1
|
Dey Bhowmik A, Shaw P, Gopinatha Pillai MS, Rao G, Dwivedi SKD. Evolving landscape of detection and targeting miRNA/epigenetics for therapeutic strategies in ovarian cancer. Cancer Lett 2024; 611:217357. [PMID: 39615646 DOI: 10.1016/j.canlet.2024.217357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Ovarian cancer (OC) accounts for the highest mortality rates among all gynecologic malignancies. The high mortality of OC is often associated with delayed detection, prolonged latency, enhanced metastatic potential, acquired drug resistance, and frequent recurrence. This review comprehensively explores key aspects of OC, including cancer diagnosis, mechanisms of disease resistance, and the pivotal role of epigenetic regulation, particularly by microRNAs (miRs) in cancer progression. We highlight the intricate regulatory mechanisms governing miR expression within the context of OC and the current status of epigenetic advancement in the therapeutic development and clinical trial progression. Through network analysis we elucidate the regulatory interactions between dysregulated miRs in OC and their targets which are involved in different signaling pathways. By exploring these interconnected facets and critical analysis, we endeavor to provide a nuanced understanding of the molecular dynamics underlying OC, its detection and shedding light on potential avenues for miRs and epigenetics-based therapeutic intervention and management strategies.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
2
|
González-Cantó E, Monteiro M, Aghababyan C, Ferrero-Micó A, Navarro-Serna S, Mellado-López M, Tomás-Pérez S, Sandoval J, Llueca A, Herreros-Pomares A, Gilabert-Estellés J, Pérez-García V, Marí-Alexandre J. Reduced Levels of miR-145-3p Drive Cell Cycle Progression in Advanced High-Grade Serous Ovarian Cancer. Cells 2024; 13:1904. [PMID: 39594652 PMCID: PMC11592657 DOI: 10.3390/cells13221904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal form of gynecologic cancer, with limited treatment options and a poor prognosis. Epigenetic factors, such as microRNAs (miRNAs) and DNA methylation, play pivotal roles in cancer progression, yet their specific contributions to HGSOC remain insufficiently understood. In this study, we performed comprehensive high-throughput analyses to identify dysregulated miRNAs in HGSOC and investigate their epigenetic regulation. Analysis of tissue samples from advanced-stage HGSOC patients revealed 20 differentially expressed miRNAs, 11 of which were corroborated via RT-qPCR in patient samples and cancer cell lines. Among these, miR-145-3p was consistently downregulated post-neoadjuvant therapy and was able to distinguish tumoural from control tissues. Further investigation confirmed that DNA methylation controls MIR145 expression. Functional assays showed that overexpression of miR-145-3p significantly reduced cell migration and induced G0/G1 cell cycle arrest by modulating the cyclin D1-CDK4/6 pathway. These findings suggest that miR-145-3p downregulation enhances cell proliferation and motility in HGSOC, implicating its restoration as a potential therapeutic target focused on G1/S phase regulation in the treatment of HGSOC.
Collapse
Affiliation(s)
- Eva González-Cantó
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
| | - Mariana Monteiro
- Bioinformatics and Genomics Department, Saphetor SA, 1015 Lausanne, Switzerland;
| | - Cristina Aghababyan
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
- Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Ana Ferrero-Micó
- Research Laboratory of Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.F.-M.); (S.N.-S.); (M.M.-L.)
| | - Sergio Navarro-Serna
- Research Laboratory of Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.F.-M.); (S.N.-S.); (M.M.-L.)
| | - Maravillas Mellado-López
- Research Laboratory of Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.F.-M.); (S.N.-S.); (M.M.-L.)
| | - Sarai Tomás-Pérez
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
| | - Juan Sandoval
- Epigenomics Unit, La Fe Health Research Institute, 46026 Valencia, Spain;
- Biomarkers and Precision Medicine Unit (UByMP), La Fe Health Research Institute, 46026 Valencia, Spain
| | - Antoni Llueca
- Department of Obstetrics and Gynecology, General University Hospital of Castellón, 12004 Castellón de la Plana, Spain;
- Multidisciplinary Unit of Abdominal Pelvic Oncology Surgery (MUAPOS), General University Hospital of Castellón, 12004 Castellón de la Plana, Spain
- Department of Medicine, University Jaume I, 12006 Castellón de la Plana, Spain
| | | | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
- Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46014 Valencia, Spain
| | - Vicente Pérez-García
- Research Laboratory of Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.F.-M.); (S.N.-S.); (M.M.-L.)
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain; (E.G.-C.); (C.A.); (S.T.-P.); (J.G.-E.)
- Department of Pathology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| |
Collapse
|
3
|
Braga EA, Burdennyy AM, Uroshlev LA, Zaichenko DM, Filippova EA, Lukina SS, Pronina IV, Astafeva IR, Fridman MV, Kazubskaya TP, Loginov VI, Dmitriev AA, Moskovtsev AA, Kushlinskii NE. Ten Hypermethylated lncRNA Genes Are Specifically Involved in the Initiation, Progression, and Lymphatic and Peritoneal Metastasis of Epithelial Ovarian Cancer. Int J Mol Sci 2024; 25:11843. [PMID: 39519394 PMCID: PMC11547154 DOI: 10.3390/ijms252111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Our work aimed to evaluate and differentiate the role of ten lncRNA genes (GAS5, HAND2-AS1, KCNK15-AS1, MAGI2-AS3, MEG3, SEMA3B-AS1, SNHG6, SSTR5-AS1, ZEB1-AS1, and ZNF667-AS1) in the development and progression of epithelial ovarian cancer (EOC). A representative set of clinical samples was used: 140 primary tumors from patients without and with metastases and 59 peritoneal metastases. Using MS-qPCR, we demonstrated an increase in methylation levels of all ten lncRNA genes in tumors compared to normal tissues (p < 0.001). Using RT-qPCR, we showed downregulation and an inverse relationship between methylation and expression levels for ten lncRNAs (rs < -0.5). We further identified lncRNA genes that were specifically hypermethylated in tumors from patients with metastases to lymph nodes (HAND2-AS1), peritoneum (KCNK15-AS1, MEG3, and SEMA3B-AS1), and greater omentum (MEG3, SEMA3B-AS1, and ZNF667-AS1). The same four lncRNA genes involved in peritoneal spread were associated with clinical stage and tumor extent (p < 0.001). Interestingly, we found a reversion from increase to decrease in the hypermethylation level of five metastasis-related lncRNA genes (MEG3, SEMA3B-AS1, SSTR5-AS1, ZEB1-AS1, and ZNF667-AS1) in 59 peritoneal metastases. This reversion may be associated with partial epithelial-mesenchymal transition (EMT) in metastatic cells, as indicated by a decrease in the level of the EMT marker, CDH1 mRNA (p < 0.01). Furthermore, novel mRNA targets and regulated miRNAs were predicted for a number of the studied lncRNAs using the NCBI GEO datasets and analyzed by RT-qPCR and transfection of SKOV3 and OVCAR3 cells. In addition, hypermethylation of SEMA3B-AS1, SSTR5-AS1, and ZNF667-AS1 genes was proposed as a marker for overall survival in patients with EOC.
Collapse
Affiliation(s)
- Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Leonid A. Uroshlev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (L.A.U.); (M.V.F.)
| | - Danila M. Zaichenko
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Svetlana S. Lukina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Iana R. Astafeva
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (L.A.U.); (M.V.F.)
| | - Tatiana P. Kazubskaya
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Aleksey A. Moskovtsev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
- Russian Medical Academy of Continuing Professional Education, 125993 Moscow, Russia
| | - Nikolay E. Kushlinskii
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| |
Collapse
|
4
|
Flores-Colón M, Rivera-Serrano M, Reyes-Burgos VG, Rolón JG, Pérez-Santiago J, Marcos-Martínez MJ, Valiyeva F, Vivas-Mejía PE. MicroRNA Expression Profiles in Human Samples and Cell Lines Revealed Nine miRNAs Associated with Cisplatin Resistance in High-Grade Serous Ovarian Cancer. Int J Mol Sci 2024; 25:3793. [PMID: 38612604 PMCID: PMC11011404 DOI: 10.3390/ijms25073793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Metastasis and drug resistance are major contributors to cancer-related fatalities worldwide. In ovarian cancer (OC), a staggering 70% develop resistance to the front-line therapy, cisplatin. Despite proposed mechanisms, the molecular events driving cisplatin resistance remain unclear. Dysregulated microRNAs (miRNAs) play a role in OC initiation, progression, and chemoresistance, yet few studies have compared miRNA expression in OC samples and cell lines. This study aimed to identify key miRNAs involved in the cisplatin resistance of high-grade-serous-ovarian-cancer (HGSOC), the most common gynecological malignancy. MiRNA expression profiles were conducted on RNA isolated from formalin-fixed-paraffin-embedded human ovarian tumor samples and HGSOC cell lines. Nine miRNAs were identified in both sample types. Targeting these with oligonucleotide miRNA inhibitors (OMIs) reduced proliferation by more than 50% for miR-203a, miR-96-5p, miR-10a-5p, miR-141-3p, miR-200c-3p, miR-182-5p, miR-183-5p, and miR-1206. OMIs significantly reduced migration for miR-183-5p, miR-203a, miR-296-5p, and miR-1206. Molecular pathway analysis revealed that the nine miRNAs regulate pathways associated with proliferation, invasion, and chemoresistance through PTEN, ZEB1, FOXO1, and SNAI2. High expression of miR-1206, miR-10a-5p, miR-141-3p, and miR-96-5p correlated with poor prognosis in OC patients according to the KM plotter database. These nine miRNAs could be used as targets for therapy and as markers of cisplatin response.
Collapse
Affiliation(s)
- Marienid Flores-Colón
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; (M.F.-C.); (V.G.R.-B.)
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (J.P.-S.); (F.V.)
| | - Mariela Rivera-Serrano
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (J.P.-S.); (F.V.)
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00936, USA
| | - Víctor G. Reyes-Burgos
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; (M.F.-C.); (V.G.R.-B.)
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (J.P.-S.); (F.V.)
| | - José G. Rolón
- School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| | - Josué Pérez-Santiago
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (J.P.-S.); (F.V.)
| | - María J. Marcos-Martínez
- Department of Pathology and Laboratory Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| | - Fatima Valiyeva
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (J.P.-S.); (F.V.)
| | - Pablo E. Vivas-Mejía
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; (M.F.-C.); (V.G.R.-B.)
