmic dynein during spermatogenesis in Portunus trituberculatus. Cell Tissue Res 2021; 386:191-203. [PMID: 34477967 DOI: 10.1007/s00441-021-03519-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
The mechanism of acrosome formation in the crab sperm is a hot topic in crustacean reproduction research. Dynein is a motor protein that performs microtubule-dependent retrograde transport and plays an essential role in spermatogenesis. However, whether cytoplasmic dynein participates in acrosome formation in the crab sperm remains poorly understood. In this study, we cloned the cytoplasmic dynein intermediate chain gene (Pt-DIC) from Portunus trituberculatus testis. Pt-DIC is composed of a p150glued-binding domain, a dynein light chain (DLC)-binding domain, and a dynein heavy chain (DHC)-binding domain. The Pt-DIC gene is widely expressed in different tissues, showing the highest expression in the testis, and it is expressed in different stages of spermatid development, indicating important functions in spermatogenesis. We further observed the colocalization of Pt-DIC and Pt-DHC, Pt-DHC and tubulin, and Pt-DHC and GM130, and the results indicated that cytoplasmic dynein may participate in nuclear shaping and acrosome formation via vesicle transport. In addition, we examined the colocalization of Pt-DHC and a mitochondrion (MT) tracker and that of Pt-DHC and prohibitin (PHB). The results indicated that cytoplasmic dynein participated in mitochondrial transport and mitochondrial degradation. Taken together, these results support the hypothesis that cytoplasmic dynein participates in acrosome formation, nuclear shaping, and mitochondrial transport during spermiogenesis in P. trituberculatus. This study will provide valuable guidance for the artificial fertilization and reproduction of P. trituberculatus.
Collapse
|
18
|
Wang W, Tian S, Nie H, Tu C, Liu C, Li Y, Li D, Yang X, Meng L, Hu T, Zhang Q, Du J, Fan L, Lu G, Lin G, Zhang F, Tan YQ. CFAP65 is required in the acrosome biogenesis and mitochondrial sheath assembly during spermiogenesis. Hum Mol Genet 2021; 30:2240-2254. [PMID: 34231842 DOI: 10.1093/hmg/ddab185] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/12/2022] Open
Abstract
Asthenoteratospermia is a common cause of male infertility. Recent studies have revealed that CFAP65 mutations lead to severe asthenoteratospermia due to acrosome hypoplasia and flagellum malformations. However, the molecular mechanism underlying CFAP65-associated sperm malformation is largely unclear. Here, we initially examined the role of CFAP65 during spermiogenesis using Cfap65 knockout (Cfap65-/-) mice. The results showed that Cfap65-/- male mice exhibited severe asthenoteratospermia characterized by morphologically defective sperm heads and flagella. In Cfap65-/- mouse testes, hyper-constricted sperm heads were apparent in step 9 spermatids accompanied by abnormal manchette development, and acrosome biogenesis was abnormal in the maturation phase. Moreover, subsequent flagellar elongation was also severely affected and characterized by disrupted assembly of the mitochondrial sheath (MS) in Cfap65-/- male mice. Furthermore, the proteomic analysis revealed that the proteostatic system during acrosome formation, manchette organization, and MS assembly was disrupted when CFAP65 was lost. Importantly, endogenous immunoprecipitation and immunostaining experiments revealed that CFAP65 may form a cytoplasmic protein network comprising MNS1, RSPH1, TPPP2, ZPBP1, and SPACA1. Overall, these findings provide insights into the complex molecular mechanisms of spermiogenesis by uncovering the essential roles of CFAP65 during sperm head shaping, acrosome biogenesis, and MS assembly.
