1
|
Gable SM, Bushroe NA, Mendez JM, Wilson A, Pinto BJ, Gamble T, Tollis M. Differential Conservation and Loss of Chicken Repeat 1 (CR1) Retrotransposons in Squamates Reveal Lineage-Specific Genome Dynamics Across Reptiles. Genome Biol Evol 2024; 16:evae157. [PMID: 39031594 PMCID: PMC11303007 DOI: 10.1093/gbe/evae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/22/2024] Open
Abstract
Transposable elements (TEs) are repetitive DNA sequences which create mutations and generate genetic diversity across the tree of life. In amniote vertebrates, TEs have been mainly studied in mammals and birds, whose genomes generally display low TE diversity. Squamates (Order Squamata; including ∼11,000 extant species of lizards and snakes) show as much variation in TE abundance and activity as they do in species and phenotypes. Despite this high TE activity, squamate genomes are remarkably uniform in size. We hypothesize that novel, lineage-specific genome dynamics have evolved over the course of squamate evolution. To understand the interplay between TEs and host genomes, we analyzed the evolutionary history of the chicken repeat 1 (CR1) retrotransposon, a TE family found in most tetrapod genomes which is the dominant TE in most reptiles. We compared 113 squamate genomes to the genomes of turtles, crocodilians, and birds and used ancestral state reconstruction to identify shifts in the rate of CR1 copy number evolution across reptiles. We analyzed the repeat landscapes of CR1 in squamate genomes and determined that shifts in the rate of CR1 copy number evolution are associated with lineage-specific variation in CR1 activity. We then used phylogenetic reconstruction of CR1 subfamilies across amniotes to reveal both recent and ancient CR1 subclades across the squamate tree of life. The patterns of CR1 evolution in squamates contrast other amniotes, suggesting key differences in how TEs interact with different host genomes and at different points across evolutionary history.
Collapse
Affiliation(s)
- Simone M Gable
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Nicholas A Bushroe
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Jasmine M Mendez
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Adam Wilson
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Brendan J Pinto
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, USA
| | - Tony Gamble
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, USA
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
- Bell Museum of Natural History, University of Minnesota, St. Paul, MN, USA
| | - Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
2
|
Osakabe A, Takizawa Y, Horikoshi N, Hatazawa S, Negishi L, Sato S, Berger F, Kakutani T, Kurumizaka H. Molecular and structural basis of the chromatin remodeling activity by Arabidopsis DDM1. Nat Commun 2024; 15:5187. [PMID: 38992002 PMCID: PMC11239853 DOI: 10.1038/s41467-024-49465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
The histone H2A variant H2A.W occupies transposons and thus prevents access to them in Arabidopsis thaliana. H2A.W is deposited by the chromatin remodeler DDM1, which also promotes the accessibility of chromatin writers to heterochromatin by an unknown mechanism. To shed light on this question, we solve the cryo-EM structures of nucleosomes containing H2A and H2A.W, and the DDM1-H2A.W nucleosome complex. These structures show that the DNA end flexibility of the H2A nucleosome is higher than that of the H2A.W nucleosome. In the DDM1-H2A.W nucleosome complex, DDM1 binds to the N-terminal tail of H4 and the nucleosomal DNA and increases the DNA end flexibility of H2A.W nucleosomes. Based on these biochemical and structural results, we propose that DDM1 counters the low accessibility caused by nucleosomes containing H2A.W to enable the maintenance of repressive epigenetic marks on transposons and prevent their activity.
Collapse
Affiliation(s)
- Akihisa Osakabe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan.
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Horikoshi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Suguru Hatazawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Shoko Sato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Hitoshi Kurumizaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Horvath R, Minadakis N, Bourgeois Y, Roulin AC. The evolution of transposable elements in Brachypodium distachyon is governed by purifying selection, while neutral and adaptive processes play a minor role. eLife 2024; 12:RP93284. [PMID: 38606833 PMCID: PMC11014726 DOI: 10.7554/elife.93284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Understanding how plants adapt to changing environments and the potential contribution of transposable elements (TEs) to this process is a key question in evolutionary genomics. While TEs have recently been put forward as active players in the context of adaptation, few studies have thoroughly investigated their precise role in plant evolution. Here, we used the wild Mediterranean grass Brachypodium distachyon as a model species to identify and quantify the forces acting on TEs during the adaptation of this species to various conditions, across its entire geographic range. Using sequencing data from more than 320 natural B. distachyon accessions and a suite of population genomics approaches, we reveal that putatively adaptive TE polymorphisms are rare in wild B. distachyon populations. After accounting for changes in past TE activity, we show that only a small proportion of TE polymorphisms evolved neutrally (<10%), while the vast majority of them are under moderate purifying selection regardless of their distance to genes. TE polymorphisms should not be ignored when conducting evolutionary studies, as they can be linked to adaptation. However, our study clearly shows that while they have a large potential to cause phenotypic variation in B. distachyon, they are not favored during evolution and adaptation over other types of mutations (such as point mutations) in this species.