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (J.P.-S.); (F.V.)
| |
Collapse
|
5
|
Mukherjee S, Nag S, Mukerjee N, Maitra S, Muthusamy R, Fuloria NK, Fuloria S, Adhikari MD, Anand K, Thorat N, Subramaniyan V, Gorai S. Unlocking Exosome-Based Theragnostic Signatures: Deciphering Secrets of Ovarian Cancer Metastasis. ACS OMEGA 2023; 8:36614-36627. [PMID: 37841156 PMCID: PMC10568589 DOI: 10.1021/acsomega.3c02837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Ovarian cancer (OC) is a common gynecological cancer worldwide. Unfortunately, the lack of early detection methods translates into a substantial cohort of women grappling with the pressing health crisis. The discovery of extracellular vesicles (EVs) (their major subpopulation exosomes, microvesicles, and apoptotic bodies) has provided new insights into the understanding of cancer. Exosomes, a subpopulation of EVs, play a crucial role in cellular communication and reflect the cellular status under both healthy and pathological conditions. Tumor-derived exosomes (TEXs) dynamically influence ovarian cancer progression by regulating uncontrolled cell growth, immune suppression, angiogenesis, metastasis, and the development of drug and therapeutic resistance. In the field of OC diagnostics, TEXs offer potential biomarkers in various body fluids. On the other hand, exosomes have also shown promising abilities to cure ovarian cancer. In this review, we address the interlink between exosomes and ovarian cancer and explore their theragnostic signature. Finally, we highlight future directions of exosome-based ovarian cancer research.
Collapse
Affiliation(s)
- Sayantanee Mukherjee
- Centre
for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Sagnik Nag
- Department
of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Tamil Nadu 632014, India
| | - Nobendu Mukerjee
- Department
of Microbiology, West Bengal State University, West Bengal 700126, Kolkata, India
- Department
of Health Sciences, Novel Global Community
Educational Foundation, New South
Wales, Australia
| | - Swastika Maitra
- Department
of Microbiology, Adamas University, West Bengal 700126, Kolkata, India
| | - Raman Muthusamy
- Department
of Microbiology, Centre for Infectious Diseases, Saveetha Dental College, Chennai, Tamil Nadu 600077, India
| | - Neeraj Kumar Fuloria
- Faculty
of Pharmacy, & Centre of Excellence for Biomaterials Engineering, AIMST University, Semeling, Kedah 08100, Malaysia
| | - Shivkanya Fuloria
- Faculty
of Pharmacy, AIMST University, Semeling, Kedah 08100, Malaysia
| | - Manab Deb Adhikari
- Department
of Biotechnology, University of North Bengal
Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Nanasaheb Thorat
- Limerick
Digital Cancer Research Centre and Department of Physics, Bernal Institute, University of Limerick, Castletroy Co. Limerick, Limerick V94T9PX, Ireland
| | - Vetriselvan Subramaniyan
- Jeffrey
Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Jalan Lagoon Selatan, Bandar
Sunway, 47500 Selangor
Darul Ehsan, Malaysia
- Center
for Transdisciplinary Research, Department of Pharmacology, Saveetha
Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Sukhamoy Gorai
- Rush
University Medical Center, 1620 West Harrison Street, Chicago, Illinois 60612, United States
| |
Collapse
|
6
|
Pernar Kovač M, Tadić V, Kralj J, Milković Periša M, Orešković S, Babić I, Banović V, Zhang W, Culig Z, Brozovic A. MiRNA-mRNA integrative analysis reveals epigenetically regulated and prognostic miR-103a with a role in migration and invasion of carboplatin-resistant ovarian cancer cells that acquired mesenchymal-like phenotype. Biomed Pharmacother 2023; 166:115349. [PMID: 37634476 DOI: 10.1016/j.biopha.2023.115349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/07/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND DNA methylation, histone modifications, and miRNAs affect ovarian cancer (OC) progression and therapy response. PURPOSE Identification of epigenetically downregulated miRNAs in drug-resistant OC cell lines with a possible role in drug resistance and/or drug-induced mesenchymal-like phenotype. METHODS MiRNA profiling was performed on parental and carboplatin-resistant OC cells, MES-OV and MES-OV CBP. RT-qPCR validation, epigenetic modulation and other CBP-resistant OC cell lines were used to select miRNAs of interest. The integration of miRNA-predicted target genes and differentially expressed genes (DEGs), pathway and functional analysis were used for forecasting their biological role. Data mining was performed to determine their possible prognostic and predictive values. RESULTS MiRNA profiling revealed 48 downregulated miRNAs in OC cells whose drug sensitivity and metastatic potential were impacted by epigenetic modulators. Of the fourteen selected, nine were validated as changed, and seven of these restored their expression upon treatment with epigenetic inhibitors. Only three had similar expression patterns in other OC cell lines. MiRNA-mRNA integrative analysis resulted in 56 target DEGs. Pathway analysis revealed that these genes are involved in cell adhesion, migration, and invasion. The functional analysis confirmed the role of miR-103a-3p, miR-17-5p and miR-107 in cell invasion, while data mining showed their prognostic and predictive values. Only miR-103a-3p was epigenetically regulated at the constitutive level. CONCLUSION High throughput miRNA and cDNA profiling coupled with pathway analysis and data mining delivered evidence for miRNAs which can be epigenetically regulated in drug-resistant, mesenchymal-like OC cells as possible markers to combat therapy-induced short overall survival and tumor metastatic potential.
Collapse
Affiliation(s)
- Margareta Pernar Kovač
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Vanja Tadić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Juran Kralj
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Marija Milković Periša
- University Hospital Centre Zagreb, Department of Pathology and Cytology, Petrova ulica 13, HR-10000 Zagreb, Croatia; University of Zagreb, School of Medicine, Institute of Pathology, Šalata 10, HR-10000 Zagreb, Croatia
| | - Slavko Orešković
- Department of Obstetrics and Gynecology, University Hospital Center Zagreb, Petrova 13, HR-10000 Zagreb, Croatia
| | - Ivan Babić
- Department of Obstetrics and Gynecology, University Hospital Center Zagreb, Petrova 13, HR-10000 Zagreb, Croatia
| | - Vladimir Banović
- Department of Obstetrics and Gynecology, University Hospital Center Zagreb, Petrova 13, HR-10000 Zagreb, Croatia
| | - Wei Zhang
- Department of Engineering Mechanics, Dalian University of Technology, Linggong Road 2, 116024 Dalian, China
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| |
Collapse
|
7
|
Gahlawat AW, Witte T, Sinn P, Schott S. Circulating cf-miRNA as a more appropriate surrogate liquid biopsy marker than cfDNA for ovarian cancer. Sci Rep 2023; 13:5503. [PMID: 37015943 PMCID: PMC10073086 DOI: 10.1038/s41598-023-32243-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/24/2023] [Indexed: 04/06/2023] Open
Abstract
Ovarian cancer (OC) is an aggressive disease, primarily diagnosed in late stages with only 20% of patients surviving more than 5 years. Liquid biopsy markers have great potential to improve current diagnostic and prognostic methods. Here, we compared miRNAs and DNA methylation in matched plasma, whole blood and tissues as a surrogate marker for OC. We found that while both cfDNA and cf-miRNAs levels were upregulated in OC compared to patients with benign lesions or healthy controls, only cf-miRNA levels were an independent prognosticator of survival. Following on our previous work, we found members of the miR-200 family, miR-200c and miR-141 to be upregulated in both plasma and matched tissues of OC patients which correlated with adverse clinical features. We could also show that the upregulation of miR-200c and -141 correlated with promoter DNA hypomethylation in tissues, but not in plasma or matched whole blood samples. As cf-miRNAs are more easily obtained and very stable in blood, we conclude that they might serve as a more appropriate surrogate liquid biopsy marker than cfDNA for OC.
Collapse
Affiliation(s)
- Aoife Ward Gahlawat
- Department of Gynaecology and Obstetrics, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), University Hospital of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Tania Witte
- Department of Gynaecology and Obstetrics, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Peter Sinn
- Department of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Sarah Schott
- Department of Gynaecology and Obstetrics, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| |
Collapse
|
8
|
Sun Y, Zhang C, Luo L, Lin H, Liu C, Zhang W. Paternal genetic intergenerational and transgenerational effects of cadmium exposure on hormone synthesis disorders in progeny ovarian granulosa cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121175. [PMID: 36731734 DOI: 10.1016/j.envpol.2023.121175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
To investigate the paternal genetic effects of cadmium (Cd) exposure on hormone synthesis disorders in the ovarian granulosa cells (GCs) of offspring. Here, male Sprague‒Dawley (SD) rats were gavaged with CdCl2 (0, 0.5, 2, 8 mg/kg) from postnatal day (PND) 28-56, followed by mating with newly purchased healthy adult females to produce F1, and F1 adult males (PND 56) were mated with newly purchased healthy adult females to produce F2. The serum levels of estradiol (E2) and progesterone (Pg) decreased in F1 but essentially returned to normal in F2. The levels of StAR, CYP11A1, CYP17A1, CYP19A1, and SF-1 showed different alterations in F1 and F2 ovarian GCs. The expression patterns of miRNAs and imprinted genes related to hormone synthesis in GCs of F1 and F2 differed, but methylation of hormone synthesis-related genes was not significantly altered (except for individual loci in F1). In addition, there were significant changes in the expression of imprinted genes and miRNAs in F0 and F1 sperm. We conclude that paternal Cd exposure causes intergenerational genetic effects (hormone synthesis disorders) and transgenerational effects (reparative changes in hormone synthesis function) in ovarian GCs. These genetic effects were related to the downregulation of StAR in F1 and the upregulation of CYP17A1, CYP19A1, StAR and SF-1 in F2. Important changes in miRNAs and imprinted genes were also observed, but not all alterations originated from paternal inheritance.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Chenyun Zhang
- School of Health Management, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Hao Lin
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350005, Fujian, China
| | - Chenchen Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
9
|
Long Non-Coding RNAs and microRNAs Groups in the Regulation of Expression Level of a Number of Tumor-Associated Genes in Ovarian Cancer. Bull Exp Biol Med 2023; 174:354-359. [PMID: 36723744 DOI: 10.1007/s10517-023-05707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 02/02/2023]
Abstract
The search for interacting long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs of protein-coding genes through the mechanism of competing endogenous RNAs in tumors of ovarian cancer patients was carried out. The levels of expression of 24 lncRNAs, 20 miRNAs, and 28 mRNAs of protein-coding genes involved in oncogenesis were determined by real-time PCR on a set of representative samples. Correlations between lncRNAs/miRNA and miRNA/mRNA levels in ovarian cancer samples were analyzed. We identified 8 pairs of lncRNAs/miRNA and 17 pairs of miRNA/mRNA, the expression levels of which have a negative correlation. Five triplets of potentially interacting lncRNAs/miRNA/mRNA have been identified, among which the most significant triplet is the OIP5-AS1/miR-203a-3p/ZEB1. The data obtained determine new epigenetic profiles, as well as new potential biomarkers and targets for targeted therapy of ovarian cancer patients.