Collapse
Affiliation(s)
- Weili Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China
| | - Shixong Tian
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Hongchuan Nie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Dongyan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Xiaoxuan Yang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Lanlan Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China
| | - Tongyao Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha 410078, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha 410078, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha 410078, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha 410078, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha 410078, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha 410078, China
| |
Collapse
|
19
|
Xiong W, Shen C, Wang Z. The molecular mechanisms underlying acrosome biogenesis elucidated by gene-manipulated mice. Biol Reprod 2021; 105:789-807. [PMID: 34131698 DOI: 10.1093/biolre/ioab117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Sexual reproduction requires the fusion of two gametes in a multistep and multifactorial process termed fertilization. One of the main steps that ensures successful fertilization is acrosome reaction. The acrosome, a special kind of organelle with a cap-like structure that covers the anterior portion of sperm head, plays a key role in the process. Acrosome biogenesis begins with the initial stage of spermatid development, and it is typically divided into four successive phases: the Golgi phase, cap phase, acrosome phase, and maturation phase. The run smoothly of above processes needs an active and specific coordination between the all kinds of organelles (endoplasmic reticulum, trans-golgi network and nucleus) and cytoplasmic structures (acroplaxome and manchette). During the past two decades, an increasingly genes have been discovered to be involved in modulating acrosome formation. Most of these proteins interact with each other and show a complicated molecular regulatory mechanism to facilitate the occurrence of this event. This Review focuses on the progresses of studying acrosome biogenesis using gene-manipulated mice and highlights an emerging molecular basis of mammalian acrosome formation.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
The Microtubule Cytoskeleton during the Early Drosophila Spermiogenesis. Cells 2020; 9:cells9122684. [PMID: 33327573 PMCID: PMC7765066 DOI: 10.3390/cells9122684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/29/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022] Open
Abstract
Sperm elongation and nuclear shaping in Drosophila largely depends on the microtubule cytoskeleton that in early spermatids has centrosomal and non-centrosomal origins. We report here an additional γ-tubulin focus localized on the anterior pole of the nucleus in correspondence of the apical end of the perinuclear microtubules that run within the dense complex. The perinuclear microtubules are nucleated by the pericentriolar material, or centriole adjunct, that surrounds the basal body and are retained to play a major role in nuclear shaping. However, we found that both the perinuclear microtubules and the dense complex are present in spermatids lacking centrioles. Therefore, the basal body or the centriole adjunct seem to be dispensable for the organization and assembly of these structures. These observations shed light on a novel localization of γ-tubulin and open a new scenario on the distribution of the microtubules and the organization of the dense complex during early Drosophila spermiogenesis.
Collapse
|
21
|
Devlin DJ, Nozawa K, Ikawa M, Matzuk MM. Knockout of family with sequence similarity 170 member A (Fam170a) causes male subfertility, while Fam170b is dispensable in mice†. Biol Reprod 2020; 103:205-222. [PMID: 32588889 PMCID: PMC7401401 DOI: 10.1093/biolre/ioaa082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
Families with sequence similarity 170 members A and B (FAM170A and FAM170B) are testis-specific, paralogous proteins that share 31% amino acid identity and are conserved throughout mammals. While previous in vitro experiments suggested that FAM170B, an acrosome-localized protein, plays a role in the mouse sperm acrosome reaction and fertilization, the role of FAM170A in the testis has not been explored. In this study, we used CRISPR/Cas9 to generate null alleles for each gene, and homozygous null (-/-) male mice were mated to wild-type females for 6 months to assess fertility. Fam170b-/- males were found to produce normal litter sizes and had normal sperm counts, motility, and sperm morphology. In contrast, mating experiments revealed significantly reduced litter sizes and a reduced pregnancy rate from Fam170a-/- males compared with controls. Fam170a-/-;Fam170b-/- double knockout males also produced markedly reduced litter sizes, although not significantly different from Fam170a-/- alone, suggesting that Fam170b does not compensate for the absence of Fam170a. Fam170a-/- males exhibited abnormal spermiation, abnormal head morphology, and reduced progressive sperm motility. Thus, FAM170A has an important role in male fertility, as the loss of the protein leads to subfertility, while FAM170B is expendable. The molecular functions of FAM170A in spermatogenesis are as yet unknown; however, the protein localizes to the nucleus of elongating spermatids and may mediate its effects on spermatid head shaping and spermiation by regulating the expression of other genes. This work provides the first described role of FAM170A in reproduction and has implications for improving human male infertility diagnoses.