Collapse
Affiliation(s)
- Robert Horvath
- Department of Plant and Microbial Biology, University of ZurichZurichSwitzerland
| | - Nikolaos Minadakis
- Department of Plant and Microbial Biology, University of ZurichZurichSwitzerland
| | - Yann Bourgeois
- DIADE, University of Montpellier, CIRAD, IRDMontpellierFrance
- University of PortsmouthPortsmouthUnited Kingdom
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of ZurichZurichSwitzerland
| |
Collapse
|
4
|
Gable SM, Bushroe N, Mendez J, Wilson A, Pinto B, Gamble T, Tollis M. Differential Conservation and Loss of CR1 Retrotransposons in Squamates Reveals Lineage-Specific Genome Dynamics across Reptiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579686. [PMID: 38405926 PMCID: PMC10888918 DOI: 10.1101/2024.02.09.579686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Transposable elements (TEs) are repetitive DNA sequences which create mutations and generate genetic diversity across the tree of life. In amniotic vertebrates, TEs have been mainly studied in mammals and birds, whose genomes generally display low TE diversity. Squamates (Order Squamata; ~11,000 extant species of lizards and snakes) show as much variation in TE abundance and activity as they do in species and phenotypes. Despite this high TE activity, squamate genomes are remarkably uniform in size. We hypothesize that novel, lineage-specific dynamics have evolved over the course of squamate evolution to constrain genome size across the order. Thus, squamates may represent a prime model for investigations into TE diversity and evolution. To understand the interplay between TEs and host genomes, we analyzed the evolutionary history of the CR1 retrotransposon, a TE family found in most tetrapod genomes. We compared 113 squamate genomes to the genomes of turtles, crocodilians, and birds, and used ancestral state reconstruction to identify shifts in the rate of CR1 copy number evolution across reptiles. We analyzed the repeat landscapes of CR1 in squamate genomes and determined that shifts in the rate of CR1 copy number evolution are associated with lineage-specific variation in CR1 activity. We then used phylogenetic reconstruction of CR1 subfamilies across amniotes to reveal both recent and ancient CR1 subclades across the squamate tree of life. The patterns of CR1 evolution in squamates contrast other amniotes, suggesting key differences in how TEs interact with different host genomes and at different points across evolutionary history.
Collapse
Affiliation(s)
- Simone M. Gable
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Nicholas Bushroe
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Jasmine Mendez
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Adam Wilson
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Brendan Pinto
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, USA
| | - Tony Gamble
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, USA
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
- Bell Museum of Natural History, University of Minnesota, St. Paul, MN, USA
| | - Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
5
|
Zhao P, Gu L, Gao Y, Pan Z, Liu L, Li X, Zhou H, Yu D, Han X, Qian L, Liu GE, Fang L, Wang Z. Young SINEs in pig genomes impact gene regulation, genetic diversity, and complex traits. Commun Biol 2023; 6:894. [PMID: 37652983 PMCID: PMC10471783 DOI: 10.1038/s42003-023-05234-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
Transposable elements (TEs) are a major source of genetic polymorphisms and play a role in chromatin architecture, gene regulatory networks, and genomic evolution. However, their functional role in pigs and contributions to complex traits are largely unknown. We created a catalog of TEs (n = 3,087,929) in pigs and found that young SINEs were predominantly silenced by histone modifications, DNA methylation, and decreased accessibility. However, some transcripts from active young SINEs showed high tissue-specificity, as confirmed by analyzing 3570 RNA-seq samples. We also detected 211,067 dimorphic SINEs in 374 individuals, including 340 population-specific ones associated with local adaptation. Mapping these dimorphic SINEs to genome-wide associations of 97 complex traits in pigs, we found 54 candidate genes (e.g., ANK2 and VRTN) that might be mediated by TEs. Our findings highlight the important roles of young SINEs and provide a supplement for genotype-to-phenotype associations and modern breeding in pigs.
Collapse
Affiliation(s)
- Pengju Zhao
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lihong Gu
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, No. 14 Xingdan Road, Haikou, 571100, China
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Zhangyuan Pan
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Lei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Dongyou Yu
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lichun Qian
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Zhengguang Wang
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China.