Collapse
|
10
|
Aghayousefi R, Hosseiniyan Khatibi SM, Zununi Vahed S, Bastami M, Pirmoradi S, Teshnehlab M. A diagnostic miRNA panel to detect recurrence of ovarian cancer through artificial intelligence approaches. J Cancer Res Clin Oncol 2023; 149:325-341. [PMID: 36378340 DOI: 10.1007/s00432-022-04468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Ovarian Cancer (OC) is the deadliest gynecology malignancy, whose high recurrence rate in OC patients is a challenging object. Therefore, having deep insights into the genetic and molecular mechanisms of OC recurrence can improve the target therapeutic procedures. This study aimed to discover crucial miRNAs for the detection of tumor recurrence in OC by artificial intelligence approaches. METHOD Through the ANOVA feature selection method, we selected 100 candidate miRNAs among 588 miRNAs. For their classification, a deep-learning model was employed to validate the significance of the candidate miRNAs. The accuracy, F1-score (high-risk), and AUC-ROC of classification test data based on the 100 miRNAs were 73%, 0.81, and 0.65, respectively. Association rule mining was used to discover hidden relations among the selected miRNAs. RESULT Five miRNAs, including miR-1914, miR-203, miR-135a-2, miR-149, and miR-9-1, were identified as the most frequent items among high-risk association rules. The identified miRNAs may target genes/proteins involved in epithelial-mesenchymal transition (EMT), resistance to therapy, and cancer stem cells; being responsible for the heterogeneity and plasticity of the tumor. Our conclusion presents mir-1914 as the significant candidate miRNA and the most frequent item. Current knowledge indicates that the dysregulated miR-1914 may function as a tumor suppressor or oncogene in the development of cancer. CONCLUSION These candidate miRNAs can be considered a powerful tool in the diagnosis of OC recurrence. We hypothesize that mir-1914 might open a new line of research in the realm of managing the recurrence of OC and could be a significant factor in triggering OC recurrence.
Collapse
Affiliation(s)
- Reyhaneh Aghayousefi
- Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Seyed Mahdi Hosseiniyan Khatibi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.,Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Milad Bastami
- Non-Communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Saeed Pirmoradi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Teshnehlab
- Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
11
|
Synergy between the Levels of Methylation of microRNA Gene Sets in Primary Tumors and Metastases of Ovarian Cancer Patients. Bull Exp Biol Med 2022; 173:87-91. [PMID: 35622253 DOI: 10.1007/s10517-022-05499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 10/18/2022]
Abstract
We studied the correlations between the levels of methylation of a group of 21 microRNA genes in 99 primary tumors and 29 macroscopic peritoneal metastases of ovarian cancer. Analysis of the level of methylation by quantitative methylation-specific PCR showed that co-methylation was detected for 13 pairs of microRNA genes in primary tumors and for 22 pairs in metastases. Pairs of microRNA genes that have shown significant co-methylation can be involved in common processes and pathways of gene regulation and interaction and can have common target genes. The results are highly significant and pairs of microRNA genes can be proposed as new potential markers for the diagnosis and prognosis of ovarian cancer metastasis.
Collapse
|
12
|
The Role of Long Non-Coding RNA CCAT1 and SNHG14 in Activation of Some Protein-Coding Genes Associated with the Development of Ovarian Cancer. Bull Exp Biol Med 2022; 172:760-764. [PMID: 35501644 DOI: 10.1007/s10517-022-05473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 10/18/2022]
Abstract
Late diagnosis of ovarian cancer is one of the most important problems in its treatment. Long non-coding RNA (lncRNA) are a poorly studied, but promising type of diagnostic biomarkers. We studied the lncRNA interactome to identify biomarkers with potential significance for molecular diagnostics of ovarian cancer. By screening the TCGA database, we identified differentially expressed lncRNA CCAT1 and SNHG14. Based on the indices of complementarity of CCAT1 and SNHG14 to the mRNA sequences, we selected 5 protein-coding genes MAPK1, c-MET, TGFB2, SNAIL1, and WNT4 associated with the epithelial-mesenchymal transition. Real-time PCR on 54 ovarian cancer samples confirmed the high expression levels of CCAT1 and SNHG14 (logFC>1.5, p<0.05). A positive correlation between the expression levels of two lncRNA and mRNA of 5 genes in 6 pairs was established. The activating effect of CCAT1 and SNHG14 on the expression of these genes can be mediated by miR-203 and miR-124.
Collapse
|
13
|
Pronina IV, Uroshlev LA, Moskovtsev AA, Zaichenko DM, Filippova EA, Fridman MV, Burdennyy AM, Loginov VI, Kazubskaya TP, Kushlinskii NE, Dmitriev AA, Braga EA, Brovkina OI. Dysregulation of lncRNA–miRNA–mRNA Interactome as a Marker of Metastatic Process in Ovarian Cancer. Biomedicines 2022; 10:biomedicines10040824. [PMID: 35453574 PMCID: PMC9031843 DOI: 10.3390/biomedicines10040824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common types of cancer among malignancies of the female reproductive system. This pathology is asymptomatic until advanced stages and has a poor prognosis. Our study aimed to search for lncRNA–miRNA–mRNA competing triplets that promote ovarian tumorigenesis. For this purpose, we analyzed tumor samples from the TCGA database and verified the results experimentally in a set of 46 paired samples of tumor and matched histologically unchanged ovarian tissues from OC patients. The list of RNAs selected in silico for experimental studies included 13 mRNAs, 10 lncRNAs, and 5 miRNAs related to epithelial–mesenchymal transition and angiogenesis. We evaluated the expression of these RNAs by qRT-PCR and assessed the correlation between levels of miRNAs, mRNAs, and lncRNAs. Sixteen significant triplets were revealed, in some of which, e.g., OIP5-AS1–miR-203a–c-MET and OIP5-AS1–miR-203a–ZEB2, both lncRNA and mRNA had sites for miR-203a direct binding. Transfection of the OVCAR-3 and SKOV-3 cell lines with the miR-203a mimic was used to confirm the novel links of miR-203a with ZEB2 and c-MET in OC. These connections suggest that the interactomes have the potential for diagnostics of metastasis at early onset.
Collapse
Affiliation(s)
- Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Leonid A. Uroshlev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey A. Moskovtsev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Danila M. Zaichenko
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Tatiana P. Kazubskaya
- N. N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| | - Nikolay E. Kushlinskii
- N. N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Correspondence:
| | - Olga I. Brovkina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Federal Research and Clinical Center of Federal Medical-Biological Agency of Russia, 115682 Moscow, Russia
| |
Collapse
|
14
|
Kandettu A, Adiga D, Devi V, Suresh PS, Chakrabarty S, Radhakrishnan R, Kabekkodu SP. Deregulated miRNA clusters in ovarian cancer: Imperative implications in personalized medicine. Genes Dis 2022; 9:1443-1465. [PMID: 36157483 PMCID: PMC9485269 DOI: 10.1016/j.gendis.2021.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/04/2021] [Accepted: 12/31/2021] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common and fatal types of gynecological cancer. OC is usually detected at the advanced stages of the disease, making it highly lethal. miRNAs are single-stranded, small non-coding RNAs with an approximate size ranging around 22 nt. Interestingly, a considerable proportion of miRNAs are organized in clusters with miRNA genes placed adjacent to one another, getting transcribed together to result in miRNA clusters (MCs). MCs comprise two or more miRNAs that follow the same orientation during transcription. Abnormal expression of the miRNA cluster has been identified as one of the key drivers in OC. MC exists both as tumor-suppressive and oncogenic clusters and has a significant role in OC pathogenesis by facilitating cancer cells to acquire various hallmarks. The present review summarizes the regulation and biological function of MCs in OC. The review also highlights the utility of abnormally expressed MCs in the clinical management of OC.
Collapse
|
15
|
Aberrant Methylation of 20 miRNA Genes Specifically Involved in Various Steps of Ovarian Carcinoma Spread: From Primary Tumors to Peritoneal Macroscopic Metastases. Int J Mol Sci 2022; 23:ijms23031300. [PMID: 35163224 PMCID: PMC8835734 DOI: 10.3390/ijms23031300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Our work aimed to differentiate 20 aberrantly methylated miRNA genes that participate at different stages of development and metastasis of ovarian carcinoma (OvCa) using methylation-specific qPCR in a representative set of clinical samples: 102 primary tumors without and with metastases (to lymph nodes, peritoneum, or distant organs) and 30 peritoneal macroscopic metastases (PMM). Thirteen miRNA genes (MIR107, MIR124-2, MIR124-3, MIR125B-1, MIR127, MIR129-2, MIR130B, MIR132, MIR193A, MIR339, MIR34B/C, MIR9-1, and MIR9-3) were hypermethylated already at the early stages of OvCa, while hypermethylation of MIR1258, MIR137, MIR203A, and MIR375 was pronounced in metastatic tumors, and MIR148A showed high methylation levels specifically in PMM. We confirmed the significant relationship between methylation and expression levels for 11 out of 12 miRNAs analyzed by qRT-PCR. Moreover, expression levels of six miRNAs were significantly decreased in metastatic tumors in comparison with nonmetastatic ones, and downregulation of miR-203a-3p was the most significant. We revealed an inverse relationship between expression levels of miR-203a-3p and those of ZEB1 and ZEB2 genes, which are EMT drivers. We also identified three miRNA genes (MIR148A, MIR9-1, and MIR193A) that likely regulate EMT–MET reversion in the colonization of PMM. According to the Kaplan–Meier analysis, hypermethylation of several examined miRNA genes was associated with poorer overall survival of OvCa patients, and high methylation levels of MIR130B and MIR9-1 were related to the greatest relative risk of death.