Collapse
Affiliation(s)
- Darius J Devlin
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Toyko, Japan
| | - Martin M Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Large-scale lysine crotonylation analysis reveals its potential role in spermiogenesis in the Chinese mitten crab Eriocheir sinensis. J Proteomics 2020; 226:103891. [PMID: 32629196 DOI: 10.1016/j.jprot.2020.103891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/15/2020] [Accepted: 06/26/2020] [Indexed: 11/24/2022]
Abstract
Lysine crotonylation (Kcr) is a recently-discovered type of post-translational modification. Although Kcr has been reported in many species, little is known about this process in crustaceans. In this study, pan anti-lysine crotonylation antibody enrichment and high-resolution liquid chromatogram-mass spectrometry analysis were employed to characterize Kcr in testis of the Chinese mitten crab Eriocheir sinensis testis. Overall, 2799 Kcr sites were identified on 908 proteins with 14 conserved motifs. Bioinformatics analysis showed that Kcr was predominant on proteins found in cytoplasm, mitochondria and nucleus, and those involved in ribosome, proteasome, carbon metabolism and protein processing in endoplasmic reticulum. In total, 83 up-regulated and 12 down-regulated non-histone crotonylated sites were identified during spermiogenesis. These differentially expressed proteins were enriched in protein processing in endoplasmic reticulum pathway during formation of acrosome. In contrast, histone Kcr associated with mammalian spermatogenesis. These results provide foundational knowledge on the role of non-histone Kcr in spermiogenesis of E. sinensis. SIGNIFICANCE: Lysine crotonylation (Kcr) is a recently-identified post-translational modification, and histone Kcr was found to associate with mammalian spermatogenesis. However, crotonylation of non-histone proteins has not been reported in spermatogenesis regulation. Further, there is no information on crotonylation in crustaceans. This study was the first large-scale Kcr proteome characterization in crustaceans. A total of 2799 Kcr sites on 908 proteins with 14 conserved motifs were identified from Eriocheir sinensis testis. Of which, 83 up-regulated and 12 down-regulated non-histone crotonylated sites were identified during spermiogenesis. Our results provide the basic information for further functional validation of Kcr proteins and revealed new roles of Kcr in spermiogenesis of E. sinensis.
Collapse
|
23
|
Teves ME, Roldan ERS, Krapf D, Strauss III JF, Bhagat V, Sapao P. Sperm Differentiation: The Role of Trafficking of Proteins. Int J Mol Sci 2020; 21:E3702. [PMID: 32456358 PMCID: PMC7279445 DOI: 10.3390/ijms21103702] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Sperm differentiation encompasses a complex sequence of morphological changes that takes place in the seminiferous epithelium. In this process, haploid round spermatids undergo substantial structural and functional alterations, resulting in highly polarized sperm. Hallmark changes during the differentiation process include the formation of new organelles, chromatin condensation and nuclear shaping, elimination of residual cytoplasm, and assembly of the sperm flagella. To achieve these transformations, spermatids have unique mechanisms for protein trafficking that operate in a coordinated fashion. Microtubules and filaments of actin are the main tracks used to facilitate the transport mechanisms, assisted by motor and non-motor proteins, for delivery of vesicular and non-vesicular cargos to specific sites. This review integrates recent findings regarding the role of protein trafficking in sperm differentiation. Although a complete characterization of the interactome of proteins involved in these temporal and spatial processes is not yet known, we propose a model based on the current literature as a framework for future investigations.
Collapse
Affiliation(s)
- Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006-Madrid, Spain
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Jerome F. Strauss III
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Virali Bhagat
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Paulene Sapao
- Department of Chemistry, Virginia Commonwealth University, Richmond VA, 23298, USA;
| |
Collapse
|
24
|
Zakrzewski P, Rędowicz MJ, Buss F, Lenartowska M. Loss of myosin VI expression affects acrosome/acroplaxome complex morphology during mouse spermiogenesis†. Biol Reprod 2020; 103:521-533. [PMID: 32412041 PMCID: PMC7442776 DOI: 10.1093/biolre/ioaa071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/24/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
During spermiogenesis in mammals, actin filaments and a variety of actin-binding proteins are involved in the formation and function of highly specialized testis-specific structures. Actin-based motor proteins, such as myosin Va and VIIa, play a key role in this complex process of spermatid transformation into mature sperm. We have previously demonstrated that myosin VI (MYO6) is also expressed in mouse testes. It is present in actin-rich structures important for spermatid development, including one of the earliest events in spermiogenesis—acrosome formation. Here, we demonstrate using immunofluorescence, cytochemical, and ultrastructural approaches that MYO6 is involved in maintaining the structural integrity of these specialized actin-rich structures during acrosome biogenesis in mouse. We show that MYO6 together with its binding partner TOM1/L2 is present at/around the spermatid Golgi complex and the nascent acrosome. Depletion of MYO6 in Snell’s waltzer mice causes structural disruptions of the Golgi complex and affects the acrosomal granule positioning within the developing acrosome. In summary, our results suggest that MYO6 plays an anchoring role during the acrosome biogenesis mainly by tethering of different cargo/membranes to highly specialized actin-related structures.
