1
|
The role of Atg16 in autophagy, anthocyanin biosynthesis, and programmed cell death in leaves of the lace plant (Aponogeton madagascariensis). PLoS One 2023; 18:e0281668. [PMID: 36795694 PMCID: PMC9934333 DOI: 10.1371/journal.pone.0281668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/29/2023] [Indexed: 02/17/2023] Open
Abstract
Aponogeton madagascariensis, commonly known as the lace plant, produces leaves that form perforations by programmed cell death (PCD). Leaf development is divided into several stages beginning with "pre-perforation" furled leaves enriched with red pigmentation from anthocyanins. The leaf blade is characterized by a series of grids known as areoles bounded by veins. As leaves develop into the "window stage", anthocyanins recede from the center of the areole towards the vasculature creating a gradient of pigmentation and cell death. Cells in the middle of the areole that lack anthocyanins undergo PCD (PCD cells), while cells that retain anthocyanins (non-PCD cells) maintain homeostasis and persist in the mature leaf. Autophagy has reported roles in survival or PCD promotion across different plant cell types. However, the direct involvement of autophagy in PCD and anthocyanin levels during lace plant leaf development has not been determined. Previous RNA sequencing analysis revealed the upregulation of autophagy-related gene Atg16 transcripts in pre-perforation and window stage leaves, but how Atg16 affects PCD in lace plant leaf development is unknown. In this study, we investigated the levels of Atg16 in lace plant PCD by treating whole plants with either an autophagy promoter rapamycin or inhibitors concanamycin A (ConA) or wortmannin. Following treatments, window and mature stage leaves were harvested and analyzed using microscopy, spectrophotometry, and western blotting. Western blotting showed significantly higher Atg16 levels in rapamycin-treated window leaves, coupled with lower anthocyanin levels. Wortmannin-treated leaves had significantly lower Atg16 protein and higher anthocyanin levels compared to the control. Mature leaves from rapamycin-treated plants generated significantly fewer perforations compared to control, while wortmannin had the opposite effect. However, ConA treatment did not significantly change Atg16 levels, nor the number of perforations compared to the control, but anthocyanin levels did increase significantly in window leaves. We propose autophagy plays a dual role in promoting cell survival in NPCD cells by maintaining optimal anthocyanin levels and mediating a timely cell death in PCD cells in developing lace plant leaves. How autophagy specifically affects anthocyanin levels remained unexplained.
Collapse
|
2
|
Rowarth NM, Curtis BA, Einfeldt AL, Archibald JM, Lacroix CR, Gunawardena AHLAN. RNA-Seq analysis reveals potential regulators of programmed cell death and leaf remodelling in lace plant (Aponogeton madagascariensis). BMC PLANT BIOLOGY 2021; 21:375. [PMID: 34388962 PMCID: PMC8361799 DOI: 10.1186/s12870-021-03066-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The lace plant (Aponogeton madagascariensis) is an aquatic monocot that develops leaves with uniquely formed perforations through the use of a developmentally regulated process called programmed cell death (PCD). The process of perforation formation in lace plant leaves is subdivided into several developmental stages: pre-perforation, window, perforation formation, perforation expansion and mature. The first three emerging "imperforate leaves" do not form perforations, while all subsequent leaves form perforations via developmentally regulated PCD. PCD is active in cells called "PCD cells" that do not retain the antioxidant anthocyanin in spaces called areoles framed by the leaf veins of window stage leaves. Cells near the veins called "NPCD cells" retain a red pigmentation from anthocyanin and do not undergo PCD. While the cellular changes that occur during PCD are well studied, the gene expression patterns underlying these changes and driving PCD during leaf morphogenesis are mostly unknown. We sought to characterize differentially expressed genes (DEGs) that mediate lace plant leaf remodelling and PCD. This was achieved performing gene expression analysis using transcriptomics and comparing DEGs among different stages of leaf development, and between NPCD and PCD cells isolated by laser capture microdissection. RESULTS Transcriptomes were sequenced from imperforate, pre-perforation, window, and mature leaf stages, as well as PCD and NPCD cells isolated from window stage leaves. Differential expression analysis of the data revealed distinct gene expression profiles: pre-perforation and window stage leaves were characterized by higher expression of genes involved in anthocyanin biosynthesis, plant proteases, expansins, and autophagy-related genes. Mature and imperforate leaves upregulated genes associated with chlorophyll development, photosynthesis, and negative regulators of PCD. PCD cells were found to have a higher expression of genes involved with ethylene biosynthesis, brassinosteroid biosynthesis, and hydrolase activity whereas NPCD cells possessed higher expression of auxin transport, auxin signalling, aspartyl proteases, cysteine protease, Bag5, and anthocyanin biosynthesis enzymes. CONCLUSIONS RNA sequencing was used to generate a de novo transcriptome for A. madagascariensis leaves and revealed numerous DEGs potentially involved in PCD and leaf remodelling. The data generated from this investigation will be useful for future experiments on lace plant leaf development and PCD in planta.