Collapse
|
16
|
Zeng D, He S, Zhao N, Hu M, Gao J, Yu Y, Huang J, Shen Y, Li H. Promoter Hypomethylation of miR-124 Gene Is Associated With Major Depressive Disorder. Front Mol Neurosci 2022; 14:771103. [PMID: 34992522 PMCID: PMC8724533 DOI: 10.3389/fnmol.2021.771103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Based on our previous studies and other evidence, miR-124 is an important biomarker and therapeutic target for major depressive disorder (MDD). The aim of this study was to clarify the role of miR-124 methylation in MDD and antidepressant effects from the perspective of epigenetics. MethylTarget™ was used to detect methylation levels of the three miR-124 precursor genes (MIR124-1, MIR124-2, and MIR124-3) in 33 pre- and post-treatment MDD patients and 33 healthy controls. A total of 11 cytosine-phosphate-guanine (CpG) islands in the three miR-124 precursor genes, including 222 CpG sites, were detected. All CpG islands were hypomethylated in MDD patients when compared to healthy controls and seven CpG regions were still identified with a statistically significant difference after Bonferroni correction. In addition, 137 of 222 CpG sites were found a statistical difference between MDD patients and controls, and 40 CpG sites were still statistically significant after Bonferroni correction. After performing the LASSO regression model, seven biomarkers with differential methylation among 40 CpG sites were identified. Mean methylation score was lower in MDD patients (z = -5.84, p = 5.16E-9). The AUC value reached 0.917 (95% CI: 0.854-0.981) to discriminate MDD and controls. No changes in methylation of the three miR-124 precursor genes were found in MDD patients following antidepressant treatment. The methylation of miR-124 could be a promising diagnostic biomarker for MDD.
Collapse
Affiliation(s)
- Duan Zeng
- Department of Psychiatry, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shen He
- Department of Psychiatry, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Zhao
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Manji Hu
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Jie Gao
- Yingbo Community Health Service Center, Shanghai, China
| | - Yimin Yu
- Department of Psychiatry, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Clinical Research Center for Mental Health, Shanghai, China
| | - Jingjing Huang
- Department of Psychiatry, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Clinical Research Center for Mental Health, Shanghai, China
| | - Yifeng Shen
- Department of Psychiatry, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Clinical Research Center for Mental Health, Shanghai, China
| | - Huafang Li
- Department of Psychiatry, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Clinical Research Center for Mental Health, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
17
|
Kumar V, Gupta S, Varma K, Chaurasia A, Sachan M. Diagnostic performance of microRNA-34a, let-7f and microRNA-31 in epithelial ovarian cancer prediction. J Gynecol Oncol 2022; 33:e49. [PMID: 35557032 PMCID: PMC9250857 DOI: 10.3802/jgo.2022.33.e49] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 03/05/2022] [Indexed: 11/30/2022] Open
Abstract
Objective To correlate the genome-wide methylation signature of microRNA genes with dysregulated expression of selected candidate microRNA in tissue and serum samples of epithelial ovarian cancer (EOC) and control using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and evaluation of EOC predictive value of candidate microRNA at an early stage. Methods We performed Methylated DNA Immunoprecipitation coupled with NGS (MeDIP-NGS) sequencing of 6 EOC and 2 normal tissue samples of the ovary. Expression of selected microRNA from tissue (EOC=85, normal=30) and serum (EOC=50, normal=15) samples was evaluated using qRT-PCR. We conducted bioinformatics analysis to identify the candidate miRNA’s potential target and functional role. Results MeDIP-NGS sequencing revealed hypermethylation of several microRNAs gene promoters. Three candidate microRNAs were selected (microRNA-34a, let-7f, and microRNA-31) from MeDIP-NGS data analysis based on log2FC and P-value. The relative expression level of microRNA-34a, let-7f, and microRNA-31 was found to be significantly reduced in early-stage EOC tissues and serum samples (p<0.0001). The receiver operating characteristic analysis of microRNA-34a, let-7f and miR-31 showed improved diagnostic value with area under curve(AUC) of 92.0 (p<0.0001), 87.9 (p<0.0001), and 85.6 (p<0.0001) and AUC of 82.7 (p<0.0001), 82.0 (p<0.0001), and 81.0 (p<0.0001) in stage III-IV and stage I-II EOC serum samples respectively. The integrated diagnostic performance of microRNA panel (microRNA-34a+let-7f+microRNA-31) in late-stage and early-stage serum samples was 95.5 and 96.9 respectively. Conclusion Our data correlated hypermethylation-associated downregulation of microRNA in EOC. In addition, a combined microRNA panel from serum could predict the risk of EOC with greater AUC, sensitivity, and specificity. miR-34a, let-7f, and miR-31 promoters were significantly methylated in EOC samples. Significant reduced level of miR-34a, miR-31 and let-7f was observed in EOC samples. Individual and combined miRNA panel have higher diagnostic value for EOC prediction. miR-34a, let-7f and miR-31 can discriminate metastatic over non-metastatic samples.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Kachnar Varma
- Department of Pathology, Motilal Nehru Medical College Allahabad, Prayagraj, India
| | - Amrita Chaurasia
- Department of Gynaecology and Obstetrics, Motilal Nehru Medical College Allahabad, Prayagraj, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
18
|
Filippova EA, Pronina IV, Lukina SS, Kazubskaya TP, Braga EA, Burdennyi AM, Loginov VI. Relationship of the Levels of microRNA Gene Methylation with the Level of Their Expression and Pathomorphological Characteristics of Breast Cancer. Bull Exp Biol Med 2021; 171:764-769. [PMID: 34705180 DOI: 10.1007/s10517-021-05312-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/24/2022]
Abstract
We studied the relationship of the levels of microRNA group expression and methylation with clinical and pathomorphological parameters of breast cancer and its immunohistochemical status. Quantitative methylation specific PCR analysis showed a significant (p<0.001) increase in the methylation level of 4 microRNA genes (MIR127, MIR129-2, MIR132, and MIR148A) and a significant (p<0.001) decrease for gene MIR375 relative to paired histologically normal tissue. Real-time PCR analysis revealed a significant (p≤0.001) decrease in the expression of 4 microRNAs (miR-127-5p, miR-129-5p, miR-132-3p, and miR-148a-3p) and a significant (p≤0.001) increase in the expression of miR-375-3p. A significant (rs=-0.6--0.7, p≤0.001) relationship between changes in the expression level of miR-129-5p, miR-132-3p, miR-148a-3p, and miR-375-3p and the levels of methylation of the corresponding genes in breast cancer was showed by using Spearman's rank correlation test. Analysis of the samples with consideration of the pathophysiological characteristics of the tumor revealed two significant markers of tumor progression: MIR129-2/miR-129-5p and MIR375/miR-375-3p. Both factors, the increase in the level of MIR129-2 methylation (p<0.001) and a decrease in the expression level of miR-129-5p (p<0.001), are significantly associated (p<0.001) with stage III/IV and the absence of HER2 expression. For MIR375/miR-375-3p, on the contrary, an association of low methylation level and enhanced expression with increased Ki-67 level (>30%, p<0.05) was revealed. These findings are of interest for understanding the mechanisms of breast cancer development and can provide the basis for the diagnosis and prognosis of the course of this disease. Moreover, the revealed features can be useful for adjusting the course of treatment with consideration of the pathophysiological characteristics of the tumor.
Collapse
Affiliation(s)
- E A Filippova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - I V Pronina
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - S S Lukina
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - T P Kazubskaya
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E A Braga
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - A M Burdennyi
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia.
| | - V I Loginov
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
19
|
Kumar V, Gupta S, Chaurasia A, Sachan M. Evaluation of Diagnostic Potential of Epigenetically Deregulated MiRNAs in Epithelial Ovarian Cancer. Front Oncol 2021; 11:681872. [PMID: 34692473 PMCID: PMC8529058 DOI: 10.3389/fonc.2021.681872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancies among women worldwide. Early diagnosis of EOC could help in ovarian cancer management. MicroRNAs, a class of small non-coding RNA molecules, are known to be involved in post-transcriptional regulation of ~60% of human genes. Aberrantly expressed miRNAs associated with disease progression are confined in lipid or lipoprotein and secreted as extracellular miRNA in body fluid such as plasma, serum, and urine. MiRNAs are stably present in the circulation and recently have gained an importance to serve as a minimally invasive biomarker for early detection of epithelial ovarian cancer. Methods Genome-wide methylation pattern of six EOC and two normal ovarian tissue samples revealed differential methylation regions of miRNA gene promoter through MeDIP-NGS sequencing. Based on log2FC and p-value, three hypomethylated miRNAs (miR-205, miR-200c, and miR-141) known to have a potential role in ovarian cancer progression were selected for expression analysis through qRT-PCR. The expression of selected miRNAs was analyzed in 115 tissue (85 EOC, 30 normal) and 65 matched serum (51 EOC and 14 normal) samples. Results All three miRNAs (miR-205, miR-200c, and miR-141) showed significantly higher expression in both tissue and serum cohorts when compared with normal controls (p < 0.0001). The receiver operating characteristic curve analysis of miR-205, miR-200c, and miR-141 has area under the curve (AUC) values of 87.6 (p < 0.0001), 78.2 (p < 0.0001), and 86.0 (p < 0.0001), respectively; in advance-stage serum samples, however, ROC has AUC values of 88.1 (p < 0.0001), 78.9 (p < 0.0001), and 86.7 (p < 0.0001), respectively, in early-stage serum samples. The combined diagnostic potential of the three miRNAs in advance-stage serum samples and early-stage serum samples has AUC values of 95.9 (95% CI: 0.925-1.012; sensitivity = 96.6% and specificity = 80.0%) and 98.1 (95% CI: 0.941-1.021; sensitivity = 90.5% and specificity = 100%), respectively. Conclusion Our data correlate the epigenetic deregulation of the miRNA genes with their expression. In addition, the miRNA panel (miR-205 + miR-200c + miR-141) has a much higher AUC, sensitivity, and specificity to predict EOC at an early stage in both tissue and serum samples.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Amrita Chaurasia
- Department of Gynaecology and Obstetrics, Motilal Nehru Medical College, Allahabad, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
20
|
Brovkina OI, Pronina IV, Uroshlev LA, Fridman MV, Loginov VI, Kazubskaya TP, Utkin DO, Kushlinskii NE, Braga EA. Identification of Novel Differentially Expressing Long Non-Coding RNAs with Oncogenic Potential. Mol Biol 2021. [DOI: 10.1134/s0026893321020175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Burdennyy AM, Filippova EA, Ivanova NA, Lukina SS, Pronina IV, Loginov VI, Fridman MV, Kazubskaya TP, Utkin DO, Braga EA, Kushlinskii NE. Hypermethylation of Genes in New Long Noncoding RNA in Ovarian Tumors and Metastases: A Dual Effect. Bull Exp Biol Med 2021; 171:370-374. [PMID: 34292442 DOI: 10.1007/s10517-021-05230-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/21/2022]
Abstract
The role of methylation in the regulation of genes of long noncoding RNA (lncRNA) is still poorly understood. We revealed new hypermethylated lncRNA genes in ovarian tumors and their effect on metastasis of ovarian cancer. A multiple and significant (p<0.001) increase in methylation of a group of lncRNA genes (MEG3, SEMA3B-AS1, ZNF667-AS1, and TINCR) was shown by quantitative methylation-specific PCR using the non-parametric Mann-Whitney test. Moreover, methylation of SEMA3B-AS1, ZNF667-AS1, and TINCR genes in ovarian cancer tumors was detected for the first time. Comparative analysis of 19 samples of peritoneal metastases and paired primary tumors showed a significant decrease in the methylation level of the same 4 genes: MEG3 (p=0.004), SEMA3B-AS1 (p=0.002), TINCR (p=0.002), and ZNF667-AS1 (p<0.001). Reduced methylation of suppressor lncRNA genes in peritoneal metastases is probably associated with the involvement of these lncRNA in the regulation of plastic reversion of the epithelial-mesenchymal transition to the mesenchymal-epithelial transition. Thus, the effect of lncRNA and their methylation on the development of tumors and metastases of ovarian cancer was demonstrated, which is important for understanding of the pathogenesis and mechanisms of metastasis of ovarian cancer. New properties of lncRNA can find application in the development of new approaches in the therapy of ovarian cancer.