Collapse
Affiliation(s)
- Przemysław Zakrzewski
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Torun, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Folma Buss
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Marta Lenartowska
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Torun, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Torun, Poland
| |
Collapse
|
25
|
Venditti M, Chemek M, Minucci S, Messaoudi I. Cadmium-induced toxicity increases prolyl endopeptidase (PREP) expression in the rat testis. Mol Reprod Dev 2020; 87:565-573. [PMID: 32329151 DOI: 10.1002/mrd.23345] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022]
Abstract
During the differentiation of the male gamete, there is a massive remodeling in the shape and architecture of all the cells of the seminiferous epithelium. The cytoskeleton, as well as many associated proteins with it, plays a pivotal role in this process. The testis is particularly susceptible to environmental pollutant, which can lead to injury and impairment of normal spermatozoa production. Cadmium (Cd) is one of the major chemical environmental toxicants in economically developed countries. Food and cigarettes are the main sources of exposure to this element. Here, the protective role of zinc (Zn) to prevent the testicular toxicity in male adult rats after prenatal and during lactation exposure to Cd has been assessed. Altered testicular histology at the interstitial and germinal levels was found, whereas Zn supply completely corrected Cd toxicity. Moreover, the effects of these metals on the testicular expression and localization of the protease prolyl endopeptidase (PREP) were evaluated. Interestingly, the results showed an increase of PREP messenger RNA and protein. Data were corroborated by immunofluorescence. This study raises the possibility of using PREP as a new fertility marker.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Marouane Chemek
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Imed Messaoudi
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| |
Collapse
|
26
|
Nozawa K, Zhang Q, Miyata H, Devlin DJ, Yu Z, Oura S, Koyano T, Matsuyama M, Ikawa M, Matzuk MM. Knockout of serine-rich single-pass membrane protein 1 (Ssmem1) causes globozoospermia and sterility in male mice†. Biol Reprod 2020; 103:244-253. [PMID: 32301969 PMCID: PMC7401026 DOI: 10.1093/biolre/ioaa040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Globozoospermia (sperm with an abnormally round head shape) and asthenozoospermia (defective sperm motility) are known causes of male infertility in human patients. Despite many studies, the molecular details of the globozoospermia etiology are still poorly understood. Serine-rich single-pass membrane protein 1 (Ssmem1) is a conserved testis-specific gene in mammals. In this study, we generated Ssmem1 knockout (KO) mice using the CRISPR/Cas9 system, demonstrated that Ssmem1 is essential for male fertility in mice, and found that SSMEM1 protein is expressed during spermatogenesis but not in mature sperm. The sterility of the Ssmem1 KO (null) mice is associated with globozoospermia and loss of sperm motility. To decipher the mechanism causing the phenotype, we analyzed testes with transmission electron microscopy and discovered that Ssmem1-disrupted spermatids have abnormal localization of Golgi at steps eight and nine of spermatid development. Immunofluorescence analysis with anti-Golgin-97 to label the trans-Golgi network, also showed delayed movement of the Golgi to the spermatid posterior region, which causes failure of sperm head shaping, disorganization of the cell organelles, and entrapped tails in the cytoplasmic droplet. In summary, SSMEM1 is crucial for intracellular Golgi movement to ensure proper spatiotemporal formation of the sperm head that is required for fertilization. These studies and the pathway in which SSMEM1 functions have implications for human male infertility and identifying potential targets for nonhormonal contraception.
