1
|
Assanbayev T, Akilzhanov R, Sharapatov T, Bektayev R, Samatkyzy D, Karabayev D, Gabdulkayum A, Daniyarov A, Rakhimova S, Kozhamkulov U, Sarbassov D, Akilzhanova A, Kairov U. Whole genome sequencing and de novo genome assembly of the Kazakh native horse Zhabe. Front Genet 2024; 15:1466382. [PMID: 39529846 PMCID: PMC11551999 DOI: 10.3389/fgene.2024.1466382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Tolegen Assanbayev
- Department of Zootechnology and Veterinary Medicine, Toraighyrov University, Pavlodar, Kazakhstan
| | - Rakhmetolla Akilzhanov
- Department of Zootechnology and Veterinary Medicine, Toraighyrov University, Pavlodar, Kazakhstan
| | - Tlekbol Sharapatov
- Department of Zootechnology and Veterinary Medicine, Toraighyrov University, Pavlodar, Kazakhstan
| | - Rakhimbek Bektayev
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Diana Samatkyzy
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Daniyar Karabayev
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Aidana Gabdulkayum
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Asset Daniyarov
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Faculty of Natural Sciences, L.N.Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Saule Rakhimova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ulan Kozhamkulov
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Dos Sarbassov
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Ainur Akilzhanova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ulykbek Kairov
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
2
|
He HY, Liu LL, Chen B, Xiao HX, Liu WJ. Study on lactation performance and development of KASP marker for milk traits in Xinjiang donkey ( Equus asinus). Anim Biotechnol 2023; 34:2724-2735. [PMID: 36007548 DOI: 10.1080/10495398.2022.2114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Donkey milk has high nutritional and medicinal value, but there are few researches in donkey milk traits, especially on genome. The whole lactation of 89 donkeys was recorded and it was found that Xinjiang donkey had good lactation performance while great differences among individuals. In our previous study, four genes including LGALS2, NUMB, ADCY8 and CA8 were identified as milk-associated with Chinese Kazakh house, based on Equine 670k Chip genomic analysis. And then 15 SNPs of the four key genes were conducted for genotyping in Xinjiang donkey in this study, one of Chinese indigenous breed, 14 SNPs were successful classified. And those SNPs were correlation analysis with milk yield of Xinjiang donkeys. The results showed that NUMB g.46709914T > G was significantly correlated with daily milk yield of Xinjiang donkey in the early, middle, and late periods, while ADCY8 g.48366302T > C, CA8 g.89567442T > G and CA8 g.89598328T > A were significantly correlated with lactation in the late periods. These results indicate that NUMB g.46709914T > G can be as markers of candidate genes for lactating traits in donkeys, SNPs of ADCY8 and CA8 as potential. Our findings will not only help confirm key genes for donkey milk traits, but also provide future for genomic selection in donkeys.
Collapse
Affiliation(s)
- Hai-Ying He
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Ling-Ling Liu
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Bin Chen
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hai-Xia Xiao
- Institute of Animal Husbandry, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Wu-Jun Liu
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Dlamini NM, Dzomba EF, Magawana M, Ngcamu S, Muchadeyi FC. Linkage Disequilibrium, Haplotype Block Structures, Effective Population Size and Genome-Wide Signatures of Selection of Two Conservation Herds of the South African Nguni Cattle. Animals (Basel) 2022; 12:ani12162133. [PMID: 36009722 PMCID: PMC9405234 DOI: 10.3390/ani12162133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The Nguni cattle of South Africa are a Sanga breed, characterized by many eco-types and research populations that have been established in an effort to conserve the diversity within the breed. The aim of this study was to investigate the overall genetic diversity as well as similarities and differences within and between two conservation herds of the South African Nguni Cattle. Mean LD (r2) estimates were 0.413 ± 0.219 for Bartlow Combine and 0.402 ± 0.209 for Kokstad. Genome-wide average LD (r2) decreased with increasing genetic marker distance for both populations from an average of 0.76 ± 0.28 and 0.77 ± 0.27 at 0–1 kb bin to 0.31 ± 0.13 and 0.32 ± 0.13 at 900–1000 kb bin in Bartlow Combine and Kokstad populations, respectively. Variation in LD levels across autosomes was observed in both populations. The results showed higher levels of LD than previously reported in Nguni field populations and other South African breeds, especially at shorter marker distances of less than 20 kb. A total number of 77,305 and 66,237 haplotype blocks covering a total of 1570.09 Mb (61.99% genome coverage) and 1367.42 Mb (53.96% genome coverage) were detected in Bartlow Combine and Kokstad populations, respectively. A total of 18,449 haploblocks were shared between the two populations while 58,856 and 47,788 haploblocks were unique to Bartlow Combine and Kokstad populations, respectively. Effective population size (Ne) results demonstrated a rapid decrease in Ne across generations for both Bartlow Combine and Kokstad conservation herds. Two complementary methods, integrated haplotype score (iHS) and Extend Haplotype Homozygosity Test (XP-EHH), were implemented in this study to detect the selection signatures in the two herds. A total of 553 and 166 selected regions were identified in Bartlow Combine and Kokstad populations, respectively. DAVID and GO terms analysis of the regions under selection reported genes/QTLs associated with fertility, carcass weight, coat colour, immune response, and eye area pigmentation. Some genes, such as HCAR1, GNAI1, PIK3R3, WNT3, RAB5A, BOLA-N (Class IB MHC Antigen QA-2-Related), BOLA (Class IB MHC Antigen QA-2-Related), and Rab-8B, etc., were found in regions under selection in this study. Overall, the study implied reduced genetic diversity in the two herds calling for corrective measures to maintain the diversity of the South African Nguni cattle. This study presented a comprehensive analysis of the genomic architecture of South African Nguni cattle populations, providing essential genetic information of utility in the management of conservation flocks.