Collapse
Affiliation(s)
- A M Burdennyy
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - E A Filippova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - N A Ivanova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - S S Lukina
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - I V Pronina
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - V I Loginov
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - M V Fridman
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - T P Kazubskaya
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - D O Utkin
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E A Braga
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia.
| | - N E Kushlinskii
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
22
|
Pajares MJ, Alemany-Cosme E, Goñi S, Bandres E, Palanca-Ballester C, Sandoval J. Epigenetic Regulation of microRNAs in Cancer: Shortening the Distance from Bench to Bedside. Int J Mol Sci 2021; 22:ijms22147350. [PMID: 34298969 PMCID: PMC8306710 DOI: 10.3390/ijms22147350] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a complex disease involving alterations of multiple processes, with both genetic and epigenetic features contributing as core factors to the disease. In recent years, it has become evident that non-coding RNAs (ncRNAs), an epigenetic factor, play a key role in the initiation and progression of cancer. MicroRNAs, the most studied non-coding RNAs subtype, are key controllers in a myriad of cellular processes, including proliferation, differentiation, and apoptosis. Furthermore, the expression of miRNAs is controlled, concomitantly, by other epigenetic factors, such as DNA methylation and histone modifications, resulting in aberrant patterns of expression upon the occurrence of cancer. In this sense, aberrant miRNA landscape evaluation has emerged as a promising strategy for cancer management. In this review, we have focused on the regulation (biogenesis, processing, and dysregulation) of miRNAs and their role as modulators of the epigenetic machinery. We have also highlighted their potential clinical value, such as validated diagnostic and prognostic biomarkers, and their relevant role as chromatin modifiers in cancer therapy.
Collapse
Affiliation(s)
- María J. Pajares
- Biochemistry Area, Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.J.P.); (S.G.)
- IDISNA Navarra’s Health Research Institute, 31008 Pamplona, Spain;
| | - Ester Alemany-Cosme
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 460026 Valencia, Spain; (E.A.-C.); (C.P.-B.)
| | - Saioa Goñi
- Biochemistry Area, Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.J.P.); (S.G.)
| | - Eva Bandres
- IDISNA Navarra’s Health Research Institute, 31008 Pamplona, Spain;
- Immunology Unit, Department of Hematology, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Cora Palanca-Ballester
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 460026 Valencia, Spain; (E.A.-C.); (C.P.-B.)
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 460026 Valencia, Spain; (E.A.-C.); (C.P.-B.)
- Epigenomics Core Facility, Health Research Institute la Fe, 46026 Valencia, Spain
- Correspondence: ; Tel.: +34-961246709
| |
Collapse
|
23
|
Liu CL, Yuan RH, Mao TL. The Molecular Landscape Influencing Prognoses of Epithelial Ovarian Cancer. Biomolecules 2021; 11:998. [PMID: 34356623 PMCID: PMC8301761 DOI: 10.3390/biom11070998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the major increasing lethal malignancies of the gynecological tract, mostly due to delayed diagnosis and chemoresistance, as well as its very heterogeneous genetic makeup. Application of high-throughput molecular technologies, gene expression microarrays, and powerful preclinical models has provided a deeper understanding of the molecular characteristics of EOC. Therefore, molecular markers have become a potent tool in EOC management, including prediction of aggressiveness, prognosis, and recurrence, and identification of novel therapeutic targets. In addition, biomarkers derived from genomic/epigenomic alterations (e.g., gene mutations, copy number aberrations, and DNA methylation) enable targeted treatment of affected signaling pathways in advanced EOC, thereby improving the effectiveness of traditional treatments. This review outlines the molecular landscape and discusses the impacts of biomarkers on the detection, diagnosis, surveillance, and therapeutic targets of EOC. These findings focus on the necessity to translate these potential biomarkers into clinical practice.
Collapse
Affiliation(s)
- Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ray-Hwang Yuan
- Department of Surgery, National Taiwan University Hospital, Taipei 10002, Taiwan;
- Department of Surgery, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Tsui-Lien Mao
- Department of Pathology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
24
|
Shu J, Xiao L, Yan S, Fan B, Zou X, Yang J. Mechanism of MicroRNA-375 Promoter Methylation in Promoting Ovarian Cancer Cell Malignancy. Technol Cancer Res Treat 2021; 20:1533033820980115. [PMID: 33928819 PMCID: PMC8113360 DOI: 10.1177/1533033820980115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Ovarian cancer (OC) ranks one of the most prevalent fatal tumors of female genital organs. Aberrant promoter methylation triggers changes of microRNA (miR)-375 in OC. Our study aimed to evaluate the mechanism of methylated miR-375 promoter region in OC cell malignancy and to seek the possible treatment for OC. Methods: miR-375 promoter methylation level in OC tissues and cells was detected. miR-375 expression in OC tissues and cell lines was compared with that in demethylated cells. Role of miR-375 in OC progression was measured. Dual-luciferase reporter gene assay was utilized to verify the targeting relationship between miR-375 and Yes-associated protein 1 (YAP1). Then, Wnt/β-catenin pathway-related protein expression was tested. Moreover, xenograft transplantation was applied to confirm the in vitro experiments. Results: Highly methylated miR-375 was seen in OC tissues and cell lines, while its expression was decreased as the promoter methylation increased. Demethylation in OC cells brought miR-375 back to normal level, with obviously declined cell invasion, migration and viability and improved apoptosis. Additionally, miR-375 targeted YAP1 to regulate the Wnt/β-catenin pathway protein expression. Overexpressed YAP1 reversed the protein expression, promoted cell invasion, migration and viability while reduced cell apoptosis. Overexpressed miR-375 in vivo inhibited OC progression. Conclusion: Our study demonstrated that demethylated miR-375 inhibited OC growth by targeting YAP1 and downregulating the Wnt/β-catenin pathway. This investigation may offer novel insight for OC treatment.
Collapse
Affiliation(s)
- Junjun Shu
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ling Xiao
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Sanhua Yan
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Boqun Fan
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xia Zou
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jun Yang
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
25
|
Non-Coding RNAs as Biomarkers of Tumor Progression and Metastatic Spread in Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13081839. [PMID: 33921525 PMCID: PMC8069230 DOI: 10.3390/cancers13081839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Despite advances in cancer research in recent years, efficient predictive biomarkers of tumor progression and metastatic spread for ovarian cancer are still missing. Therefore, we critically address recent findings in the field of non-coding RNAs (microRNAs and long non-coding RNAs) and DNA methylation in ovarian cancer patients as promising novel biomarkers of ovarian cancer progression. Abstract Ovarian cancer is one of the most common causes of death among gynecological malignancies. Molecular changes occurring in the primary tumor lead to metastatic spread into the peritoneum and the formation of distant metastases. Identification of these changes helps to reveal the nature of metastases development and decipher early biomarkers of prognosis and disease progression. Comparing differences in gene expression profiles between primary tumors and metastases, together with disclosing their epigenetic regulation, provides interesting associations with progression and metastasizing. Regulatory elements from the non-coding RNA families such as microRNAs and long non-coding RNAs seem to participate in these processes and represent potential molecular biomarkers of patient prognosis. Progress in therapy individualization and its proper targeting also rely upon a better understanding of interactions among the above-listed factors. This review aims to summarize currently available findings of microRNAs and long non-coding RNAs linked with tumor progression and metastatic process in ovarian cancer. These biomolecules provide promising tools for monitoring the patient’s response to treatment, and further they serve as potential therapeutic targets of this deadly disease.