Collapse
Affiliation(s)
- Kaori Nozawa
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| | - Qian Zhang
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Darius J Devlin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX.,Interdepartmental Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Zhifeng Yu
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| | - Seiya Oura
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
27
|
Devlin DJ, Agrawal Zaneveld S, Nozawa K, Han X, Moye AR, Liang Q, Harnish JM, Matzuk MM, Chen R. Knockout of mouse receptor accessory protein 6 leads to sperm function and morphology defects†. Biol Reprod 2020; 102:1234-1247. [PMID: 32101290 DOI: 10.1093/biolre/ioaa024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/31/2019] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Receptor accessory protein 6 (REEP6) is a member of the REEP/Ypt-interacting protein family that we recently identified as essential for normal endoplasmic reticulum homeostasis and protein trafficking in the retina of mice and humans. Interestingly, in addition to the loss of REEP6 in our knockout (KO) mouse model recapitulating the retinal degeneration of humans with REEP6 mutations causing retinitis pigmentosa (RP), we also found that male mice are sterile. Herein, we characterize the infertility caused by loss of Reep6. Expression of both Reep6 mRNA transcripts is present in the testis; however, isoform 1 becomes overexpressed during spermiogenesis. In vitro fertilization assays reveal that Reep6 KO spermatozoa are able to bind the zona pellucida but are only able to fertilize oocytes lacking the zona pellucida. Although spermatogenesis appears normal in KO mice, cauda epididymal spermatozoa have severe motility defects and variable morphological abnormalities, including bent or absent tails. Immunofluorescent staining reveals that REEP6 expression first appears in stage IV tubules within step 15 spermatids, and REEP6 localizes to the connecting piece, midpiece, and annulus of mature spermatozoa. These data reveal an important role for REEP6 in sperm motility and morphology and is the first reported function for a REEP protein in reproductive processes. Additionally, this work identifies a new gene potentially responsible for human infertility and has implications for patients with RP harboring mutations in REEP6.
Collapse
Affiliation(s)
- Darius J Devlin
- Interdepartmental Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Smriti Agrawal Zaneveld
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Xiao Han
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Reproductive Medical Center, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Abigail R Moye
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Qingnan Liang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Michael Harnish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Martin M Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
28
|
Zhang L, Wei J, Duan J, Guo C, Zhang J, Ren L, Liu J, Li Y, Sun Z, Zhou X. Silica nanoparticles exacerbates reproductive toxicity development in high-fat diet-treated Wistar rats. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121361. [PMID: 31606252 DOI: 10.1016/j.jhazmat.2019.121361] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
To demonstrate the combined adverse effect and the mechanism of silica nanoparticles (SiNPs) with 57.66 ± 7.30 nm average diameter and high-fat diet (HFD) on Wistar rats, 60 male Wistar rats were randomly divided into six groups (n = 10): Control group, SiNPs group, HFD group, 2 mg kg-1 SiNPs + HFD group, 5 mg kg-1 SiNPs + HFD group and 10 mg kg-1 SiNPs + HFD group. HFD was administrated for 2 weeks for the rats in advance and SiNPs were supplied every 3 d for 48 d subsequently. The present study illustrated that both HFD and SiNPs could decrease sperm concentration, mobility rates, increase abnormality rates, damage testicular structure, reduce spermatogonium numbers and spermatoblast numbers, reduce ATP levels, and affect expression of regulatory factors for meiosis in testis. HFD and SiNPs further damaged the sperm and lowered the ATP level and expression of factors associated with meiotic signaling pathway compared with the HFD without SiNPs in testicular tissue of Wistar rats. These results suggested that SiNPs significantly promoted reproductive toxicity induced by HFD in Wistar rats, which provides novel experimental evidence and an explanation for magnified reproductive toxicity triggered by SiNPs in HFD rats.
