1
|
Jaszek N, Bogdanowicz A, Siwiec J, Starownik R, Kwaśniewski W, Mlak R. Epigenetic Biomarkers as a New Diagnostic Tool in Bladder Cancer-From Early Detection to Prognosis. J Clin Med 2024; 13:7159. [PMID: 39685620 DOI: 10.3390/jcm13237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Bladder cancer (BC) currently ranks as the 9th most common cancer worldwide. It is characterised by very high rates of recurrence and metastasis. Most cases of BC are of urothelial origin, and due to its ability to penetrate muscle tissue, BC is divided into non-muscle-invasive BC (NMIBC) and muscle-invasive BC (MIBC). The current diagnosis of BC is still based primarily on invasive cystoscopy, which is an expensive and invasive method that carries a risk of various complications. Urine sediment cytology is often used as a complementary test, the biggest drawback of which is its very low sensitivity concerning the detection of BC at early stages, which is crucial for prompt implementation of appropriate treatment. Therefore, there is a great need to develop innovative diagnostic techniques that would enable early detection and accurate prognosis of BC. Great potential in this regard is shown by epigenetic changes, which are often possible to observe long before the onset of clinical symptoms of the disease. In addition, these changes can be detected in readily available biological material, such as urine or blood, indicating the possibility of constructing non-invasive diagnostic tests. Over the past few years, many studies have emerged using epigenetic alterations as novel diagnostic and prognostic biomarkers of BC. This review provides an update on promising diagnostic biomarkers for the detection and prognosis of BC based on epigenetic changes such as DNA methylation and expression levels of selected non-coding RNAs (ncRNAs), taking into account the latest literature data.
Collapse
Affiliation(s)
- Natalia Jaszek
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Alicja Bogdanowicz
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jan Siwiec
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Radosław Starownik
- Department of Urology and Urological Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Radosław Mlak
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Zhao J, Ma Y, Zheng X, Sun Z, Lin H, Du C, Cao J. Bladder cancer: non-coding RNAs and exosomal non-coding RNAs. Funct Integr Genomics 2024; 24:147. [PMID: 39217254 DOI: 10.1007/s10142-024-01433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bladder cancer (BCa) is a highly prevalent type of cancer worldwide, and it is responsible for numerous deaths and cases of disease. Due to the diverse nature of this disease, it is necessary to conduct significant research that delves deeper into the molecular aspects, to potentially discover novel diagnostic and therapeutic approaches. Lately, there has been a significant increase in the focus on non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), due to their growing recognition for their involvement in the progression and manifestation of BCa. The interest in exosomes has greatly grown due to their potential for transporting a diverse array of active substances, including proteins, nucleic acids, carbohydrates, and lipids. The combination of these components differs based on the specific cell and its condition. Research indicates that using exosomes could have considerable advantages in identifying and forecasting BCa, offering a less invasive alternative. The distinctive arrangement of the lipid bilayer membrane found in exosomes is what makes them particularly effective for administering treatments aimed at managing cancer. In this review, we have tried to summarize different ncRNAs that are involved in BCa pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in BCa.
Collapse
Affiliation(s)
- Jingang Zhao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Yangyang Ma
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Xiaodong Zheng
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Zhen Sun
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Hongxiang Lin
- Department of Urology, Ganzhou Donghe Hospital, Ganzhou, 341000, Jiang'xi, China
| | - Chuanjun Du
- Department of Urology, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310009, Zhe'jiang, China
| | - Jing Cao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China.
| |
Collapse
|
3
|
Garcia-Vallicrosa C, Falcon-Perez JM, Royo F. The Role of Longevity Assurance Homolog 2/Ceramide Synthase 2 in Bladder Cancer. Int J Mol Sci 2023; 24:15668. [PMID: 37958652 PMCID: PMC10650086 DOI: 10.3390/ijms242115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The human CERS2 gene encodes a ceramide synthase enzyme, known as CERS2 (ceramide synthase 2). This protein is also known as LASS2 (LAG1 longevity assurance homolog 2) and TMSG1 (tumor metastasis-suppressor gene 1). Although previously described as a tumor suppressor for different types of cancer, such as prostate or liver cancer, it has also been observed to promote tumor growth in adenocarcinoma. In this review, we focus on the influence of CERS2 in bladder cancer (BC), approaching the existing literature about its structure and activity, as well as the miRNAs regulating its expression. From a mechanistic point of view, different explanations for the role of CERS2 as an antitumor protein have been proposed, including the production of long-chain ceramides, interaction with vacuolar ATPase, and its function as inhibitor of mitochondrial fission. In addition, we reviewed the literature specifically studying the expression of this gene in both BC and biopsy-derived tumor cell lines, complementing this with an analysis of public gene expression data and its association with disease progression. We also discuss the importance of CERS2 as a biomarker and the presence of CERS2 mRNA in extracellular vesicles isolated from urine.