Collapse
Affiliation(s)
- Njabulo M. Dlamini
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa or
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, Pretoria 0110, South Africa
| | - Edgar F. Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa or
| | - Mpumelelo Magawana
- KZN Department of Agriculture & Rural Development, Private Bag X9059, Pietermaritzburg 3200, South Africa
| | - Sphamandla Ngcamu
- KZN Department of Agriculture & Rural Development, Private Bag X9059, Pietermaritzburg 3200, South Africa
| | - Farai C. Muchadeyi
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, Pretoria 0110, South Africa
- Correspondence:
| |
Collapse
|
4
|
Sun J, Chen T, Zhu M, Wang R, Huang Y, Wei Q, Yang M, Liao Y. Whole-genome sequencing revealed genetic diversity and selection of Guangxi indigenous chickens. PLoS One 2022; 17:e0250392. [PMID: 35290380 PMCID: PMC8923445 DOI: 10.1371/journal.pone.0250392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/20/2022] [Indexed: 11/19/2022] Open
Abstract
Guangxi chickens play a crucial role in promoting the high-quality development of the broiler industry in China, but their value and potential are yet to be discovered. To determine the genetic diversity and population structure of Guangxi indigenous chicken, we analyzed the whole genomes of 185 chickens from 8 phenotypically and geographically representative Guangxi chicken breeds, together with 12 RJFt, 12 BRA and 12 WL genomes available from previous studies. Calculation of heterozygosity (Hp), nucleotide diversity (π), and LD level indicated that Guangxi populations were characterized by higher genetic diversity and lower differentiation than RJFt and commercial breeds except for HGFC. Population structure analysis also confirmed the introgression from commercial broiler breeds. Each population clustered together while the overall differentiation was slight. MA has the richest genetic diversity among all varieties. Selective sweep analysis revealed BCO2, EDN3 and other candidate genes had received strong selection in local breeds. These also provided novel breeding visual and data basis for future breeding.
Collapse
Affiliation(s)
- Junli Sun
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Tao Chen
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, China
| | - Min Zhu
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Ran Wang
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, China
| | - Yingfei Huang
- Guangxi Key Laboratory of Livestock Genetic Improvement, Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Qiang Wei
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, China
| | - Manman Yang
- BGI-Shenzhen, Shenzhen, China
- * E-mail: (MY); (YL)
| | - Yuying Liao
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- * E-mail: (MY); (YL)
| |
Collapse
|
5
|
Chen ZH, Xu YX, Xie XL, Wang DF, Aguilar-Gómez D, Liu GJ, Li X, Esmailizadeh A, Rezaei V, Kantanen J, Ammosov I, Nosrati M, Periasamy K, Coltman DW, Lenstra JA, Nielsen R, Li MH. Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. Commun Biol 2021; 4:1307. [PMID: 34795381 PMCID: PMC8602413 DOI: 10.1038/s42003-021-02817-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
The domestication and subsequent development of sheep are crucial events in the history of human civilization and the agricultural revolution. However, the impact of interspecific introgression on the genomic regions under domestication and subsequent selection remains unclear. Here, we analyze the whole genomes of domestic sheep and their wild relative species. We found introgression from wild sheep such as the snow sheep and its American relatives (bighorn and thinhorn sheep) into urial, Asiatic and European mouflons. We observed independent events of adaptive introgression from wild sheep into the Asiatic and European mouflons, as well as shared introgressed regions from both snow sheep and argali into Asiatic mouflon before or during the domestication process. We revealed European mouflons might arise through hybridization events between a now extinct sheep in Europe and feral domesticated sheep around 6000-5000 years BP. We also unveiled later introgressions from wild sheep to their sympatric domestic sheep after domestication. Several of the introgression events contain loci with candidate domestication genes (e.g., PAPPA2, NR6A1, SH3GL3, RFX3 and CAMK4), associated with morphological, immune, reproduction or production traits (wool/meat/milk). We also detected introgression events that introduced genes related to nervous response (NEURL1), neurogenesis (PRUNE2), hearing ability (USH2A), and placental viability (PAG11 and PAG3) into domestic sheep and their ancestral wild species from other wild species.
