1
|
Liu X, Chen W, Huang B, Wang X, Peng Y, Zhang X, Chai W, Khan MZ, Wang C. Advancements in copy number variation screening in herbivorous livestock genomes and their association with phenotypic traits. Front Vet Sci 2024; 10:1334434. [PMID: 38274664 PMCID: PMC10808162 DOI: 10.3389/fvets.2023.1334434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Copy number variations (CNVs) have garnered increasing attention within the realm of genetics due to their prevalence in human, animal, and plant genomes. These structural genetic variations have demonstrated associations with a broad spectrum of phenotypic diversity, economic traits, environmental adaptations, epidemics, and other essential aspects of both plants and animals. Furthermore, CNVs exhibit extensive sequence variability and encompass a wide array of genomes. The advancement and maturity of microarray and sequencing technologies have catalyzed a surge in research endeavors pertaining to CNVs. This is particularly prominent in the context of livestock breeding, where molecular markers have gained prominence as a valuable tool in comparison to traditional breeding methods. In light of these developments, a contemporary and comprehensive review of existing studies on CNVs becomes imperative. This review serves the purpose of providing a brief elucidation of the fundamental concepts underlying CNVs, their mutational mechanisms, and the diverse array of detection methods employed to identify these structural variations within genomes. Furthermore, it seeks to systematically analyze the recent advancements and findings within the field of CNV research, specifically within the genomes of herbivorous livestock species, including cattle, sheep, horses, and donkeys. The review also highlighted the role of CNVs in shaping various phenotypic traits including growth traits, reproductive traits, pigmentation and disease resistance etc., in herbivorous livestock. The main goal of this review is to furnish readers with an up-to-date compilation of knowledge regarding CNVs in herbivorous livestock genomes. By integrating the latest research findings and insights, it is anticipated that this review will not only offer pertinent information but also stimulate future investigations into the realm of CNVs in livestock. In doing so, it endeavors to contribute to the enhancement of breeding strategies, genomic selection, and the overall improvement of herbivorous livestock production and resistance to diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
Xu Z, Wang X, Song X, An Q, Wang D, Zhang Z, Ding X, Yao Z, Wang E, Liu X, Ru B, Xu Z, Huang Y. Association between the copy number variation of CCSER1 gene and growth traits in Chinese Capra hircus (goat) populations. Anim Biotechnol 2023; 34:1377-1383. [PMID: 35108172 DOI: 10.1080/10495398.2022.2025818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Recently, Coiled-coil serine-rich protein 1 (CCSER1) gene is reported to be related to economic traits in livestock, and become a hotspot. In our study, we detected CCSER1 gene CNV in 693 goats from six breeds (GZB, GZW, AN, BH, HG, TH) by quantitative real-time PCR (qPCR) and the association analysis between the types of CNV and growth traits. Then, CCSER1 gene expression pattern was discovered in seven tissues from NB goats. Our results showed that the CCSER1 gene copy numbers were distributed differently in the aforementioned six breeds. The type of CCSER1 gene CNV was significantly associated with body weight and heart girth traits in GZW goat, in which individuals with deletion type were dominant in body weight trait (P < 0.05), while the normal type individuals were more advantageous in heart girth trait (P < 0.01); and there was a significant association with heart girth in TH goat (P < 0.05), which normal type was the dominant one. The expression profile revealed that CCSER1 gene has the highest level in the lung, followed by the small intestine and heart. In conclusion, our result is dedicated to an in-depth study of the novel CCSER1 gene CNV site and to provide essential information for Chinese goats molecular selective breeding in the future.