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
6
|
Bowles H, Kabiljo R, Al Khleifat A, Jones A, Quinn JP, Dobson RJB, Swanson CM, Al-Chalabi A, Iacoangeli A. An assessment of bioinformatics tools for the detection of human endogenous retroviral insertions in short-read genome sequencing data. FRONTIERS IN BIOINFORMATICS 2023; 2:1062328. [PMID: 36845320 PMCID: PMC9945273 DOI: 10.3389/fbinf.2022.1062328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/12/2022] [Indexed: 02/10/2023] Open
Abstract
There is a growing interest in the study of human endogenous retroviruses (HERVs) given the substantial body of evidence that implicates them in many human diseases. Although their genomic characterization presents numerous technical challenges, next-generation sequencing (NGS) has shown potential to detect HERV insertions and their polymorphisms in humans. Currently, a number of computational tools to detect them in short-read NGS data exist. In order to design optimal analysis pipelines, an independent evaluation of the available tools is required. We evaluated the performance of a set of such tools using a variety of experimental designs and datasets. These included 50 human short-read whole-genome sequencing samples, matching long and short-read sequencing data, and simulated short-read NGS data. Our results highlight a great performance variability of the tools across the datasets and suggest that different tools might be suitable for different study designs. However, specialized tools designed to detect exclusively human endogenous retroviruses consistently outperformed generalist tools that detect a wider range of transposable elements. We suggest that, if sufficient computing resources are available, using multiple HERV detection tools to obtain a consensus set of insertion loci may be ideal. Furthermore, given that the false positive discovery rate of the tools varied between 8% and 55% across tools and datasets, we recommend the wet lab validation of predicted insertions if DNA samples are available.
Collapse
Affiliation(s)
- Harry Bowles
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Renata Kabiljo
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
- Department of Biostatistics and Health Informatics, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Ashley Jones
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard J. B. Dobson
- Department of Biostatistics and Health Informatics, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London, United Kingdom
- Institute of Health Informatics, University College London, London, United Kingdom
- NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Chad M. Swanson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
- Department of Neurology, King’s College Hospital, London, United Kingdom
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
- Department of Biostatistics and Health Informatics, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Weber VM, Doucet AJ, Cristofari G. Precise and Scarless Insertion of Transposable Elements by Cas9-Mediated Genome Engineering. Methods Mol Biol 2023; 2607:329-353. [PMID: 36449169 DOI: 10.1007/978-1-0716-2883-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transposable element insertions can have broad effects on gene expression, ranging from new regulatory functions to pathogenic consequences by transplanting new cis-regulating elements or perturbing existing ones. Genetic manipulation of such DNA sequences can help decipher their mechanism of action. Here, we describe a CRISPR-Cas9-mediated two-step approach to precisely insert transposable elements into into the genome of cultured human cells, without scar or reporter gene. First, a double-selection cassette is inserted into the desired target locus. Once a clone containing a single copy of this cassette has been isolated, a second editing step is performed to exchange the double-selection cassette with a markerless transposable element sequence. More generally, this method can be used for knocking in any large insert without genetic markers.
Collapse
|
8
|
Mustafin RN, Kazantseva AV, Kovas YV, Khusnutdinova EK. Role Of Retroelements In The Development Of COVID-19 Neurological Consequences. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Retroelements play a key role in brain functioning in humans and other animals, since they represent dynamic regulatory elements controlling the expression of specific neuron types. The activity of retroelements in the brain is impaired under the influence of SARS-CoV-2, penetrating the blood-brain barrier. We propose a new concept, according to which the neurological complications of COVID-19 and their long-term effects are caused by modified expression of retroelements in neurons due to viral effect. This effect is implemented in several ways: a direct effect of the virus on the promoter regions of retroelement-encoding genes, virus interaction with miRNAs causing silencing of transposons, and an effect of the viral RNA on the products of retroelement transcription. Aging-related physiological activation of retroelements in the elderly is responsible for more severe course of COVID-19. The associations of multiple sclerosis, Parkinson’s disease, Guillain-Barré syndrome, acute disseminated encephalomyelitis with coronavirus lesions also indicate the role of retroelements in such complications, because retroelements are involved in the mechanisms of the development of these diseases. According to meta-analyses, COVID-19-caused neurological complications ranged 36.4-73%. The neuropsychiatric consequences of COVID-19 are observed in patients over a long period after recovery, and their prevalence may exceed those during the acute phase of the disease. Even 12 months after recovery, unmotivated fatigue, headache, mental disorders, and neurocognitive impairment were observed in 82%, 60%, 26.2-45%, and 16.2-46.8% of patients, correspondingly. These manifestations are explained by the role of retroelements in the integration of SARS-CoV-2 into the human genome using their reverse transcriptase and endonuclease, which results in a long-term viral persistence. The research on the role of specific retroelements in these changes can become the basis for developing targeted therapy for neurological consequences of COVID-19 using miRNAs, since epigenetic changes in the functioning of the genome in neurons, affected by transposons, are reversible.