Collapse
Affiliation(s)
- Ze-Hui Chen
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China ,grid.22935.3f0000 0004 0530 8290College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ya-Xi Xu
- grid.22935.3f0000 0004 0530 8290College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xing-Long Xie
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Dong-Feng Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Diana Aguilar-Gómez
- grid.47840.3f0000 0001 2181 7878Center for Computational Biology, University of California at Berkeley, Berkeley, CA 94720 USA
| | | | - Xin Li
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ali Esmailizadeh
- grid.412503.10000 0000 9826 9569Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahideh Rezaei
- grid.412503.10000 0000 9826 9569Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Juha Kantanen
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Innokentyi Ammosov
- grid.495192.2Laboratory of Reindeer Husbandry and Traditional Industries, Yakut Scientific Research Institute of Agriculture, The Sakha Republic (Yakutia), Yakutsk, Russia
| | - Maryam Nosrati
- grid.412462.70000 0000 8810 3346Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Kathiravan Periasamy
- grid.420221.70000 0004 0403 8399Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - David W. Coltman
- grid.17089.37Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9 Canada
| | - Johannes A. Lenstra
- grid.5477.10000000120346234Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, 94720, USA. .,Department of Statistics, UC Berkeley, Berkeley, CA, 94707, USA. .,Globe Institute, University of Copenhagen, 1350, København K, Denmark.
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Xia Y, Yu J, Miao W, Shuang Q. A UPLC-Q-TOF-MS-based metabolomics approach for the evaluation of fermented mare’s milk to koumiss. Food Chem 2020; 320:126619. [DOI: 10.1016/j.foodchem.2020.126619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/18/2020] [Accepted: 03/15/2020] [Indexed: 12/11/2022]
|
7
|
Liu LL, Fang C, Ma HY, Yu X, Lv SP, Liu WJ. Development and validation of KASP markers for the milk traits genes in Kazakh horse. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1782218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ling-Ling Liu
- Department Animal science, Xinjiang Agricultural University, Urumqi, Xinjiang, People’s Republic of China
| | - Chao Fang
- Department Animal science, Xinjiang Agricultural University, Urumqi, Xinjiang, People’s Republic of China
| | - Hai-Yu Ma
- Department Animal science, Xinjiang Agricultural University, Urumqi, Xinjiang, People’s Republic of China
| | - Xi Yu
- Department Animal science, Xinjiang Agricultural University, Urumqi, Xinjiang, People’s Republic of China
| | - Shi-Peng Lv
- Department Animal science, Xinjiang Agricultural University, Urumqi, Xinjiang, People’s Republic of China
| | - Wu-Jun Liu
- Department Animal science, Xinjiang Agricultural University, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
8
|
Sun T, Shen J, Achilli A, Chen N, Chen Q, Dang R, Zheng Z, Zhang H, Zhang X, Wang S, Zhang T, Lu H, Ma Y, Jia Y, Capodiferro MR, Huang Y, Lan X, Chen H, Jiang Y, Lei C. Genomic analyses reveal distinct genetic architectures and selective pressures in buffaloes. Gigascience 2020; 9:giz166. [PMID: 32083286 PMCID: PMC7033652 DOI: 10.1093/gigascience/giz166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/26/2019] [Accepted: 12/27/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The domestic buffalo (Bubalus bubalis) is an essential farm animal in tropical and subtropical regions, whose genomic diversity is yet to be fully discovered. RESULTS In this study, we describe the demographic events and selective pressures of buffalo by analyzing 121 whole genomes (98 newly reported) from 25 swamp and river buffalo breeds. Both uniparental and biparental markers were investigated to provide the final scenario. The ancestors of swamp and river buffalo diverged ∼0.23 million years ago and then experienced independent demographic histories. They were domesticated in different regions, the swamp buffalo at the border between southwest China and southeast Asia, while the river buffalo in south Asia. The domestic stocks migrated to other regions and further differentiated, as testified by (at least) 2 ancestral components identified in each subspecies. Different signals of selective pressures were also detected in these 2 types of buffalo. The swamp buffalo, historically used as a draft animal, shows selection signatures in genes associated with the nervous system, while in river dairy breeds, genes under selection are related to heat stress and immunity. CONCLUSIONS Our findings substantially expand the catalogue of genetic variants in buffalo and reveal new insights into the evolutionary history and distinct selective pressures in river and swamp buffalo.