Collapse
Affiliation(s)
- Nathan M Rowarth
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Bruce A Curtis
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Christian R Lacroix
- Department of Biology, University of Prince Edward Island, Charlottetown, PEI, Canada
| | | |
Collapse
|
3
|
Long-Term Waterlogging as Factor Contributing to Hypoxia Stress Tolerance Enhancement in Cucumber: Comparative Transcriptome Analysis of Waterlogging Sensitive and Tolerant Accessions. Genes (Basel) 2021; 12:genes12020189. [PMID: 33525400 PMCID: PMC7912563 DOI: 10.3390/genes12020189] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Waterlogging (WL), excess water in the soil, is a phenomenon often occurring during plant cultivation causing low oxygen levels (hypoxia) in the soil. The aim of this study was to identify candidate genes involved in long-term waterlogging tolerance in cucumber using RNA sequencing. Here, we also determined how waterlogging pre-treatment (priming) influenced long-term memory in WL tolerant (WL-T) and WL sensitive (WL-S) i.e., DH2 and DH4 accessions, respectively. This work uncovered various differentially expressed genes (DEGs) activated in the long-term recovery in both accessions. De novo assembly generated 36,712 transcripts with an average length of 2236 bp. The results revealed that long-term waterlogging had divergent impacts on gene expression in WL-T DH2 and WL-S DH4 cucumber accessions: after 7 days of waterlogging, more DEGs in comparison to control conditions were identified in WL-S DH4 (8927) than in WL-T DH2 (5957). Additionally, 11,619 and 5007 DEGs were identified after a second waterlogging treatment in the WL-S and WL-T accessions, respectively. We identified genes associated with WL in cucumber that were especially related to enhanced glycolysis, adventitious roots development, and amino acid metabolism. qRT-PCR assay for hypoxia marker genes i.e., alcohol dehydrogenase (adh), 1-aminocyclopropane-1-carboxylate oxidase (aco) and long chain acyl-CoA synthetase 6 (lacs6) confirmed differences in response to waterlogging stress between sensitive and tolerant cucumbers and effectiveness of priming to enhance stress tolerance.
Collapse
|
4
|
Burke R, Schwarze J, Sherwood OL, Jnaid Y, McCabe PF, Kacprzyk J. Stressed to Death: The Role of Transcription Factors in Plant Programmed Cell Death Induced by Abiotic and Biotic Stimuli. FRONTIERS IN PLANT SCIENCE 2020; 11:1235. [PMID: 32903426 PMCID: PMC7434935 DOI: 10.3389/fpls.2020.01235] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 05/20/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled pathway that plants can use to selectively eliminate redundant or damaged cells. In addition to its fundamental role in plant development, PCD can often be activated as an essential defense response when dealing with biotic and abiotic stresses. For example, localized, tightly controlled PCD can promote plant survival by restricting pathogen growth, driving the development of morphological traits for stress tolerance such as aerenchyma, or triggering systemic pro-survival responses. Relatively little is known about the molecular control of this essential process in plants, especially in comparison to well-described cell death models in animals. However, the networks orchestrating transcriptional regulation of plant PCD are emerging. Transcription factors (TFs) regulate the clusters of stimuli inducible genes and play a fundamental role in plant responses, such as PCD, to abiotic and biotic stresses. Here, we discuss the roles of different classes of transcription factors, including members of NAC, ERF and WRKY families, in cell fate regulation in response to environmental stresses. The role of TFs in stress-induced mitochondrial retrograde signaling is also reviewed in the context of life-and-death decisions of the plant cell and future research directions for further elucidation of TF-mediated control of stress-induced PCD events are proposed. An increased understanding of these complex signaling networks will inform and facilitate future breeding strategies to increase crop tolerance to disease and/or abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Xin GL, Liu JQ, Liu J, Ren XL, Du XM, Liu WZ. Anatomy and RNA-Seq reveal important gene pathways regulating sex differentiation in a functionally Androdioecious tree, Tapiscia sinensis. BMC PLANT BIOLOGY 2019; 19:554. [PMID: 31842763 PMCID: PMC6915933 DOI: 10.1186/s12870-019-2081-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/16/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Gametogenesis is a key step in the production of ovules or pollen in higher plants. The