Collapse
Affiliation(s)
- Lianshuang Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Department of Histology and Embryology, Binzhou Medical University, Yantai, China
| | - Jialiu Wei
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jin Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lihua Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jianhui Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Xianqing Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| |
Collapse
|
29
|
Venditti M, Fasano C, Minucci S, Serino I, Sinisi AA, Dale B, Di Matteo L. DAAM1 and PREP are involved in human spermatogenesis. Reprod Fertil Dev 2020; 32:484-494. [DOI: 10.1071/rd19172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022] Open
Abstract
During differentiation of the male gamete, there is a massive remodelling in the shape and architecture of all the cells in the seminiferous epithelium. The cytoskeleton, as well as many associated proteins, plays a pivotal role in this process. To better characterise the factors involved, we analysed two proteins: the formin, dishevelled-associated activator of morphogenesis 1 (DAAM1), which participates in the regulation of actin polymerisation, and the protease, prolyl endopeptidase (PREP), engaged in microtubule-associated processes. In our previous studies we demonstrated their involvement in cytoskeletal dynamics necessary for correct postnatal development of the rat testis. Here, we used samples of testicular tissue obtained from infertile men by testicular sperm extraction and the spermatozoa of asthenoteratozoospermic patients. By western blot and immunofluorescent analysis, we found that DAAM1 and PREP expression and localisation were impaired in both the testis and spermatozoa, and in particular in the midpiece as well as in the principal and end-pieces of the flagella, as compared with spermatozoa of normospermic men. Our results provide new knowledge of the dynamics of spermatogenesis, raising the possibility of using DAAM1 and PREP as new markers of normal fertility.
Collapse
|
30
|
Peng Y, Zhao W, Qu F, Jing J, Hu Y, Liu Y, Ding Z. Proteomic alterations underlie an association with teratozoospermia in obese mice sperm. Reprod Biol Endocrinol 2019; 17:82. [PMID: 31651332 PMCID: PMC6813985 DOI: 10.1186/s12958-019-0530-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Obesity is a worldwide crisis impairing human health. In this condition, declines in sperm quality stem from reductions in sperm concentration, motility and increase in sperm deformity. The mechanism underlying these alterations remains largely unknown. This study, determined if obesity-associated proteomic expression patterns in mice sperm parallel those in spermatozoa obtained from obese humans. METHODS An obese mouse model was established via feeding a high-fat diet (HFD). Histological analysis identified testicular morphology and a computer assisted semen analyzer (CASA) evaluated sperm parameters. Proteome analysis was performed using a label-free quantitative LC-MS/MS system. Western blot, immunohistochemical and immunofluorescent analyses characterized protein expression levels and localization in testis, sperm and clinical samples. RESULTS Bodyweight gains on the HFD induced hepatic steatosis. Declines in sperm motility accompanied sperm deformity development. Differential proteomic analysis identified reduced cytoskeletal proteins, centrosome and spindle pole associated protein 1 (CSPP1) and Centrin 1 (CETN1), in sperm from obese mice. In normal weight mice, both CSPP1 and CETN1 were localized in the spermatocytes and spermatids. Their expression was appreciable in the post-acrosomal region parallel to the microtubule tracks of the manchette structure in spermatids, which affects spermatid head shaping and morphological maintenance. Moreover, CSPP1 was localized in the head-tail coupling apparatus of the mature sperm, while CETN1 expression was delimited to the post-acrosomal region within the sperm head. Importantly, sperm CSPP1 and CETN1 abundance in both the overweight and obese males decreased in comparison with that in normal weight men. CONCLUSION These findings show that regionally distinct expression and localization of CETN1 and CSPP1 is strongly related to spermiogenesis and sperm morphology maintaining. Obesity is associated with declines in the CETN1 and CSPP1 abundance and compromise of both sperm morphology in mice and relevant clinical samples. This parallelism between altered protein expression in mice and humans suggests that these effects may contribute to poor sperm quality including increased deformity.