Collapse
Affiliation(s)
- Zijie Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xianwei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Xingya Song
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Qingming An
- College of Agriculture and Forestry Engineering, Tongren University, Tongren, Guizhou, People's Republic of China
| | - Dahui Wang
- College of Agriculture and Forestry Engineering, Tongren University, Tongren, Guizhou, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Xiaoting Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Zhi Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Zejun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| |
Collapse
|
3
|
Choudhury MP, Wang Z, Zhu M, Teng S, Yan J, Cao S, Yi G, Liu Y, Liao Y, Tang Z. Genome-Wide Detection of Copy Number Variations Associated with Miniature Features in Horses. Genes (Basel) 2023; 14:1934. [PMID: 37895283 PMCID: PMC10606273 DOI: 10.3390/genes14101934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Copy number variations (CNVs) are crucial structural genomic variants affecting complex traits in humans and livestock animals. The current study was designed to conduct a comprehensive comparative copy number variation analysis among three breeds, Debao (DB), Baise (BS), and Warmblood (WB), with a specific focus on identifying genomic regions associated with miniature features in horses. Using whole-genome next-generation resequencing data, we identified 18,974 CNVs across 31 autosomes. Among the breeds, we found 4279 breed-specific CNV regions (CNVRs). Baise, Debao, and Warmblood displayed 2978, 986, and 895 distinct CNVRs, respectively, with 202 CNVRs shared across all three breeds. After removing duplicates, we obtained 1545 CNVRs from 26 horse genomes. Functional annotation reveals enrichment in biological functions, including antigen processing, cell metabolism, olfactory conduction, and nervous system development. Debao horses have 970 genes overlapping with CNVRs, possibly causing their small size and mountainous adaptations. We also found that the genes GHR, SOX9, and SOX11 may be responsible for the miniature features of the Debao horse by analyzing their overlapping CNVRs. Overall, this study offers valuable insights into the widespread presence of CNVs in the horse genome. The findings contribute to mapping horse CNVs and advance research on unique miniature traits observed in the Debao horse.
Collapse
Affiliation(s)
- Md. Panir Choudhury
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Bangladesh Livestock Research Institute, Ministry of Fisheries and Livestock, Savar, Dhaka 1341, Bangladesh
| | - Zihao Wang
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Min Zhu
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Shaohua Teng
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Jing Yan
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Shuwei Cao
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Guoqiang Yi
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwen Liu
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuying Liao
- Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
4
|
Gu J, Li S, Zhu B, Liang Q, Chen B, Tang X, Chen C, Wu DD, Li Y. Genetic variation and domestication of horses revealed by 10 chromosome-level genomes and whole-genome resequencing. Mol Ecol Resour 2023; 23:1656-1672. [PMID: 37259205 DOI: 10.1111/1755-0998.13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/07/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Understanding the genetic variations of the horse (Equus caballus) genome will improve breeding conservation and welfare. However, genetic variations in long segments, such as structural variants (SVs), remain understudied. We de novo assembled 10 chromosome-level three-dimensional horse genomes, each representing a distinct breed, and analysed horse SVs using a multi-assembly approach. Our findings suggest that SVs with the accumulation of mammalian-wide interspersed repeats related to long interspersed nuclear elements might be a horse-specific mechanism to modulate genome-wide gene regulatory networks. We found that olfactory receptors were commonly loss and accumulated deleterious mutations, but no purge of deleterious mutations occurred during horse domestication. We examined the potential effects of SVs on the spatial structure of chromatin via topologically associating domains (TADs). Breed-specific TADs were significantly enriched by breed-specific SVs. We identified 4199 unique breakpoint-resolved novel insertions across all chromosomes that account for 2.84 Mb sequences missing from the reference genome. Several novel insertions might have potential functional consequences, as 519 appeared to reside within 449 gene bodies. These genes are primarily involved in pathogen recognition, innate immune responses and drug metabolism. Moreover, 37 diverse horses were resequenced. Combining this with public data, we analysed 97 horses through a comparative population genomics approach to identify the genetic basis underlying breed characteristics using Thoroughbreds as a case study. We provide new scientific evidence for horse domestication, an understanding of the genetic mechanism underlying the phenotypic evolution of horses, and a comprehensive genetic variation resource for further genetic studies of horses.