Collapse
Affiliation(s)
- Clara Garcia-Vallicrosa
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-V.); (J.M.F.-P.)
| | - Juan M. Falcon-Perez
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-V.); (J.M.F.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Felix Royo
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-V.); (J.M.F.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
4
|
Chin FW, Chan SC, Veerakumarasivam A. Homeobox Gene Expression Dysregulation as Potential Diagnostic and Prognostic Biomarkers in Bladder Cancer. Diagnostics (Basel) 2023; 13:2641. [PMID: 37627900 PMCID: PMC10453580 DOI: 10.3390/diagnostics13162641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/27/2023] Open
Abstract
Homeobox genes serve as master regulatory transcription factors that regulate gene expression during embryogenesis. A homeobox gene may have either tumor-promoting or tumor-suppressive properties depending on the specific organ or cell lineage where it is expressed. The dysregulation of homeobox genes has been reported in various human cancers, including bladder cancer. The dysregulated expression of homeobox genes has been associated with bladder cancer clinical outcomes. Although bladder cancer has high risk of tumor recurrence and progression, it is highly challenging for clinicians to accurately predict the risk of tumor recurrence and progression at the initial point of diagnosis. Cystoscopy is the routine surveillance method used to detect tumor recurrence. However, the procedure causes significant discomfort and pain that results in poor surveillance follow-up amongst patients. Therefore, the development of reliable non-invasive biomarkers for the early detection and monitoring of bladder cancer is crucial. This review provides a comprehensive overview of the diagnostic and prognostic potential of homeobox gene expression dysregulation in bladder cancer.
Collapse
Affiliation(s)
- Fee-Wai Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Soon-Choy Chan
- School of Liberal Arts, Science and Technology, Perdana University, Kuala Lumpur 50490, Malaysia
| | - Abhi Veerakumarasivam
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
5
|
Zhang M, Li Z, Liu Y, Ding X, Wang Y, Fan S. The ceramide synthase (CERS/LASS) family: Functions involved in cancer progression. Cell Oncol (Dordr) 2023; 46:825-845. [PMID: 36947340 DOI: 10.1007/s13402-023-00798-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Ceramide synthases (CERSes) are also known longevity assurance (LASS) genes. CERSes play important roles in the regulation of cancer progression. The CERS family is expressed in a variety of human tumours and is involved in tumorigenesis. They are closely associated with the progression of liver, breast, cervical, ovarian, colorectal, head and neck squamous cell, gastric, lung, prostate, oesophageal, pancreatic and blood cancers. CERSes play diverse and important roles in the regulation of cell survival, proliferation, apoptosis, migration, invasion, and drug resistance. The differential expression of CERSes in tumour and nontumour cells and survival analysis of cancer patients suggest that some CERSes could be used as potential prognostic markers. They are also important potential targets for cancer therapy. METHODS In this review, we summarize the available evidence on the inhibitory or promotive roles of CERSes in the progression of many cancers. Furthermore, we summarize the identified upstream and downstream molecular mechanisms that may regulate the function of CERSes in cancer settings.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Zhangyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yuwei Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xiao Ding
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China.
| | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
6
|
El-Mahdy HA, Elsakka EGE, El-Husseiny AA, Ismail A, Yehia AM, Abdelmaksoud NM, Elshimy RAA, Noshy M, Doghish AS. miRNAs role in bladder cancer pathogenesis and targeted therapy: Signaling pathways interplay - A review. Pathol Res Pract 2023; 242:154316. [PMID: 36682282 DOI: 10.1016/j.prp.2023.154316] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Bladder cancer (BC) is the 11th most popular cancer in females and 4th in males. A lot of efforts have been exerted to improve BC patients' care. Besides, new approaches have been developed to enhance the efficiency of BC diagnosis, prognosis, therapeutics, and monitoring. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. The miRNAs are either downregulated or upregulated in BC due to epigenetic alterations or biogenesis machinery abnormalities. In BC, dysregulation of miRNAs is associated with cell cycle arrest, apoptosis, proliferation, metastasis, treatment resistance, and other activities. A variety of miRNAs have been related to tumor kind, stage, or patient survival. Besides, although new approaches for using miRNAs in the diagnosis, prognosis, and treatment of BC have been developed, it still needs further investigations. In the next words, we illustrate the recent advances in the role of miRNAs in BC aspects. They include the role of miRNAs in BC pathogenesis and therapy. Besides, the clinical applications of miRNAs in BC diagnosis, prognosis, and treatment are also discussed.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reham A A Elshimy
- Clinical & Chemical Pathology Department, National Cancer Institute, Cairo University, 11796 Cairo, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