Collapse
|
26
|
Hussen BM, Hidayat HJ, Salihi A, Sabir DK, Taheri M, Ghafouri-Fard S. MicroRNA: A signature for cancer progression. Biomed Pharmacother 2021; 138:111528. [PMID: 33770669 DOI: 10.1016/j.biopha.2021.111528] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that post-transcriptionally control expression of genes by targeting mRNAs. miRNA alterations partake in the establishment and progression of different types of human cancer. Consequently, expression profiling of miRNA in human cancers has correlations with cancer detection, staging, progression, and response to therapies. Particularly, amplification, deletion, abnormal pattern of epigenetic factors and the transcriptional factors that mediate regulation of primary miRNA frequently change the landscape of miRNA expression in cancer. Indeed, changes in the quantity and quality of miRNAs are associated with the initiation of cancer, its progression and metastasis. Additionally, miRNA profiling has been used to categorize genes that can affect oncogenic pathways in cancer. Here, we discuss several circulating miRNA signatures, their expression profiles in different types of cancer and their impacts on cellular processes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Dana K Sabir
- Department of Medical Laboratory Sciences, Charmo University, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Wei L, He Y, Bi S, Li X, Zhang J, Zhang S. miRNA‑199b‑3p suppresses growth and progression of ovarian cancer via the CHK1/E‑cadherin/EMT signaling pathway by targeting ZEB1. Oncol Rep 2021; 45:569-581. [PMID: 33416170 PMCID: PMC7757082 DOI: 10.3892/or.2020.7895] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/01/2020] [Indexed: 11/05/2022] Open
Abstract
Ovarian cancer is one of the most common gynecological malignancies and its pathogenesis and progression are regulated by multiple genes. MicroRNAs (miRNAs) are endogenous non‑coding RNAs that regulate body function by altering post‑transcriptional gene expression. Previous studies have suggested that miRNAs are closely associated with the pathogenesis and progression of several malignancies, including breast cancer, hepatocellular carcinoma and glioma, among others. Therefore, miRNAs are promising novel targets for the diagnosis, treatment and determination of prognostic factors in patients with ovarian cancer. In the present study, the role of miRNA‑133b‑3p in ovarian cancer progression and its possible mechanism of action were investigated. The results demonstrated that the expression of miRNA‑199b‑3p and zinc finger E‑box binding homeobox (ZEB)1 were increased in patients with ovarian cancer. The overall survival (OS) and disease‑free survival (DFS) of patients with ovarian cancer and high miRNA‑199b‑3p expression were prolonged compared with those of patients with low miRNA‑199b‑3p expression. Additionally, the OS and DFS of patients with ovarian cancer and low ZEB1 expression were longer compared with those of patients with high ZEB1 expression. Furthermore, miRNA‑199b‑3p overexpression reduced cell proliferation and promoted apoptosis in an in vitro model of ovarian cancer. miRNA‑199b‑3p overexpression also suppressed ZEB1 and checkpoint kinase 1 expression and induced E‑cadherin expression and epithelial‑to‑mesenchymal transition in this model. Furthermore, the effects of miRNA‑199b‑3p‑mediated apoptosis and migration were attenuated by ZEB1 and E‑cadherin, respectively. The results of the present study indicated that miRNA‑199b‑3p suppressed ovarian cancer progression by targeting ZEB1, which may represent a promising therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Liqun Wei
- Department of Gynecology and Obstetrics, Weihai Municipal Hospital, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Yuanqi He
- Department of Gynecology and Obstetrics, Weihai Municipal Hospital, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Shuhong Bi
- Department of Gynecology and Obstetrics, Weihai Municipal Hospital, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Xiaoxiao Li
- Department of Gynecology and Obstetrics, Weihai Municipal Hospital, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Jianzhong Zhang
- Department of Gynecology and Obstetrics, Weihai Municipal Hospital, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Shihong Zhang
- Department of Gynecology and Obstetrics, Weihai Municipal Hospital, Shandong University, Weihai, Shandong 264200, P.R. China
- Department of Gynecology and Obstetrics, Affiliated Hospital of Beihua University, Jilin, Jilin 132001, P.R. China
| |
Collapse
|
28
|
Kushlinskii NE, Loginov VI, Utkin DO, Filippova EA, Burdennyy AM, Korotkova EA, Pronina IV, Lukina SS, Smirnova AV, Gershtein ES, Braga EA. Novel miRNAs as Potential Regulators of PD-1/PD-L1 Immune Checkpoint, and Prognostic Value of MIR9-1 and MIR124-2 Methylation in Ovarian Cancer. Mol Biol 2021. [DOI: 10.1134/s0026893320060072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
LncRNAs in Ovarian Cancer Progression, Metastasis, and Main Pathways: ceRNA and Alternative Mechanisms. Int J Mol Sci 2020; 21:ijms21228855. [PMID: 33238475 PMCID: PMC7700431 DOI: 10.3390/ijms21228855] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OvCa) develops asymptomatically until it reaches the advanced stages with metastasis, chemoresistance, and poor prognosis. Our review focuses on the analysis of regulatory long non-coding RNAs (lncRNAs) competing with protein-coding mRNAs for binding to miRNAs according to the model of competitive endogenous RNA (ceRNA) in OvCa. Analysis of publications showed that most lncRNAs acting as ceRNAs participate in OvCa progression: migration, invasion, epithelial-mesenchymal transition (EMT), and metastasis. More than 30 lncRNAs turned out to be predictors of survival and/or response to therapy in patients with OvCa. For a number of oncogenic (CCAT1, HOTAIR, NEAT1, and TUG1 among others) and some suppressive lncRNAs, several lncRNA/miRNA/mRNA axes were identified, which revealed various functions for each of them. Our review also considers examples of alternative mechanisms of actions for lncRNAs besides being ceRNAs, including binding directly to mRNA or protein, and some of them (DANCR, GAS5, MALAT1, and UCA1 among others) act by both mechanisms depending on the target protein. A systematic analysis based on the data from literature and Panther or KEGG (Kyoto Encyclopedia of Genes and Genomes) databases showed that a significant part of lncRNAs affects the key pathways involved in OvCa metastasis, EMT, and chemoresistance.
Collapse
|
30
|
Kumar V, Gupta S, Varma K, Sachan M. MicroRNA as Biomarker in Ovarian Cancer Management: Advantages and Challenges. DNA Cell Biol 2020; 39:2103-2124. [PMID: 33156705 DOI: 10.1089/dna.2020.6024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the most prevalent gynecological malignancy affecting women throughout the globe. Ovarian cancer has several subtypes, including epithelial ovarian cancer (EOC) with a whopping incidence rate of 239,000 per year, making it the sixth most common gynecological malignancy worldwide. Despite advancement of detection and therapeutics, death rate accounts for 152,000 per annum. Several protein-based biomarkers such as CA125 and HE4 are currently being used for diagnosis, but their sensitivity and specificity for early detection of ovarian cancer are under question. MicroRNA (a small noncoding RNA molecule that participates in post-transcription regulation of gene expression) and its functional deregulation in most cancers have been discovered in the previous two decades. Studies support that miRNA deregulation has an epigenetic component as well. Aberrant miRNA expression is often correlated with the form of EOC tumor, histological grade, prognosis, and FIGO stage. In this review, we addressed epigenetic regulation of miRNAs, the latest research on miRs as a biomarker in the detection of EOC, and tailored assays to use miRNAs as a biomarker in ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Kachnar Varma
- Department of Pathology, Motilal Nehru Medical College, Allahabad, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
31
|
Nguyen VHL, Yue C, Du KY, Salem M, O’Brien J, Peng C. The Role of microRNAs in Epithelial Ovarian Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21197093. [PMID: 32993038 PMCID: PMC7583982 DOI: 10.3390/ijms21197093] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological cancer, and the major cause of death is mainly attributed to metastasis. MicroRNAs (miRNAs) are a group of small non-coding RNAs that exert important regulatory functions in many biological processes through their effects on regulating gene expression. In most cases, miRNAs interact with the 3′ UTRs of target mRNAs to induce their degradation and suppress their translation. Aberrant expression of miRNAs has been detected in EOC tumors and/or the biological fluids of EOC patients. Such dysregulation occurs as the result of alterations in DNA copy numbers, epigenetic regulation, and miRNA biogenesis. Many studies have demonstrated that miRNAs can promote or suppress events related to EOC metastasis, such as cell migration, invasion, epithelial-to-mesenchymal transition, and interaction with the tumor microenvironment. In this review, we provide a brief overview of miRNA biogenesis and highlight some key events and regulations related to EOC metastasis. We summarize current knowledge on how miRNAs are dysregulated, focusing on those that have been reported to regulate metastasis. Furthermore, we discuss the role of miRNAs in promoting and inhibiting EOC metastasis. Finally, we point out some limitations of current findings and suggest future research directions in the field.
Collapse
Affiliation(s)
- Vu Hong Loan Nguyen
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chenyang Yue
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Kevin Y. Du
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Mohamed Salem
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Jacob O’Brien
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chun Peng
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
- Centre for Research in Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada
- Correspondence:
| |
Collapse
|
32
|
Liu CH, Jing XN, Liu XL, Qin SY, Liu MW, Hou CH. Tumor-suppressor miRNA-27b-5p regulates the growth and metastatic behaviors of ovarian carcinoma cells by targeting CXCL1. J Ovarian Res 2020; 13:92. [PMID: 32782028 PMCID: PMC7418439 DOI: 10.1186/s13048-020-00697-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background MicroRNAs (miRNAs) play crucial functions in the progression of ovarian cancer. MicroRNA-27b-5p (miR-27b-5p) has been identified as a cancer-associated miRNA. Nevertheless, the expression profile of miR-27b-5p and its functions in ovarian cancer are unexplored. Methods qRT-PCR and western blot analysis were used to detect the levels of miR-27b-5p and C-X-C motif chemokine ligand 1 (CXCL1). The impact of miR-27b-5p on ovarian cancer cells proliferation, migration and invasion in vitro were investigated using Cell Counting Kit-8 (CCK8), wound healing and Transwell, respectively. The expression of matrix metalloprotein-2/9 (MMP-2/9) were measured using immunofluorescence staining. Bioinformatics and luciferase reporter analysis were used to predict the target of miR-27b-5p. The growth of ovarian cancer cells in vivo was evaluated using transplanted tumor model. Results Here, we demonstrated that miR-27b-5p was downregulated in ovarian carcinoma cells and clinical specimens. Higher expression of miR-27b-5p was associated with an unfavorable overall survival in patients with ovarian cancer. Upregulation of miR-27b-5p decreased the viability, migration ability and invasion capacity of SKOV3 and OVCAR3 cell. MiR-27b-5p also inhibited the growth of SKOV3 cell in nude mice. Additionally, we verified that CXCL1 was a target of miR-27b-5p in ovarian carcinoma cells. Restoring the expression of CXCL1 abolished the inhibitory impacts of miR-27b-5p in ovarian cancer carcinoma cells. Conclusion This research revealed that miR-27b-5p restrained the progression of ovarian carcinoma possibly via targeting CXCL1.