Collapse
Affiliation(s)
- Jingjing Gu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Sheng Li
- Maxun Biotechnology Institute, Changsha, China
| | - Bo Zhu
- Novogene Bioinformatics Institute, Beijing, China
| | - Qiqi Liang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Xiangwei Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Chujie Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming, China
| |
Collapse
|
5
|
Genome-Wide Detection and Analysis of Copy Number Variation in Anhui Indigenous and Western Commercial Pig Breeds Using Porcine 80K SNP BeadChip. Genes (Basel) 2023; 14:genes14030654. [PMID: 36980927 PMCID: PMC10047991 DOI: 10.3390/genes14030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Copy number variation (CNV) is an important class of genetic variations widely associated with the porcine genome, but little is known about the characteristics of CNVs in foreign and indigenous pig breeds. We performed a genome-wide comparison of CNVs between Anhui indigenous pig (AHIP) and Western commercial pig (WECP) breeds based on data from the Porcine 80K SNP BeadChip. After analysis using the PennCNV software, we detected 3863 and 7546 CNVs in the AHIP and WECP populations, respectively. We obtained 225 (loss: 178, gain: 47) and 379 (loss: 293, gain: 86) copy number variation regions (CNVRs) randomly distributed across the autosomes of the AHIP and WECP populations, accounting for 10.90% and 22.57% of the porcine autosomal genome, respectively. Functional enrichment analysis of genes in the CNVRs identified genes related to immunity (FOXJ1, FOXK2, MBL2, TNFRSF4, SIRT1, NCF1) and meat quality (DGAT1, NT5E) in the WECP population; these genes were a loss event in the WECP population. This study provides important information on CNV differences between foreign and indigenous pig breeds, making it possible to provide a reference for future improvement of these breeds and their production performance.
Collapse
|
6
|
Identification of Copy Number Variations in Four Horse Breed Populations in South Korea. Animals (Basel) 2022; 12:ani12243501. [PMID: 36552421 PMCID: PMC9774267 DOI: 10.3390/ani12243501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, genome-wide CNVs were identified using a total of 469 horses from four horse populations (Jeju horses, Thoroughbreds, Jeju riding horses, and Hanla horses). We detected a total of 843 CNVRs throughout all autosomes: 281, 30, 301, and 310 CNVRs for Jeju horses, Thoroughbreds, Jeju riding horses, and Hanla horses, respectively. Of the total CNVRs, copy number losses were found to be the most abundant (48.99%), while gains and mixed CNVRs accounted for 41.04% and 9.96% of the total CNVRs, respectively. The length of the CNVRs ranged from 0.39 kb to 2.8 Mb, while approximately 7.2% of the reference horse genome assembly was covered by the total CNVRs. By comparing the CNVRs among the populations, we found a significant portion of the CNVRs (30.13%) overlapped; the highest number of shared CNVRs was between Hanla horses and Jeju riding horses. When compared with the horse CNVRs of previous studies, 26.8% of CNVRs were found to be uniquely detected in this study. The CNVRs were not randomly distributed throughout the genome; in particular, the Equus caballus autosome (ECA) 7 comprised the largest proportion of its genome (16.3%), while ECA 24 comprised the smallest (0.7%). Furthermore, functional analysis was applied to CNVRs that overlapped with genes (genic-CNVRs); these overlapping areas may be potentially associated with the olfactory pathway and nervous system. A racing performance QTL was detected in a CNVR of Thoroughbreds, Jeju riding horses, and Hanla horses, and the CNVR value was mixed for three breeds.