Collapse
Affiliation(s)
| | - Anastasiya V. Kazantseva
- Ufa Federal Research Center of the Russian Academy of Sciences; Bashkir State University, Ufa, Russia
| | - Yulia V. Kovas
- Bashkir State University, Ufa, Russia;University of London, London, Great Britain
| | - Elza K. Khusnutdinova
- Academy of Sciences of the Republic of Bashkortostan; Russian Academy of Education; Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
9
|
Abondio P, Cilli E, Luiselli D. Inferring Signatures of Positive Selection in Whole-Genome Sequencing Data: An Overview of Haplotype-Based Methods. Genes (Basel) 2022; 13:genes13050926. [PMID: 35627311 PMCID: PMC9141518 DOI: 10.3390/genes13050926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Signatures of positive selection in the genome are a characteristic mark of adaptation that can reveal an ongoing, recent, or ancient response to environmental change throughout the evolution of a population. New sources of food, climate conditions, and exposure to pathogens are only some of the possible sources of selective pressure, and the rise of advantageous genetic variants is a crucial determinant of survival and reproduction. In this context, the ability to detect these signatures of selection may pinpoint genetic variants that are responsible for a significant change in gene regulation, gene expression, or protein synthesis, structure, and function. This review focuses on statistical methods that take advantage of linkage disequilibrium and haplotype determination to reveal signatures of positive selection in whole-genome sequencing data, showing that they emerge from different descriptions of the same underlying event. Moreover, considerations are provided around the application of these statistics to different species, their suitability for ancient DNA, and the usefulness of discovering variants under selection for biomedicine and public health in an evolutionary medicine framework.
Collapse
Affiliation(s)
- Paolo Abondio
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (E.C.); (D.L.)
- Laboratory of Molecular Anthropology and Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
- Correspondence:
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (E.C.); (D.L.)
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121 Ravenna, Italy; (E.C.); (D.L.)
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies (FMC), Viale Adriatico 1/N, 61032 Fano, Italy
| |
Collapse
|
10
|
Shapiro JA. What we have learned about evolutionary genome change in the past 7 decades. Biosystems 2022; 215-216:104669. [DOI: 10.1016/j.biosystems.2022.104669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
|
11
|
Horvath R, Menon M, Stitzer M, Ross-Ibarra J. OUP accepted manuscript. Genome Biol Evol 2022; 14:6519160. [PMID: 35104327 PMCID: PMC8872973 DOI: 10.1093/gbe/evac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2022] [Indexed: 11/23/2022] Open
Abstract
Recognition of the important role of transposable elements (TEs) in eukaryotic genomes quickly led to a burgeoning literature modeling and estimating the effects of selection on TEs. Much of the empirical work on selection has focused on analyzing the site frequency spectrum (SFS) of TEs. But TE evolution differs from standard models in a number of ways that can impact the power and interpretation of the SFS. For example, rather than mutating under a clock-like model, transposition often occurs in bursts which can inflate particular frequency categories compared with expectations under a standard neutral model. If a TE burst has been recent, the excess of low-frequency polymorphisms can mimic the effect of purifying selection. Here, we investigate how transposition bursts affect the frequency distribution of TEs and the correlation between age and allele frequency. Using information on the TE age distribution, we propose an age-adjusted SFS to compare TEs and neutral polymorphisms to more effectively evaluate whether TEs are under selective constraints. We show that our approach can minimize instances of false inference of selective constraint, remains robust to simple demographic changes, and allows for a correct identification of even weak selection affecting TEs which experienced a transposition burst. The results presented here will help researchers working on TEs to more reliably identify the effects of selection on TEs without having to rely on the assumption of a constant transposition rate.