Collapse
Affiliation(s)
- Chun Hua Liu
- Obstetrics Department, Jiaozhou Central Hospital of Qingdao, Jiaozhou, Shandong, China
| | - Xue Ning Jing
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Xiao Lan Liu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Shan Yong Qin
- School Hospital, Shandong Women's University, Jinan, Shandong, China
| | - Min Wei Liu
- School Hospital, Shandong Women's University, Jinan, Shandong, China
| | - Chun Hong Hou
- Gynecology Ward, Heze Municipal Hospital, No. 2888 Caozhou Road, Heze, 274031, Shandong, China.
| |
Collapse
|
33
|
Kushlinskii NE, Utkin DO, Loginov VI, Filippova EA, Burdennyy AM, Kushlinsky DN, Pronina IV, Braga EA. [Clinical significance of methylation of a group of miRNA genes in patients with ovarian cancer.]. Klin Lab Diagn 2020; 65:321-327. [PMID: 32298550 DOI: 10.18821/0869-2084-2020-65-5-321-327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 02/05/2023]
Abstract
It was found that the proportion of microRNA genes inactivated by methylation of regulatory CpG islands is several times higher than the genes encoding proteins, which increases their attractiveness as promising markers of cancer. The aim of this work is to evaluate the clinical significance of methylation of 13 tumor-associated microRNA genes (MIR-124a-2, MIR-124a-3, MIR-125-B1, MIR-127, MIR-129-2, MIR-132, MIR-137, MIR-203a, MIR-34b/c, MIR-375, MIR-9-1, MIR-9-3, MIR-339) in 26 patients with ovarian cancer. Methylation level was evaluated by the method of methylation-specific PCR in real time. The data obtained in primary tumors (26), histologically unchanged ovarian tissues (15) and peritoneal metastases (19) were compared using a number of statistical programs. For all 13 genes, an increase in the level of methylation was revealed during the transition from unchanged tissue to primary tumors and further from primary tumors to peritoneal metastases; moreover, in the genes MIR-203a, MIR-375 and MIR-339, the level of methylation in metastases increased most significantly (in 2 and more times). A correlation was observed for the first time, showing a consistency between the increase in methylation level in some miRNA pairs, for example, MIR-129-2/MIR-132 (rs> 0,7; p<0,0001), both in primary tumors and in metastases. An analysis of microRNA gene methylation in clinical samples of ovarian cancer showed a correlation between the observed molecular changes both with the initial stages of tumor formation and with the progression and dissemination of ovarian cancer, with the presence of metastases in a large omentum and with the appearance of ascites. The revealed dependencies deepen the understanding of the mechanism of peritoneal metastasis and can be used to select new diagnostic and prognostic markers of ovarian cancer.
Collapse
Affiliation(s)
- N E Kushlinskii
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russian Federation
| | - D O Utkin
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russian Federation
| | - V I Loginov
- The Institute of General Pathology and Pathophysiology of the Ministry of Science and Higher Education of the Russian Federation, Moscow, 125315, Russian Federation
| | - E A Filippova
- The Institute of General Pathology and Pathophysiology of the Ministry of Science and Higher Education of the Russian Federation, Moscow, 125315, Russian Federation
| | - A M Burdennyy
- The Institute of General Pathology and Pathophysiology of the Ministry of Science and Higher Education of the Russian Federation, Moscow, 125315, Russian Federation
| | - D N Kushlinsky
- A.F. Tsyb Medical Radiological Scientific Center - branch of the Federal State Budgetary Institution «National Medical Research Center of Radiology» of the Ministry of Health of the Russian Federation, Obninsk, 249036, Russian Federation
| | - I V Pronina
- The Institute of General Pathology and Pathophysiology of the Ministry of Science and Higher Education of the Russian Federation, Moscow, 125315, Russian Federation
| | - E A Braga
- The Institute of General Pathology and Pathophysiology of the Ministry of Science and Higher Education of the Russian Federation, Moscow, 125315, Russian Federation
| |
Collapse
|
34
|
Singh A, Gupta S, Sachan M. Epigenetic Biomarkers in the Management of Ovarian Cancer: Current Prospectives. Front Cell Dev Biol 2019; 7:182. [PMID: 31608277 PMCID: PMC6761254 DOI: 10.3389/fcell.2019.00182] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) causes significant morbidity and mortality as neither detection nor screening of OC is currently feasible at an early stage. Difficulty to promptly diagnose OC in its early stage remains challenging due to non-specific symptoms in the early-stage of the disease, their presentation at an advanced stage and poor survival. Therefore, improved detection methods are urgently needed. In this article, we summarize the potential clinical utility of epigenetic signatures like DNA methylation, histone modifications, and microRNA dysregulation, which play important role in ovarian carcinogenesis and discuss its application in development of diagnostic, prognostic, and predictive biomarkers. Molecular characterization of epigenetic modification (methylation) in circulating cell free tumor DNA in body fluids offers novel, non-invasive approach for identification of potential promising cancer biomarkers, which can be performed at multiple time points and probably better reflects the prevailing molecular profile of cancer. Current status of epigenetic research in diagnosis of early OC and its management are discussed here with main focus on potential diagnostic biomarkers in tissue and body fluids. Rapid and point of care diagnostic applications of DNA methylation in liquid biopsy has been precluded as a result of cumbersome sample preparation with complicated conventional methods of isolation. New technologies which allow rapid identification of methylation signatures directly from blood will facilitate sample-to answer solutions thereby enabling next-generation point of care molecular diagnostics. To date, not a single epigenetic biomarker which could accurately detect ovarian cancer at an early stage in either tissue or body fluid has been reported. Taken together, the methodological drawbacks, heterogeneity associated with ovarian cancer and non-validation of the clinical utility of reported potential biomarkers in larger ovarian cancer populations has impeded the transition of epigenetic biomarkers from lab to clinical settings. Until addressed, clinical implementation as a diagnostic measure is a far way to go.
Collapse
Affiliation(s)
- Alka Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
35
|
Wang J, Li C, Xu L, Yang C, Zhang X. MiR-1193 was sponged by LINC00963 and inhibited cutaneous squamous cell carcinoma progression by targeting SOX4. Pathol Res Pract 2019; 215:152600. [PMID: 31477326 DOI: 10.1016/j.prp.2019.152600] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022]
Abstract
Cutaneous squamous cell carcinoma (CSCC), a class of skin tumor derived from epidermal keratinocyte, is reputed as one of the most malignant tumors globally. MicroRNAs (miRNAs) are increasingly identified as essential players in CSCC. Current study aimed to uncover the impact and mechanism of miR-1193 in CSCC. We identified the low expression of miR-1193 in CSCC cell lines. Gain- and loss-of-function assays showed that miR-1193 acted as an inhibitor of proliferation and migration in CSCC cells. Furthermore, we illustrated that miR-1193 targeted and inhibited SRY-box 4 (SOX4), and that long intergenic non-protein coding RNA 963 (LINC00963) sponged miR-1193 to upregulate SOX4 expression. Rescue assays showed that LINC00963 regulated CSCC progression through miR-1193/SOX4 axis. In conclusion, our study firstly revealed the LINC00963/miR-1193/SOX4 axis in CSCC, indicating miR-1193 as a promising biological target in CSCC progression.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Dermatology, the Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, 230601, China
| | - Chao Li
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei, Anhui, 230011, China
| | - Lifa Xu
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - ChunJun Yang
- Department of Dermatology, the Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Xuejun Zhang
- Institute and Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
36
|
Filippova EA, Loginov VI, Pronina IV, Khodyrev DS, Burdennyy AM, Kazubskaya TP, Braga EA. A Group of Hypermethylated miRNA Genes in Breast Cancer and Their Diagnostic Potential. Mol Biol 2019. [DOI: 10.1134/s0026893319030051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Hypermethylated Genes of MicroRNA in Ovarian Carcinoma: Metastasis Prediction Marker Systems. Bull Exp Biol Med 2019; 167:79-83. [DOI: 10.1007/s10517-019-04465-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 12/21/2022]
|
38
|
Braga EA, Fridman MV, Loginov VI, Dmitriev AA, Morozov SG. Molecular Mechanisms in Clear Cell Renal Cell Carcinoma: Role of miRNAs and Hypermethylated miRNA Genes in Crucial Oncogenic Pathways and Processes. Front Genet 2019; 10:320. [PMID: 31110513 PMCID: PMC6499217 DOI: 10.3389/fgene.2019.00320] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the third most common urological cancer, and it has the highest mortality rate. The increasing drug resistance of metastatic ccRCC has resulted in the search for new biomarkers. Epigenetic regulatory mechanisms, such as genome-wide DNA methylation and inhibition of protein translation by interaction of microRNA (miRNA) with its target messenger RNA (mRNA), are deeply involved in the pathogenesis of human cancers, including ccRCC, and may be used in its diagnosis and prognosis. Here, we review oncogenic and oncosuppressive miRNAs, their putative target genes, and the crucial pathways they are involved in. The contradictory behavior of a number of miRNAs, such as suppressive and anti-metastatic miRNAs with oncogenic potential (for example, miR-99a, miR-106a, miR-125b, miR-144, miR-203, miR-378), is examined. miRNAs that contribute mostly to important pathways and processes in ccRCC, for instance, PI3K/AKT/mTOR, Wnt-β, histone modification, and chromatin remodeling, are discussed in detail. We also separately consider their participation in crucial oncogenic processes, such as hypoxia and angiogenesis, metastasis, and epithelial-mesenchymal transition (EMT). The review also considers the interactions of long non-coding RNAs (lncRNAs) and miRNAs of significance in ccRCC. Recent advances in the understanding of the role of hypermethylated miRNA genes in ccRCC and their usefulness as biomarkers are reviewed based on our own data and those available in the literature. Finally, new data and perspectives concerning the clinical applications of miRNAs in the diagnosis, prognosis, and treatment of ccRCC are discussed.
Collapse
Affiliation(s)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Center of Medical Genetics, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
39
|
Sato H, Soh J, Aoe K, Fujimoto N, Tanaka S, Namba K, Torigoe H, Shien K, Yamamoto H, Tomida S, Tao H, Okabe K, Kishimoto T, Toyooka S. Droplet digital PCR as a novel system for the detection of microRNA‑34b/c methylation in circulating DNA in malignant pleural mesothelioma. Int J Oncol 2019; 54:2139-2148. [PMID: 30942424 DOI: 10.3892/ijo.2019.4768] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/08/2019] [Indexed: 11/06/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare malignancy arising from the pleura that is difficult to diagnose, contributing to its dismal prognosis. Previously, we reported that the degree of microRNA (miR)‑34b/c methylation in circulating DNA is associated with the development of MPM. Herein, we present a newly developed droplet digital PCR (ddPCR)‑based assay for the detection of miR‑34b/c methylation in circulating DNA in patients with MPM. We originally prepared two probes within a short amplicon of 60 bp, designing one from the positive strand and the other from the complementary strand. The two probes functioned cooperatively, and our established assay detected DNA methylation accurately in the preliminary validation. We subsequently verified this assay using clinical samples. Serum samples from 35 cases of MPM, 29 cases of pleural plaque and 10 healthy volunteers were collected from 3 different institutions and used in this study. We divided the samples into 2 groups (group A, n=33; group B, n=41). A receiver‑operating characteristic curve analysis using the samples in group A determined the optimal cut‑off value for the diagnosis of MPM, with a sensitivity of 76.9% and a specificity of 90%. On the other hand, the use of the same criterion yielded a sensitivity of 59.1% and a specificity of 100% in group B, and corresponding values of 65.7 and 94.9% for the entire cohort, indicating a moderate sensitivity and a high specificity. In addition, when the analysis was focused on stage II or more advanced MPM, the sensitivity improved to 81.8%, suggesting the possibility that the methylated allele frequency in MPM may be associated with the stage of disease progression. On the whole, the findings of this study indicate that miR‑34b/c methylation in circulating DNA is a promising biomarker for the prediction of disease progression in patients with MPM.