Collapse
|
7
|
Copy Number Variation (CNV): A New Genomic Insight in Horses. Animals (Basel) 2022; 12:ani12111435. [PMID: 35681904 PMCID: PMC9179425 DOI: 10.3390/ani12111435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary This study aimed to contribute to our knowledge of CNVs, a type of genomic marker in equines, by producing, for the first time, a fine-scale characterization of the CNV regions (CNVRs) in the Pura Raza Española horse breed. We found not only the existence of a unique pattern of genomic regions enriched in CNVs in the PRE in comparison with the data available from other breeds but also the incidence of CNVs across the entire genome. Since these regions could affect the structure and dose of the genes involved, we also performed a gene ontology analysis which revealed that most of the genes overlapping in CNVRs were related to the olfactory pathways and immune response. Abstract Copy number variations (CNVs) are a new-fangled source of genetic variation that can explain changes in the phenotypes in complex traits and diseases. In recent years, their study has increased in many livestock populations. However, the study and characterization of CNVs in equines is still very limited. Our study aimed to investigate the distribution pattern of CNVs, characterize CNV regions (CNVRs), and identify the biological pathways affected by CNVRs in the Pura Raza Española (PRE) breed. To achieve this, we analyzed high-density SNP genotyping data (670,804 markers) from a large cohort of 654 PRE horses. In total, we identified 19,902 CNV segments and 1007 CNV regions in the whole population. The length of the CNVs ranged from 1.024 kb to 4.55 Mb, while the percentage of the genome covered by CNVs was 4.4%. Interestingly, duplications were more abundant than deletions and mixed CNVRs. In addition, the distribution of CNVs across the chromosomes was not uniform, with ECA12 being the chromosome with the largest percentage of its genome covered (19.2%), while the highest numbers of CNVs were found in ECA20, ECA12, and ECA1. Our results showed that 71.4% of CNVRs contained genes involved in olfactory transduction, olfactory receptor activity, and immune response. Finally, 39.1% of the CNVs detected in our study were unique when compared with CNVRs identified in previous studies. To the best of our knowledge, this is the first attempt to reveal and characterize the CNV landscape in PRE horses, and it contributes to our knowledge of CNVs in equines, thus facilitating the understanding of genetic and phenotypic variations in the species. However, further research is still needed to confirm if the CNVs observed in the PRE are also linked to variations in the specific phenotypical differences in the breed.
Collapse
|
8
|
Wang M, Liu Y, Bi X, Ma H, Zeng G, Guo J, Guo M, Ling Y, Zhao C. Genome-Wide Detection of Copy Number Variants in Chinese Indigenous Horse Breeds and Verification of CNV-Overlapped Genes Related to Heat Adaptation of the Jinjiang Horse. Genes (Basel) 2022; 13:genes13040603. [PMID: 35456409 PMCID: PMC9033042 DOI: 10.3390/genes13040603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/05/2023] Open
Abstract
In the present study, genome-wide CNVs were detected in a total of 301 samples from 10 Chinese indigenous horse breeds using the Illumina Equine SNP70 Bead Array, and the candidate genes related to adaptability to high temperature and humidity in Jinjiang horses were identified and validated. We determined a total of 577 CNVs ranging in size from 1.06 Kb to 2023.07 Kb on the 31 pairs of autosomes. By aggregating the overlapping CNVs for each breed, a total of 495 CNVRs were detected in the 10 Chinese horse breeds. As many as 211 breed-specific CNVRs were determined, of which 64 were found in the Jinjiang horse population. By removing repetitive CNV regions between breeds, a total of 239 CNVRs were identified in the Chinese indigenous horse breeds including 102 losses, 133 gains and 4 of both events (losses and gains in the same region), in which 131 CNVRs were novel and only detected in the present study compared with previous studies. The total detected CNVR length was 41.74 Mb, accounting for 1.83% of the total length of equine autosomal chromosomes. The coverage of CNVRs on each chromosome varied from 0.47% to 15.68%, with the highest coverage on ECA 12, but the highest number of CNVRs was detected on ECA1 and ECA24. A total of 229 genes overlapping with CNVRs were detected in the Jinjiang horse population, which is an indigenous horse breed unique to the southeastern coast of China exhibiting adaptability to high temperature and humidity. The functional annotation of these genes showed significant relation to cellular heat acclimation and immunity. The expression levels of the candidate genes were validated by heat shock treatment of various durations on fibroblasts of horses. The results show that the expression levels of HSPA1A were significantly increased among the different heat shock durations. The expression level of NFKBIA and SOCS4 declined from the beginning of heat shock to 2 h after heat shock and then showed a gradual increase until it reached the highest value at 6 h and 10 h of heat shock, respectively. Breed-specific CNVRs of Chinese indigenous horse breeds were revealed in the present study, and the results facilitate mapping CNVs on the whole genome and also provide valuable insights into the molecular mechanisms of adaptation to high temperature and humidity in the Jinjiang horse.