Collapse
Affiliation(s)
- Yuanhong Peng
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenzhen Zhao
- Department of Histology and Embryology, School of Basic Medical Science, Dali University, Dali, 671000, Yunnan, China
- Institute of Reproductive Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Fei Qu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jia Jing
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanqin Hu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
31
|
van der Horst G, Kotzé SH, O’Riain MJ, Maree L. Testicular Structure and Spermatogenesis in the Naked Mole-Rat Is Unique (Degenerate) and Atypical Compared to Other Mammals. Front Cell Dev Biol 2019; 7:234. [PMID: 31681767 PMCID: PMC6805721 DOI: 10.3389/fcell.2019.00234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
The naked mole-rat (NMR) queen controls reproduction in her eusocial colony by usually selecting one male for reproduction and suppressing gametogenesis in all other males and females. Simplified, polymorphic and slow-swimming spermatozoa in the NMR seem to have been shaped by a low risk of sperm competition. We hypothesize that this unique mammalian social organization has had a dramatic influence on testicular features and spermatogenesis in the NMR. The testicular structure as well as spermatogenic cell types and its organization in breeding, subordinate and disperser males were studied using light microscopy and transmission electron microscopy. Even though the basic testicular design in NMRs is similar to most Afrotheria as well as some rodents with intra-abdominal testes, the Sertoli and spermatogenic cells have many atypical mammalian features. Seminiferous tubules are distended and contain large volumes of fluid while interstitial tissue cover about 50% of the testicular surface area and is mainly composed of Leydig cells. The Sertoli cell cytoplasm contains an extensive network of membranes and a variety of fluid-containing vesicles. Furthermore, Sertoli cells form numerous phagosomes that often appear as extensive accumulations of myelin. Another unusual feature of mature NMR Sertoli cells is mitotic division. While the main types of spermatogonia and spermatocytes are clearly identifiable, these cells are poorly organized and many spermatids without typical intercellular bridges are present. Spermatid heads appear to be malformed with disorganized chromatin, nuclear fragmentation and an ill-defined acrosome formed from star-like Golgi bodies. Rudimentary manchette development corresponds with the occurrence of abnormal sperm morphology. We also hypothesize that NMR testicular organization and spermiation are modified to produce spermatozoa on demand in a short period of time and subsequently use a Sertoli cell "pump" to flush the spermatozoa into short tubuli recti and simplified rete testis. Despite the difficulty in finding cellular associations during spermatogenesis, six spermatogenic stages could be described in the NMR. These numerous atypical and often simplified features of the NMR further supports the notion of degenerative orthogenesis that was selected for due to the absence of sperm competition.
Collapse
Affiliation(s)
- Gerhard van der Horst
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Sanet H. Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - M. Justin O’Riain
- Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Liana Maree
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
32
|
Yamase K, Tanigawa Y, Yamamoto Y, Tanaka H, Komiya T. Mouse TMCO5 is localized to the manchette microtubules involved in vesicle transfer in the elongating spermatids. PLoS One 2019; 14:e0220917. [PMID: 31393949 PMCID: PMC6687282 DOI: 10.1371/journal.pone.0220917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
As a result of a high-throughput in situ hybridization screening for adult mouse testes, we found that the mRNA for Tmco5 is expressed in round and elongating spermatids. Tmco5 belongs to the Tmco (Transmembrane and coiled-coil domains) gene family and has a coiled-coil domain in the N-terminal and a transmembrane domain in the C-terminal region. A monoclonal antibody raised against recombinant TMCO5 revealed that the protein is expressed exclusively in the elongating spermatids of step 9 to 12 and is localized to the manchette, a transiently emerging construction, which predominantly consists of cytoskeleton microtubules and actin filaments. This structure serves in the transport of Golgi-derived non-acrosomal vesicles. Moreover, induced expression of TMCO5 in CHO cells resulted in the co-localization of TMCO5 with β-tubulin besides the reorganization of the Golgi apparatus. Judging from the results and considering the domain structure of TMCO5, we assume that Tmco5 may have a role in vesicle transport along the manchette.