Collapse
Affiliation(s)
- Robert Horvath
- Department of Evolution and Ecology, University of California, Davis, USA
- Corresponding authors: E-mails: ;
| | - Mitra Menon
- Department of Evolution and Ecology, University of California, Davis, USA
- Center for Population Biology, University of California, Davis, USA
| | - Michelle Stitzer
- Institute for Genomic Diversity and Department of Molecular Biology and Genetics, Cornell University, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California, Davis, USA
- Center for Population Biology, University of California, Davis, USA
- Genome Center, University of California, Davis, USA
- Corresponding authors: E-mails: ;
| |
Collapse
|
12
|
Wang Y, Zhao B, Choi J, Lee EA. Genomic approaches to trace the history of human brain evolution with an emerging opportunity for transposon profiling of ancient humans. Mob DNA 2021; 12:22. [PMID: 34663455 PMCID: PMC8525043 DOI: 10.1186/s13100-021-00250-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Transposable elements (TEs) significantly contribute to shaping the diversity of the human genome, and lines of evidence suggest TEs as one of driving forces of human brain evolution. Existing computational approaches, including cross-species comparative genomics and population genetic modeling, can be adapted for the study of the role of TEs in evolution. In particular, diverse ancient and archaic human genome sequences are increasingly available, allowing reconstruction of past human migration events and holding the promise of identifying and tracking TEs among other evolutionarily important genetic variants at an unprecedented spatiotemporal resolution. However, highly degraded short DNA templates and other unique challenges presented by ancient human DNA call for major changes in current experimental and computational procedures to enable the identification of evolutionarily important TEs. Ancient human genomes are valuable resources for investigating TEs in the evolutionary context, and efforts to explore ancient human genomes will potentially provide a novel perspective on the genetic mechanism of human brain evolution and inspire a variety of technological and methodological advances. In this review, we summarize computational and experimental approaches that can be adapted to identify and validate evolutionarily important TEs, especially for human brain evolution. We also highlight strategies that leverage ancient genomic data and discuss unique challenges in ancient transposon genomics.
Collapse
Affiliation(s)
- Yilan Wang
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Boxun Zhao
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Jaejoon Choi
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
13
|
Almojil D, Bourgeois Y, Falis M, Hariyani I, Wilcox J, Boissinot S. The Structural, Functional and Evolutionary Impact of Transposable Elements in Eukaryotes. Genes (Basel) 2021; 12:genes12060918. [PMID: 34203645 PMCID: PMC8232201 DOI: 10.3390/genes12060918] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are nearly ubiquitous in eukaryotes. The increase in genomic data, as well as progress in genome annotation and molecular biology techniques, have revealed the vast number of ways mobile elements have impacted the evolution of eukaryotes. In addition to being the main cause of difference in haploid genome size, TEs have affected the overall organization of genomes by accumulating preferentially in some genomic regions, by causing structural rearrangements or by modifying the recombination rate. Although the vast majority of insertions is neutral or deleterious, TEs have been an important source of evolutionary novelties and have played a determinant role in the evolution of fundamental biological processes. TEs have been recruited in the regulation of host genes and are implicated in the evolution of regulatory networks. They have also served as a source of protein-coding sequences or even entire genes. The impact of TEs on eukaryotic evolution is only now being fully appreciated and the role they may play in a number of biological processes, such as speciation and adaptation, remains to be deciphered.
Collapse
Affiliation(s)
- Dareen Almojil
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Yann Bourgeois
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK;
| | - Marcin Falis
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Imtiyaz Hariyani
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Justin Wilcox
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Stéphane Boissinot
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Correspondence:
| |
Collapse
|
14
|
Mérel V, Gibert P, Buch I, Rada VR, Estoup A, Gautier M, Fablet M, Boulesteix M, Vieira C. The worldwide invasion of Drosophila suzukii is accompanied by a large increase of transposable element load and a small number of putatively adaptive insertions. Mol Biol Evol 2021; 38:4252-4267. [PMID: 34021759 PMCID: PMC8476158 DOI: 10.1093/molbev/msab155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transposable Elements (TEs) are ubiquitous and mobile repeated sequences. They are major determinants of host fitness. Here, we characterized the TE content of the spotted wing fly Drosophila suzukii. Using a recently improved genome assembly, we reconstructed TE sequences de novo, and found that TEs occupy 47% of the genome and are mostly located in gene poor regions. The majority of TE insertions segregate at low frequencies, indicating a recent and probably ongoing TE activity. To explore TE dynamics in the context of biological invasions, we studied variation of TE abundance in genomic data from 16 invasive and six native populations of D. suzukii. We found a large increase of the TE load in invasive populations correlated with a reduced Watterson estimate of genetic diversity θ̂w a proxy of effective population size. We did not find any correlation between TE contents and bioclimatic variables, indicating a minor effect of environmentally induced TE activity. A genome-wide association study revealed that ca. 2,000 genomic regions are associated with TE abundance. We did not find, however, any evidence in such regions of an enrichment for genes known to interact with TE activity (e.g. transcription factor encoding genes or genes of the piRNA pathway). Finally, the study of TE insertion frequencies revealed 15 putatively adaptive TE insertions, six of them being likely associated with the recent invasion history of the species.