Collapse
Affiliation(s)
- Ting Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiafei Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani,” Università di Pavia, Pavia 27100, Italy
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiuming Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuqing Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hucai Zhang
- Key Laboratory of Plateau Lake Ecology and Environment Change, Yunnan University, Kunming 650504, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shaoqiang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Zhang
- School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Hongzhao Lu
- School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Yun Ma
- Agricultural College, Ningxia University, Yinchuan 750021, China
| | - Yutang Jia
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agriculture Science, Hefei 230001, China
| | | | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Tao L, He XY, Pan LX, Wang JW, Gan SQ, Chu MX. Genome-wide association study of body weight and conformation traits in neonatal sheep. Anim Genet 2020; 51:336-340. [PMID: 31960458 DOI: 10.1111/age.12904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/22/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Sheep, an important source of meat, dairy products and wool, play an essential part in the global agricultural economy. Body weight and body conformation are key traits in the sheep industry; however, their underlying genetic mechanisms are poorly understood. In this study, a GWAS was implemented to identify promising genes possibly linked to birth weight (BW) and body conformation traits in neonatal sheep, using a high-throughput chip (630 K). After quality control, 277 individuals and 518 203 variants were analyzed using gemma software in a mixed linear model. A total of 48 genome-wide suggestive SNPs were obtained, of which four were associated with BW, four with withers height (WH), 11 with body length (BL) and 29 with chest girth (CG). In total, 39 genes associated with BW and body conformation traits were identified by aligning to the sheep genome (Ovis aries_v4.0), and most of them were involved in the cell cycle and body development. Promising candidate genes found included the following: FOS like 2 or AP-1 transcription factor subunit (FOSL2) for BW; potassium voltage-gated channel subfamily D member 2 (KCND2) for WH; transmembrane protein 117 (TMEM117), transforming growth factor beta induced (TGFBI), and leukocyte cell-derived chemotaxin 2 (LECT2) for BL; and trafficking kinesin protein 1 (TRAK1) and LOC101102529 for CG. These results provide cues for similar studies aiming at uncovering the genetic mechanisms underlying body development, and marker-assisted selection programs focusing on BW and body conformation traits in sheep.
Collapse
Affiliation(s)
- L Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - X Y He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - L X Pan
- Ji'nan Laiwu Yingtai Agriculture and Animal Husbandry Technology Co., Ltd., Ji'nan, Shandong, 271114, China
| | - J W Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, China
| | - S Q Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, 832000, China
| | - M X Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
10
|
Pu Y, Zhang Y, Zhang T, Han J, Ma Y, Liu X. Identification of Novel lncRNAs Differentially Expressed in Placentas of Chinese Ningqiang Pony and Yili Horse Breeds. Animals (Basel) 2020; 10:E119. [PMID: 31940795 PMCID: PMC7022612 DOI: 10.3390/ani10010119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
As a nutrient sensor, the placenta plays a key role in regulating fetus growth and development. Long non-coding RNAs (lncRNAs) have been shown to regulate growth-related traits. However, the biological function of lncRNAs in horse placentas remains unclear. To compare the expression patterns of lncRNAs in the placentas of the Chinese Ningqiang (NQ) and Yili (YL) breeds, we performed a transcriptome analysis using RNA sequencing (RNA-seq) technology. NQ is a pony breed with an average adult height at the withers of less than 106 cm, whereas that of YL is around 148 cm. Based on 813 million high-quality reads and stringent quality control procedures, 3011 transcripts coding for 1464 placental lncRNAs were identified and mapped to the horse reference genome. We found 107 differentially expressed lncRNAs (DELs) between NQ and YL, including 68 up-regulated and 39 down-regulated DELs in YL. Six (TBX3, CACNA1F, EDN3, KAT5, ZNF281, TMED2, and TGFB1) out of the 233 genes targeted by DELs were identified as being involved in limb development, skeletal myoblast differentiation, and embryo development. Two DELs were predicted to target the TBX3 gene, which was found to be under strong selection and associated with small body size in the Chinese Debao pony breed. This finding suggests the potential functional significance of placental lncRNAs in regulating horse body size.