Collapse
Affiliation(s)
- Hiroki Sato
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Junichi Soh
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Keisuke Aoe
- Department of Medical Oncology, National Hospital Organization, Yamaguchi‑Ube Medical Center, Ube, Yamaguchi 755‑0241, Japan
| | - Nobukazu Fujimoto
- Department of Respiratory Medicine, Okayama Rosai Hospital, Okayama 702‑8055, Japan
| | - Shin Tanaka
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Kei Namba
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Hidejiro Torigoe
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Shuta Tomida
- Department of Bioinformatics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Hiroyuki Tao
- Department of Clinical Research, National Hospital Organization, Yamaguchi‑Ube Medical Center, Ube, Yamaguchi 755‑0241, Japan
| | - Kazunori Okabe
- Department of Clinical Research, National Hospital Organization, Yamaguchi‑Ube Medical Center, Ube, Yamaguchi 755‑0241, Japan
| | - Takumi Kishimoto
- Department of Respiratory Medicine, Okayama Rosai Hospital, Okayama 702‑8055, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| |
Collapse
|
40
|
Song H, Shi L, Xu Y, Xu T, Fan R, Cao M, Xu W, Song J. BRD4 promotes the stemness of gastric cancer cells via attenuating miR-216a-3p-mediated inhibition of Wnt/β-catenin signaling. Eur J Pharmacol 2019; 852:189-197. [PMID: 30876979 DOI: 10.1016/j.ejphar.2019.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 02/02/2023]
Abstract
The bromodomain and extra-terminal domain (BET) protein BRD4 is emerging as a potential target for cancer therapy. However, BRD4 roles in regulating the stemness of gastric cancer cells are unclear. Here, we demonstrated that BRD4 expression was significantly increased in gastric cancer tissues, cell spheroids, and BRD4 knockdown attenuated the stemness of gastric cancer cells characterized as the decrease of stemness markers expression, capacity of cells spheroids formation and ALDH1 activity. Importantly, BRD4 expression was negatively correlated with overall survival, first progression survival and post progression survival of gastric cancer patients. Mechanistic investigations revealed that miR-216a-3p was the most remarkably upregulated miRNA in response to BRD4 knockdown and Wnt/β-catenin signaling was necessary for BRD4-mediated promotion on the stemness of gastric cancer cells. Additionally, BRD4 directly bound to the promoter and promoted the methylation level of MIR216A promoter, thus decreasing miR-216a-3p level. Notably, Wnt3a was identified as the direct target of miR-216a-3p in gastric cancer cells. Therefore, our results defined a BRD4/miR-216a-3p/Wnt/β-catenin pathway in regulating the stemness of gastric cancer cells.
Collapse
Affiliation(s)
- Hu Song
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China
| | - Linseng Shi
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China
| | - Yixin Xu
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China
| | - Teng Xu
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China
| | - Ruizhi Fan
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China
| | - Meng Cao
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China
| | - Wei Xu
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China
| | - Jun Song
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China.
| |
Collapse
|
41
|
Gong ZH, Zhou F, Shi C, Xiang T, Zhou CK, Wang QQ, Jiang YS, Gao SF. miRNA-221 promotes cutaneous squamous cell carcinoma progression by targeting PTEN. Cell Mol Biol Lett 2019; 24:9. [PMID: 30891072 PMCID: PMC6407258 DOI: 10.1186/s11658-018-0131-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/07/2018] [Indexed: 01/07/2023] Open
Abstract
Background Cutaneous squamous cell carcinoma (CSCC) is a common type of skin malignancy. MicroRNA-221 (miRNA-221) is a critical non-coding RNA in tumor initiation and progression. However, the molecular mechanisms of miRNA-221 in the development of CSCC remain unknown. This study investigated the expression of miRNA-221 in CSCC and its potential tumor biological functions. Methods MTT assay, colony assay, PCR, and Western blot were adopted. Results In this study, miRNA-221 expression was significantly higher in CSCC tissues and cell lines than in normal tissues and cells (P < 0.05). Further functional experiments indicated that miRNA-221 knockdown inhibited the proliferation and cell cycle, while upregulation of miRNA-221 presented the opposite role. The dual reporter gene assays indicated that PTEN is a direct target gene of miRNA-221. PTEN protein or mRNA levels were decreased after the cells were transfected with miR-221 mimics. Conclusions Taken together, the obtained results indicated that miR-221 plays an oncogenic function in CSCC by targeting PTEN and further suggest that miR-221 may be a potential target for CSCC diagnosis and treatment.
Collapse
Affiliation(s)
- Zhen-Hua Gong
- Department of Burn and Plastic Surgery, The First People's Hospital of Nantong, Nantong, 226001 China
| | - Feng Zhou
- Department of Clinical Laboratory, The First People's Hospital of Nantong, Nantong, 226001 China
| | - Chao Shi
- Department of Pathology, The First People's Hospital of Nantong, Nantong, 226001 China
| | - Tie Xiang
- Department of Burn and Plastic Surgery, The First People's Hospital of Nantong, Nantong, 226001 China
| | - Chang-Kai Zhou
- Department of Burn and Plastic Surgery, The First People's Hospital of Nantong, Nantong, 226001 China
| | - Qian-Qian Wang
- Department of Burn and Plastic Surgery, The First People's Hospital of Nantong, Nantong, 226001 China
| | - Ya-Su Jiang
- Department of Burn and Plastic Surgery, The First People's Hospital of Nantong, Nantong, 226001 China
| | - Sheng-Feng Gao
- Department of Burn and Plastic Surgery, The First People's Hospital of Nantong, Nantong, 226001 China
| |
Collapse
|
42
|
Bo H, Cao K, Tang R, Zhang H, Gong Z, Liu Z, Liu J, Li J, Fan L. A network-based approach to identify DNA methylation and its involved molecular pathways in testicular germ cell tumors. J Cancer 2019; 10:893-902. [PMID: 30854095 PMCID: PMC6400810 DOI: 10.7150/jca.27491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Testicular germ cell tumors (TGCT) is the most common testicular malignancy threaten young male reproductive health. This study aimed to identify aberrantly methylated-differentially expressed genes and pathways in TGCT by comprehensive bioinformatics analysis. Methods: Data of gene expression microarrays (GSE3218, GSE18155) and gene methylation microarrays (GSE72444) were collected from GEO database. Integrated analysis acquired aberrantly methylated-genes. Functional and pathway enrichment analysis were performed using DAVID database. Protein-protein interaction (PPI) network was constructed by STRING and App Mcode was used for module analysis. GEPIA platform and DiseaseMeth database were used for confirming the expression and methylation levels of hub genes. Finally, Human Protein Atlas database was performed to evaluate the prognostic significance. Results: Totally 604 hypomethylation-high expression and 147 hypermethylation-low genes were identified. The high expressed genes were enriched in biological processes of cell proliferation and migration. The top 8 hub genes of PPI network were GAPDH, VEGFA, PTPRC, RIPK4, MMP9, CSF1R, KRAS and FN1. After validation in GEPIA platform, all hub genes were elevated in TGCT tissues. Only MMP9, CSF1R and PTPRC showed hypomethylation-high expression status, which predicted the poor outcome of TGCT patients. Conclusion: Our study indicated possible aberrantly methylated-differentially expressed genes and pathways in TGCT by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of TGCT.
Collapse
Affiliation(s)
- Hao Bo
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruiling Tang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Han Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhizhong Liu
- Hunan Cancer Hospital and The Affliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingjing Li
- Department of Plastic Surgery of Third Xiangya Hospital, Central South University, Changsha, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
43
|
Identification of key genes and construction of microRNA-mRNA regulatory networks in non-small cell lung cancer. Cancer Genet 2018; 228-229:47-54. [DOI: 10.1016/j.cancergen.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022]
|
44
|
Zhang Y, Zhang W, Wang H, Yang B. miR-21 Contributes to Human Amniotic Membrane-Derived Mesenchymal Stem Cell Growth and Human Amniotic Membrane-Derived Mesenchymal Stem Cell-Induced Immunoregulation. Genet Test Mol Biomarkers 2018; 22:665-673. [PMID: 30481073 DOI: 10.1089/gtmb.2018.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Wenjin Zhang
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, PR China
| | - Huancheng Wang
- Department of Blood Transfusion, The First People's Hospital of Nanyang, Nanyang, PR China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
45
|
Loss of DNA methylation is related to increased expression of miR-21 and miR-146b in papillary thyroid carcinoma. Clin Epigenetics 2018; 10:144. [PMID: 30454026 PMCID: PMC6245861 DOI: 10.1186/s13148-018-0579-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Background DNA methylation in miRNA genes has been reported as a mechanism that may cause dysregulation of mature miRNAs and consequently impact the gene expression. This mechanism is largely unstudied in papillary thyroid carcinomas (PTC). Methods To identify differentially methylated miRNA-encoding genes, we performed global methylation analysis (Illumina 450 K), integrative analysis (TCGA database), data confirmation (pyrosequencing and RT-qPCR), and functional assays. Results Methylation analysis revealed 27 differentially methylated miRNA genes. The integrative analyses pointed out miR-21 and miR-146b as potentially regulated by methylation (hypomethylation and increased expression). DNA methylation and expression patterns of miR-21 and miR-146b were confirmed as altered, as well as seven of 452 mRNAs targets were down-expressed. The combined methylation and expression levels of miR-21 and miR-146b showed potential to discriminate malignant from benign lesions (91–96% sensitivity and 96–97% specificity). An increased expression of miR-146b due to methylation loss was detected in the TPC1 cell line. The miRNA mimic transfection highlighted putative target mRNAs. Conclusions The increased expression of miR-21 and miR-146b due to loss of DNA methylation in PTC resulted in the disruption of the transcription machinery and biological pathways. These miRNAs are potential diagnostic biomarkers, and these findings provide support for future development of targeted therapies. Electronic supplementary material The online version of this article (10.1186/s13148-018-0579-8) contains supplementary material, which is available to authorized users.
Collapse
|