sex-determination aspects of gametogenesis have been well characterized in the model plant Arabidopsis. However, little is known about this process in androdioecious plants. Tapiscia sinensis Oliv. is a functionally androdioecious tree, with both male and hermaphroditic individuals. Hermaphroditic flowers (HFs) are female-fertile flowers that can produce functional pollen and set fruits. However, compared with male flowers (MFs), the pollen viability and number of pollen grains per flower are markedly reduced in HFs. MFs are female-sterile flowers that fail to set fruit and that eventually drop. RESULTS Compared with HF, a notable cause of MF female sterility in T. sinensis is when the early gynoecium meristem is disrupted. During the early stage of HF development (stage 6), the ring meristem begins to form as a ridge around the center of the flower. At this stage, the internal fourth-whorl organ is stem-like rather than carpelloid in MF. A total of 52,945 unigenes were identified as transcribed in MF and HF. A number of differentially expressed genes (DEGs) and metabolic pathways were detected as involved in the development of the gynoecium, especially the ovule, carpel and style. At the early gynoecium development stage, DEGs were shown to function in the metabolic pathways regulating ethylene biosynthesis and signal transduction (upstream regulator), auxin, cytokinin transport and signalling, and sex determination (or flower meristem identity). CONCLUSIONS Pathways for the female sterility model were initially proposed to shed light on the molecular mechanisms of gynoecium development at early stages in T. sinensis.
Collapse
Affiliation(s)
- Gui-Liang Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 Shaanxi China
| | - Jia-Qian Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 Shaanxi China
| | - Jia Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 Shaanxi China
| | - Xiao-Long Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 Shaanxi China
| | - Xiao-Min Du
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 Shaanxi China
| | - Wen-Zhe Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 Shaanxi China
| |
Collapse
|
6
|
Liu H, Hao N, Jia Y, Liu X, Ni X, Wang M, Liu W. The ethylene receptor regulates Typha angustifolia leaf aerenchyma morphogenesis and cell fate. PLANTA 2019; 250:381-390. [PMID: 31062160 DOI: 10.1007/s00425-019-03177-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/26/2019] [Indexed: 05/14/2023]
Abstract
Ethylene receptor is crucial for PCD and aerenchyma formation in Typha angustifolia leaves. Not only does it receive and deliver the ethylene signal, but it probably can determine the cell fate during aerenchyma morphogenesis, which is due to the receptor expression quantity. Aquatic plant oxygen delivery relies on aerenchyma, which is formed by a programmed cell death (PCD) procedure. However, cells in the outer edge of the aerenchyma (palisade cells and septum cells) remain intact, and the mechanism is unclear. Here, we offer a hypothesis: cells that have a higher content of ethylene receptors do not undergo PCD. In this study, we investigated the leaf aerenchyma of the aquatic plant Typha angustifolia. Ethephon and pyrazinamide (PZA, an inhibitor of ACC oxidase) were used to confirm that ethylene is an essential hormone for PCD of leaf aerenchyma cells in T. angustifolia. That the ethylene receptor was an indispensable factor in this PCD was confirmed by 1-MCP (an inhibitor of the ethylene receptor) treatment. Although PCD can be avoided by blocking the ethylene receptor, excessive ethylene receptors also protect cells from PCD. TaETR1, TaETR2 and TaEIN4 in the T. angustifolia leaf were detected by immunofluorescence (IF) using polyclonal antibodies. The result showed that the content of ethylene receptors in PCD-unsusceptible cells was 4-14 times higher than that one in PCD-susceptible cells, suggesting that PCD-susceptible cells undergo the PCD programme, while PCD-unsusceptible cells do not due to the content difference in the ethylene receptor in different cells. A higher level of ethylene receptor content makes the cells insensitive to ethylene, thereby avoiding cell death and degradation.
Collapse
Affiliation(s)
- Huidong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Nan Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Yuhuan Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Xingqian Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Xilu Ni
- State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, 750004, China
| | - Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Wenzhe Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China.
| |
Collapse
|