Collapse
Affiliation(s)
- Min Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
| | - Yu Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
| | - Xiaokun Bi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
| | - Hongying Ma
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi’an 710032, China;
| | - Guorong Zeng
- Jinjiang Animal Husbandry and Veterinary Station, Quanzhou 362200, China; (G.Z.); (J.G.); (M.G.)
| | - Jintu Guo
- Jinjiang Animal Husbandry and Veterinary Station, Quanzhou 362200, China; (G.Z.); (J.G.); (M.G.)
| | - Minghao Guo
- Jinjiang Animal Husbandry and Veterinary Station, Quanzhou 362200, China; (G.Z.); (J.G.); (M.G.)
| | - Yao Ling
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
| | - Chunjiang Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
- Correspondence:
| |
Collapse
|
9
|
Liu X, Yang P, Sun H, Zhang Z, Cai C, Xu J, Ding X, Wang X, Lyu S, Li Z, Xu Z, Shi Q, Wang E, Lei C, Chen H, Ru B, Huang Y. CNV analysis of VAMP7 gene reveals variation associated with growth traits in Chinese cattle. Anim Biotechnol 2022:1-7. [PMID: 35236249 DOI: 10.1080/10495398.2021.2011741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Copy number variant (CNV), a common genetic polymorphism, is closely related to the phenotypic variation traits of organisms. Vesicle-associated membrane protein 7 gene (VAMP7) codes a protein, which is a member of the SNARE proteins family and plays an important role in the process of intracellular vesicle transport. In this study, a total of four cattle breeds (Yunling cattle, Xianan cattle, Pinan cattle, Jiaxian red cattle) were used to investigate the copy numbers, and we found an association relationship between CNV of VAMP7 gene and growth traits of cattle by SPSS 20.0 software. The results showed that the CNV type of VAMP7 gene in four cattle breeds had the same distribution, Duplication type occupies a dominant position among the four varieties. In Yunling cattle, the Duplication type of VAMP7 is significantly related to the height at the hip cross (p < 0.05), Individuals with Duplication type commonly have less performance on growth and development, which indicates that the Duplication type of the VAMP7 gene may have a negative effect on cattle growth. Individuals with the other two CNV types may become the breeding direction of the VAMP7 gene. This study provided a new perspective and basic material for the molecular genetics of the CNV of the VAMP7 gene, and also promoted the breeding progress of Chinese local cattle.