Collapse
Affiliation(s)
- Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.P.); (Y.Z.)
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
| | - Yanli Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.P.); (Y.Z.)
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
| | - Tian Zhang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.P.); (Y.Z.)
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
| | - Xuexue Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.P.); (Y.Z.)
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
| |
Collapse
|
11
|
Genetic Diversity of Indigenous Pigs from South China Area Revealed by SNP Array. Animals (Basel) 2019; 9:ani9060361. [PMID: 31208134 PMCID: PMC6616596 DOI: 10.3390/ani9060361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The pig is one of the most important livestock animals, providing the majority of protein for humans. The population genetics analysis of pigs not only helps humans understand the domestication of the pig but also helps breeders in the genetic improvement of pigs. In this study, the population genetics of 11 pig breeds of South China were analyzed with the help of single nucleotide polymorphism (SNP) chips. The results showed that the genetic diversity of South China indigenous pigs is declining rapidly, and gene introgression from commercial pigs to indigenous pigs was detected. Selection signature analysis showed differences among South China indigenous pig breeds, commercial pig breeds, and wild pig breeds were present for meat quality and growth. Our study deepened understanding of the conservation status and selection mechanisms of Chinese indigenous pigs. Abstract To investigate the genetic diversity, population structure, extent of linkage disequilibrium (LD), effective population size (Ne), and selection signatures in indigenous pigs from Guangdong and Guangxi in China, 226 pigs belonging to ten diverse populations were genotyped using single nucleotide polymorphism (SNP) chips. The genetic divergence between Chinese and Western pigs was determined based on the SNP chip data. Low genetic diversity of Dahuabai (DHB), Luchuan (LC), Lantang (LT), and Meihua (MH) pigs, and introgression of Western pigs into Longlin (LL), MH, and Yuedonghei (YDH) pigs were detected. Analysis of the extent of LD showed that indigenous pigs had low LD when pairwise SNP distance was short and high LD when pairwise SNP distance was long. Effective population size analysis showed a rapid decrease for Chinese indigenous pigs, and some pig populations had a relatively small Ne. This result indicated the loss of genetic diversity in indigenous pigs, and introgression from Western commercial pigs. Selection signatures detected in this study overlapped with meat quality traits, such as drip loss, intramuscular fat content, meat color b*, and average backfat thickness. Our study deepened understanding of the conservation status and domestication of Chinese indigenous pigs.
Collapse
|
12
|
Diao S, Huang S, Chen Z, Teng J, Ma Y, Yuan X, Chen Z, Zhang H, Li J, Zhang Z. Genome-Wide Signatures of Selection Detection in Three South China Indigenous Pigs. Genes (Basel) 2019; 10:genes10050346. [PMID: 31067806 PMCID: PMC6563113 DOI: 10.3390/genes10050346] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 01/11/2023] Open
Abstract
South China indigenous pigs are famous for their superior meat quality and crude feed tolerance. Saba and Baoshan pigs without saddleback were located in the high-altitude area of Yunnan Province, while Tunchang and Ding’an pigs with saddleback were located in the low-altitude area of Hainan Province. Although these pigs are different in appearance, the underlying genetic differences have not been investigated. In this study, based on the single-nucleotide polymorphism (SNP) genotypes of 124 samples, both the cross-population extended haplotype homozygosity (XP-EHH) and the fixation index (FST) statistic were used to identify potential signatures of selection in these pig breeds. We found nine potential signatures of selection detected simultaneously by two methods, annotated 22 genes in Hainan pigs, when Baoshan pigs were used as the reference group. In addition, eleven potential signatures of selection detected simultaneously by two methods, annotated 24 genes in Hainan pigs compared with Saba pigs. These candidate genes were most enriched in GO: 0048015~phosphatidylinositol-mediated signaling and ssc00604: Glycosphingolipid biosynthesis—ganglio series. These selection signatures were likely to overlap with quantitative trait loci associated with meat quality traits. Furthermore, one potential selection signature, which was associated with different coat color, was detected in Hainan pigs. These results contribute to a better understanding of the underlying genetic architecture of South China indigenous pigs.
Collapse
Affiliation(s)
- Shuqi Diao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Shuwen Huang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zitao Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jinyan Teng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zanmou Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|