Collapse
Affiliation(s)
- Vincent Mérel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Patricia Gibert
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Inessa Buch
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Valentina Rodriguez Rada
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Arnaud Estoup
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Mathieu Gautier
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Marie Fablet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Matthieu Boulesteix
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
15
|
Kremer SC, Linquist S, Saylor B, Elliott TA, Gregory TR, Cottenie K. Long-term TE persistence even without beneficial insertion. BMC Genomics 2021; 22:260. [PMID: 33845764 PMCID: PMC8042931 DOI: 10.1186/s12864-021-07568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/30/2021] [Indexed: 11/10/2022] Open
Abstract
This correspondence responds to the critique by Butler et al. (BMC Genomics 22:241, 2021) of our recent paper on transposable element (TE) persistence. We address the three main objections raised by Butler et al. After running a series of additional simulations that were inspired by the authors’ criticisms, we are able to present a more nuanced understanding of the conditions that generate long-term persistence.
Collapse
Affiliation(s)
- Stefan C Kremer
- School of Computer Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Stefan Linquist
- Department of Philosophy, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brent Saylor
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tyler A Elliott
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - T Ryan Gregory
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Karl Cottenie
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
16
|
Butler CL, Bell EA, Taylor MI. Removal of beneficial insertion effects prevent the long-term persistence of transposable elements within simulated asexual populations. BMC Genomics 2021; 22:241. [PMID: 33827443 PMCID: PMC8025564 DOI: 10.1186/s12864-021-07569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/30/2021] [Indexed: 01/20/2023] Open
Abstract
Background Transposable elements are significant components of most organism’s genomes, yet the reasons why their abundances vary significantly among species is poorly understood. A recent study has suggested that even in the absence of traditional molecular evolutionary explanations, transposon proliferation may occur through a process known as ‘transposon engineering’. However, their model used a fixed beneficial transposon insertion frequency of 20%, which we believe to be unrealistically high. Results Reducing this beneficial insertion frequency, while keeping all other parameters identical, prevented transposon proliferation. Conclusions We conclude that the author’s original findings are better explained through the action of positive selection rather than ‘transposon engineering’, with beneficial insertion effects remaining important during transposon proliferation events.
Collapse
Affiliation(s)
- Christopher L Butler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Ellen A Bell
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Martin I Taylor
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
17
|
Osakabe A, Jamge B, Axelsson E, Montgomery SA, Akimcheva S, Kuehn AL, Pisupati R, Lorković ZJ, Yelagandula R, Kakutani T, Berger F. The chromatin remodeler DDM1 prevents transposon mobility through deposition of histone variant H2A.W. Nat Cell Biol 2021; 23:391-400. [PMID: 33833428 DOI: 10.1038/s41556-021-00658-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
Mobile transposable elements (TEs) not only participate in genome evolution but also threaten genome integrity. In healthy cells, TEs that encode all of the components that are necessary for their mobility are specifically silenced, yet the precise mechanism remains unknown. Here, we characterize the mechanism used by a conserved class of chromatin remodelers that prevent TE mobility. In the Arabidopsis chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1), we identify two conserved binding domains for the histone variant H2A.W, which marks plant heterochromatin. DDM1 is necessary and sufficient for the deposition of H2A.W onto potentially mobile TEs, yet does not act on TE fragments or host protein-coding genes. DDM1-mediated H2A.W deposition changes the properties of chromatin, resulting in the silencing of TEs and, therefore, prevents their mobility. This distinct mechanism provides insights into the interplay between TEs and their host in the contexts of evolution and disease, and potentiates innovative strategies for targeted gene silencing.
Collapse
Affiliation(s)
- Akihisa Osakabe
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Bhagyshree Jamge
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Elin Axelsson
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Sean A Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Svetlana Akimcheva
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Annika Luisa Kuehn
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Rahul Pisupati
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Zdravko J Lorković
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Ramesh Yelagandula
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Tetsuji Kakutani
- National Institute of Genetics, Mishima, Japan
- Department of Genetics, School of Life science, The Graduate University of Advanced Studies (SOKENDAI), Mishima, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
18
|
Abstract
The review presents an analysis of the scientific data on the characteristics of COVID-19 from the perspective of potential interactions between the virus and the host genome retroelements. According to global statistical data, severe COVID-19 with immune-system hyperactivity is observed mainly in elderly people. At the same time, aging is characterized by a decrease in immune responses. This paradox may be resolved by the assumption that DNA regions that can move along the genome with the “copy and paste” mechanism (retroelements) may play a role in COVID-19 development; these elements are characterized by abnormal expression patterns in aging. Their interaction with SARS-CoV-2 may occur at the level of RNA interference or RNA recombination, or the virus can use retroelement proteins to integrate into the host genome. There is supporting evidence of this interaction: data indicating the efficiency of antiretroviral drugs at the early stage of COVID-19, the isolation of SARS-CoV-2 for a long time after recovery, the persistence of coronavirus infections, and changes in the L1 retrotransposon expression patterns in the lung tissues of COVID-19 patients. In additional, retroelements affect the functioning of the immune system and affect the receptors interacting with SARS-CoV-2. Recombination with retroelements and viral insertions into host genomes have been demonstrated in the case of other infections caused by nonretroviral, RNA-containing viruses. The presumable interaction between SARS-CoV-2 and retroelements may explain the differences in the severity and lethality of COVID-19 in different countries as a result of specific insertional patterns in the genomes of individuals belonging to different human populations. The possible insertion of SARS-CoV-2 cDNA into the genome should be kept in mind in the design of anti-COVID-19 vaccines. Peptide preparations are the most promising in this regard.