Collapse
Affiliation(s)
- Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, People's Republic of China
| | - Peng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Haoming Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Cuicui Cai
- Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, People's Republic of China
| | - Jiawei Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Xiaoting Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Xianwei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, People's Republic of China
| | - Shijie Lyu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Zhiming Li
- Henan Provincial Animal Husbandry General Station, Zhengzhou, People's Republic of China
| | - Zejun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, People's Republic of China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou, People's Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
10
|
Guo S, Wu X, Pei J, Wang X, Bao P, Xiong L, Chu M, Liang C, Yan P, Guo X. Genome-wide CNV analysis reveals variants associated with high-altitude adaptation and meat traits in Qaidam cattle. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
11
|
Kumar H, Panigrahi M, Saravanan KA, Rajawat D, Parida S, Bhushan B, Gaur GK, Dutt T, Mishra BP, Singh RK. Genome-wide detection of copy number variations in Tharparkar cattle. Anim Biotechnol 2021; 34:448-455. [PMID: 34191685 DOI: 10.1080/10495398.2021.1942027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Copy number variations (CNVs) are major forms of genetic variation with an increasing importance in animal genomics. This study used the Illumina BovineSNP 50 K BeadChip to detect the genome-wide CNVs in the Tharparkar cattle. With the aid of PennCNV software, we noticed a total of 447 copy number variation regions (CNVRs) across the autosomal genome, occupying nearly 2.17% of the bovine genome. The average size of detected CNVRs was found to be 122.2 kb, the smallest CNVR being 50.02 kb in size, to the largest being 1,232.87 Kb. Enrichment analyses of the genes in these CNVRs gave significant associations with molecular adaptation-related Gene Ontology (GO) terms. Most CNVR genes were significantly enriched for specific biological functions; signaling pathways, sensory responses to stimuli, and various cellular processes. In addition, QTL analysis of CNVRs described them to be linked with economically essential traits in cattle. The findings here provide crucial information for constructing a more comprehensive CNVR map for the indigenous cattle genome.
Collapse
Affiliation(s)
- Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - K A Saravanan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - G K Gaur
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - B P Mishra
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - R K Singh
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
12
|
Genomic Structural Diversity in Local Goats: Analysis of Copy-Number Variations. Animals (Basel) 2020; 10:ani10061040. [PMID: 32560248 PMCID: PMC7341319 DOI: 10.3390/ani10061040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Copy-number variations (CNVs) are one of the widely dispersed forms of structural variations in mammalian genomes and are known to be present in genomic regions that regulate important physiological functions. In this study, CNV detection was performed starting from genotypic data of 120 individuals, belonging to four Sicilian dairy goat breeds, genotyped with the Illumina GoatSNP50 BeadChip array. Using PennCNV software, a total of 702 CNVs were identified in 107 individuals. These were merged in 75 CNV regions (CNVRs), i.e., regions containing CNVs overlapped by at least 1 base pair. Functional annotation of the CNVRs allowed the identification of 139 genes/loci within the most frequent CNVRs, which are involved in local adaptation, mild behaviour, immune response, reproduction, and olfactory receptors. This study provides insights into the genomic variations within these Italian goat breeds and should be of value for future studies to identify the relationships between this type of genetic variation and phenotypic traits. Abstract Copy-number variations (CNVs) are one of the widely dispersed forms of structural variations in mammalian genomes, and are present as deletions, insertions, or duplications. Only few studies have been conducted in goats on CNVs derived from SNP array data, and many local breeds still remain uncharacterized, e.g., the Sicilian goat dairy breeds. In this study, CNV detection was performed, starting from the genotypic data of 120 individuals, belonging to four local breeds (Argentata dell’Etna, Derivata di Siria, Girgentana, and Messinese), genotyped with the Illumina GoatSNP50 BeadChip array. Overall, 702 CNVs were identified in 107 individuals using PennCNV software based on the hidden Markov model algorithm. These were merged in 75 CNV regions (CNVRs), i.e., regions containing CNVs overlapped by at least 1 base pair, while 85 CNVs remained unique. The part of the genome covered by CNV events was 35.21 Mb (1.2% of the goat genome length). Functional annotation of the CNVRs allowed the identification of 139 genes/loci within the most frequent CNVRs that are involved in local adaptations, such as coat colour (ADAMTS20 and EDNRA), mild behaviour (NR3C2), immune response (EXOC3L4 and TNFAIP2), reproduction (GBP1 and GBP6), and olfactory receptors (OR7E24). This study provides insights into the genomic variations for these Sicilian dairy goat breeds and should be of value for future studies to identify the relationships between this type of genetic variation and phenotypic traits.
Collapse
|