Collapse
Affiliation(s)
- Kenya Yamase
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
| | - Yoko Tanigawa
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
| | - Yasufumi Yamamoto
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
| | - Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Tohru Komiya
- Department of Biological Function, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan
- * E-mail:
| |
Collapse
|
33
|
Gärtner SM, Hundertmark T, Nolte H, Theofel I, Eren-Ghiani Z, Tetzner C, Duchow TB, Rathke C, Krüger M, Renkawitz-Pohl R. Stage-specific testes proteomics of Drosophila melanogaster identifies essential proteins for male fertility. Eur J Cell Biol 2019; 98:103-115. [DOI: 10.1016/j.ejcb.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 02/01/2023] Open
|
34
|
Morphometry, frequency and ultrastructure of male germ cells in morphotypes of the freshwater prawn Macrobrachium amazonicum (Decapoda: Palaemonidae). ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2018.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Struijk RB, De Winter-Korver CM, van Daalen SKM, Hooibrink B, Repping S, van Pelt AMM. Simultaneous Purification of Round and Elongated Spermatids from Testis Tissue Using a FACS-Based DNA Ploidy Assay. Cytometry A 2018; 95:309-313. [PMID: 30565839 PMCID: PMC6590320 DOI: 10.1002/cyto.a.23698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 01/05/2023]
Abstract
Spermiogenesis is the final phase of spermatogenesis during which post‐meiotic haploid round spermatids (rSpt) differentiate into elongated spermatozoa and includes several critical cell‐specific processes like DNA condensation, formation of the acrosome, and production of the flagellum. Disturbances in this process will lead to complications in sperm development and subsequently cause infertility. As such, studying spermiogenesis has clinical relevance in investigating the etiology of male infertility and will improve our scientific understanding of male germ cell formation. Here, we were able to purify round spermatid and elongated spermatid fractions from a single cryopreserved human testicular tissues sample with an efficiency of 85.4% ± 4.9% and 97.6% ± 0.6%, respectively. We confirmed the cell types by morphology and immunohistochemistry for histone H4 and PNA protein expression. The purity was measured by manual counting of histone H4 positive (round) and negative (elongated) spermatids in both sorted 1 N cell fractions. This method can be applied to both human and rodent studies. Especially in studies with limited access to testicular tissue, this method provides a reliable means to simultaneously isolate these cell types with high purity. Our method allows for further investigation of germ cell development and the process of spermiogenesis in particular, as well as provides a tool to study the etiology of male infertility, including morphological and biochemical assessment of round and elongating spermatids from subfertile men. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- R B Struijk
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - C M De Winter-Korver
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S K M van Daalen
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - B Hooibrink
- Core Facility Cellular Imaging/LCAM-AMC, Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S Repping
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A M M van Pelt
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Simón L, Funes AK, Monclús MA, Colombo R, Cabrillana ME, Saez Lancellotti TE, Fornés MW. Manchette-acrosome disorders and testicular efficiency decline observed in hypercholesterolemic rabbits are recovered with olive oil enriched diet. PLoS One 2018; 13:e0202748. [PMID: 30138421 PMCID: PMC6107225 DOI: 10.1371/journal.pone.0202748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/08/2018] [Indexed: 12/04/2022] Open
Abstract
High-fat diet is associated with hypercholesterolemia and seminal alterations in White New Zealand rabbits. We have previously reported disorders in the development of the manchette-acrosome complex during spermiogenesis and decreased testicular efficiency in hypercholesterolemic rabbits. On the other hand, olive oil incorporated into the diet improves cholesterolemia and semen parameters affected in hypercholesterolemic rabbits. In this paper, we report the recovery—with the addition of olive oil to diet—from the sub-cellular mechanisms involved in the shaping of the sperm cell and testicular efficiency altered in hypercholesterolemic rabbits. Using morphological (structural, ultra-structural and immuno-fluorescence techniques) and cell biology techniques, a reorganization of the manchette and related structures was observed when olive oil was added to the high-fat diet. Specifically, actin filaments, microtubules and lipid rafts—abnormally distributed in hypercholesterolemic rabbits—were recovered with dietary olive oil supplementation. The causes of the decline in sperm count were studied in the previous report and here in more detail. These were attributed to the decrease in the efficiency index and also to the increase in the apoptotic percentage in testis from animals under the high-fat diet. Surprisingly, the addition of olive oil to the diet avoided the sub-cellular, efficiency and apoptosis changes observed in hypercholesterolemic rabbits. This paper reports the positive effects of the olive oil addition to the diet in the recovery of testicular efficiency and normal sperm shaping, mechanisms altered by hypercholesterolemia.
Collapse
Affiliation(s)
- Layla Simón
- IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- * E-mail:
| | - Abi K. Funes
- IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - María A. Monclús
- IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| | - Regina Colombo
- IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - María E. Cabrillana
- IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| | - Tania E. Saez Lancellotti
- IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| | - Miguel W. Fornés
- IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| |
Collapse
|