Collapse
Affiliation(s)
| | - E. K. Khusnutdinova
- Institute of Biochemistry and Genetics, Subdivision of the Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| |
Collapse
|
19
|
Haddad-Mashadrizeh A, Hemmat J, Aslamkhan M. Intronic regions of the human coagulation factor VIII gene harboring transcription factor binding sites with a strong bias towards the short-interspersed elements. Heliyon 2020; 6:e04727. [PMID: 32944665 PMCID: PMC7481535 DOI: 10.1016/j.heliyon.2020.e04727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/03/2019] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Increasing data show that intronic derived regulatory elements, such as transcription factor binding sites (TFBs), play key roles in gene regulation, and malfunction. Accordingly, characterizing the sequence context of the intronic regions of the human coagulation factor VIII (hFVIII) gene can be important. In this study, the intronic regions of the hFVIII gene were scrutinized based on in-silico methods. The results disclosed that these regions harbor a rich array of functional elements such as repetitive elements (REs), splicing sites, and transcription factor binding sites (TFBs). Among these elements, TFBs and REs showed a significant distribution and correlation to each other. This survey indicated that 31% of TFBs are localized in the intronic regions of the gene. Moreover, TFBs indicate a strong bias in the regions far from splice sites of introns with mapping to different REs. Accordingly, TFBs showed highly bias toward Short Interspersed Elements (SINEs), which in turn they covering about 12% of the total of REs. However, the distribution pattern of TFBs-REs showed different bias in the intronic regions, spatially into the Introns 13 and 25. The rich array of SINE-TFBs and CR1-TFBs were situated within 5′UTR of the gene that may be an important driving force for regulatory innovation of the hFVIII gene. Taken together, these data may lead to revealing intronic regions with the capacity to renewing gene regulatory networks of the hFVIII gene. On the other hand, these correlations might provide the novel idea for a new hypothesis of molecular evolution of the FVIII gene, and treatment of Hemophilia A which should be considered in future studies.
Collapse
Affiliation(s)
- Aliakbar Haddad-Mashadrizeh
- Recombinant Proteins Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jafar Hemmat
- Biotechnology Department, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Muhammad Aslamkhan
- Human Genetics & Molecular Biology Dept., University of Health Sciences, Lahore, Pakistan.,Honorary Senior Lecturer in the School of the Medicine University of Liverpool, Liverpool, UK
| |
Collapse
|
20
|
Herbert A. ALU non-B-DNA conformations, flipons, binary codes and evolution. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200222. [PMID: 32742689 PMCID: PMC7353975 DOI: 10.1098/rsos.200222] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 05/08/2023]
Abstract
ALUs contribute to genetic diversity by altering DNA's linear sequence through retrotransposition, recombination and repair. ALUs also have the potential to form alternative non-B-DNA conformations such as Z-DNA, triplexes and quadruplexes that alter the read-out of information from the genome. I suggest here these structures enable the rapid reprogramming of cellular pathways to offset DNA damage and regulate inflammation. The experimental data supporting this form of genetic encoding is presented. ALU sequence motifs that form non-B-DNA conformations under physiological conditions are called flipons. Flipons are binary switches. They are dissipative structures that trade energy for information. By efficiently targeting cellular machines to active genes, flipons expand the repertoire of RNAs compiled from a gene. Their action greatly increases the informational capacity of linearly encoded genomes. Flipons are programmable by epigenetic modification, synchronizing cellular events by altering both chromatin state and nucleosome phasing. Different classes of flipon exist. Z-flipons are based on Z-DNA and modify the transcripts compiled from a gene. T-flipons are based on triplexes and localize non-coding RNAs that direct the assembly of cellular machines. G-flipons are based on G-quadruplexes and sense DNA damage, then trigger the appropriate protective responses. Flipon conformation is dynamic, changing with context. When frozen in one state, flipons often cause disease. The propagation of flipons throughout the genome by ALU elements represents a novel evolutionary innovation that allows for rapid change. Each ALU insertion creates variability by extracting a different set of information from the neighbourhood in which it lands. By elaborating on already successful adaptations, the newly compiled transcripts work with the old to enhance survival. Systems that optimize flipon settings through learning can adapt faster than with other forms of evolution. They avoid the risk of relying on random and irreversible codon rewrites.
Collapse
|
21
|
Goubert C, Thomas J, Payer LM, Kidd JM, Feusier J, Watkins WS, Burns KH, Jorde LB, Feschotte C. TypeTE: a tool to genotype mobile element insertions from whole genome resequencing data. Nucleic Acids Res 2020; 48:e36. [PMID: 32067044 PMCID: PMC7102983 DOI: 10.1093/nar/gkaa074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/08/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Alu retrotransposons account for more than 10% of the human genome, and insertions of these elements create structural variants segregating in human populations. Such polymorphic Alus are powerful markers to understand population structure, and they represent variants that can greatly impact genome function, including gene expression. Accurate genotyping of Alus and other mobile elements has been challenging. Indeed, we found that Alu genotypes previously called for the 1000 Genomes Project are sometimes erroneous, which poses significant problems for phasing these insertions with other variants that comprise the haplotype. To ameliorate this issue, we introduce a new pipeline - TypeTE - which genotypes Alu insertions from whole-genome sequencing data. Starting from a list of polymorphic Alus, TypeTE identifies the hallmarks (poly-A tail and target site duplication) and orientation of Alu insertions using local re-assembly to reconstruct presence and absence alleles. Genotype likelihoods are then computed after re-mapping sequencing reads to the reconstructed alleles. Using a high-quality set of PCR-based genotyping of >200 loci, we show that TypeTE improves genotype accuracy from 83% to 92% in the 1000 Genomes dataset. TypeTE can be readily adapted to other retrotransposon families and brings a valuable toolbox addition for population genomics.
Collapse
Affiliation(s)
- Clément Goubert
- Department of Molecular Biology and Genetics, 215 Tower Rd, Cornell University, Ithaca, NY 14853, USA
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Julie Feusier
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - W Scott Watkins
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, 215 Tower Rd, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
22
|
Goubert C, Zevallos NA, Feschotte C. Contribution of unfixed transposable element insertions to human regulatory variation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190331. [PMID: 32075552 PMCID: PMC7061991 DOI: 10.1098/rstb.2019.0331] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Thousands of unfixed transposable element (TE) insertions segregate in the human population, but little is known about their impact on genome function. Recently, a few studies associated unfixed TE insertions to mRNA levels of adjacent genes, but the biological significance of these associations, their replicability across cell types and the mechanisms by which they may regulate genes remain largely unknown. Here, we performed a TE-expression QTL analysis of 444 lymphoblastoid cell lines (LCL) and 289 induced pluripotent stem cells using a newly developed set of genotypes for 2743 polymorphic TE insertions. We identified 211 and 176 TE-eQTL acting in cis in each respective cell type. Approximately 18% were shared across cell types with strongly correlated effects. Furthermore, analysis of chromatin accessibility QTL in a subset of the LCL suggests that unfixed TEs often modulate the activity of enhancers and other distal regulatory DNA elements, which tend to lose accessibility when a TE inserts within them. We also document a case of an unfixed TE likely influencing gene expression at the post-transcriptional level. Our study points to broad and diverse cis-regulatory effects of unfixed TEs in the human population and underscores their plausible contribution to phenotypic variation. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
| | | | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
|
24
|
Bourgeois Y, Boissinot S. On the Population Dynamics of Junk: A Review on the Population Genomics of Transposable Elements. Genes (Basel) 2019; 10:genes10060419. [PMID: 31151307 PMCID: PMC6627506 DOI: 10.3390/genes10060419] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/05/2019] [Accepted: 05/21/2019] [Indexed: 01/18/2023] Open
Abstract
Transposable elements (TEs) play an important role in shaping genomic organization and structure, and may cause dramatic changes in phenotypes. Despite the genetic load they may impose on their host and their importance in microevolutionary processes such as adaptation and speciation, the number of population genetics studies focused on TEs has been rather limited so far compared to single nucleotide polymorphisms (SNPs). Here, we review the current knowledge about the dynamics of transposable elements at recent evolutionary time scales, and discuss the mechanisms that condition their abundance and frequency. We first discuss non-adaptive mechanisms such as purifying selection and the variable rates of transposition and elimination, and then focus on positive and balancing selection, to finally conclude on the potential role of TEs in causing genomic incompatibilities and eventually speciation. We also suggest possible ways to better model TEs dynamics in a population genomics context by incorporating recent advances in TEs into the rich information provided by SNPs about the demography, selection, and intrinsic properties of genomes.
Collapse
Affiliation(s)
- Yann Bourgeois
- New York University Abu Dhabi, P.O. 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| | - Stéphane Boissinot
- New York University Abu Dhabi, P.O. 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|