7
|
The microRNA-3622 family at the 8p21 locus exerts oncogenic effects by regulating the p53-downstream gene network in prostate cancer progression. Oncogene 2022; 41:3186-3196. [PMID: 35501464 DOI: 10.1038/s41388-022-02289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
For human prostate cancer, the chromosome 8p21 locus, which contains NKX3.1 and the microRNA (miR)-3622 family (miR-3622a/b), is a frequently deleted region. Thus, miR-3622 is proposed as a suppressor for prostate cancer, but its role remains debatable. In the present study, we found that expression of miR-3622a was lower, whereas expression of miR-3622b-3p was higher in human prostate cancer tissues than in normal prostate tissues. miR-3622a-3p inhibited cell migration and invasion of human prostate cancer cells, whereas miR-3622b-3p facilitated cell proliferation, migration, and invasion. To address the opposing roles of miR-3622 family members in various human prostate cancer cell lines, we knocked out (KO) endogenous miR-3622, including both miR-3622a/b. Our results showed that miR-3622 KO reduced cell proliferation, migration, and invasion in vitro and tumor growth and metastasis in vivo. Functional analyses revealed that miR-3622 regulated the p53-downstream gene network, including AIFM2, c-MYC, and p21, to control apoptosis and the cell cycle. Furthermore, using CRISPR interference, miRNA/mRNA immunoprecipitation assays, and dual-luciferase assays, we established that AIFM2, a direct target of miR-3622b-3p, is responsible for miR-3622 KO-induced apoptosis. We identified an miR-3622-AIFM2 axis that contributes to oncogenic function during tumor progression. In addition, miR-3622 KO inhibited the epithelial-mesenchymal transition involved in prostate cancer metastasis via upregulation of vimentin. The results show that miR-3622b-3p is upregulated in human prostate cancers and has an oncogenic function in tumor progression and metastasis via repression of p53 signaling, especially through an miR-3622-AIFM2 axis. In contrast, for human prostate cancer, deletion of the miR-3622 locus at 8p21 reduced the oncogenic effects on tumor progression and metastasis.
Collapse
|
8
|
Wang SS, Zhai GQ, Chen G, Huang ZG, He RQ, Huang SN, Liu JL, Cheng JW, Yan HB, Dang YW, Li SH. Decreased expression of transcription factor Homeobox A11 and its potential target genes in bladder cancer. Pathol Res Pract 2022; 233:153847. [DOI: 10.1016/j.prp.2022.153847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
9
|
Parol M, Gzil A, Bodnar M, Grzanka D. Systematic review and meta-analysis of the prognostic significance of microRNAs related to metastatic and EMT process among prostate cancer patients. J Transl Med 2021; 19:28. [PMID: 33413466 PMCID: PMC7788830 DOI: 10.1186/s12967-020-02644-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of tumor cells to spread from their origin place and form secondary tumor foci is determined by the epithelial-mesenchymal transition process. In epithelial tumors such as prostate cancer (PCa), the loss of intercellular interactions can be observed as a change in expression of polarity proteins. Epithelial cells acquire ability to migrate, what leads to the formation of distal metastases. In recent years, the interest in miRNA molecules as potential future treatment options has increased. In tumor microenvironment, miRNAs have the ability to regulate signal transduction pathways, where they can act as suppressors or oncogenes. MiRNAs are secreted by cancer cells, and the changes in their expression levels are closely related to a cancer progression, including epithelial-mesenchymal transition. These molecules offer new diagnostic and therapeutic possibilities. Therapeutics which make use of synthesized RNA fragments and mimic or block miRNAs affected in PCa, may lead to inhibition of tumor progression and even disease re-emission. Based on appropriate qualification criteria, we conducted a selection process to identify scientific articles describing miRNAs and their relation to epithelial-mesenchymal transition in PCa patients. The studies were published in English on Pubmed, Scopus and the Web of Science before August 08, 2019. Hazard ratios (HRs) and 95% confidence intervals (CI) as well as total Gleason score were used to assess the concordance between miRNAs and presence of metastases. A total of 13 studies were included in our meta-analysis, representing 1608 PCa patients and 15 miRNA molecules. Our study clarifies a relationship between the clinicopathological features of PCa and the aberrant expression of several miRNA as well as the complex mechanism of miRNA molecules involvement in the induction and promotion of the metastatic mechanism in PCa.
Collapse
Affiliation(s)
- Martyna Parol
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
10
|
Chen D, Cheng L, Cao H, Liu W. Role of microRNA-381 in bladder cancer growth and metastasis with the involvement of BMI1 and the Rho/ROCK axis. BMC Urol 2021; 21:5. [PMID: 33407350 PMCID: PMC7789167 DOI: 10.1186/s12894-020-00775-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background Emerging evidence has noted the important participation of microRNAs (miRNAs) in several human diseases including cancer. This research was launched to probe the function of miR-381 in bladder cancer (BCa) progression. Methods Twenty-eight patients with primary BCa were included in this study. Cancer tissues and the adjacent normal tissues were obtained. Aberrantly expressed miRNAs in BCa tissues were analyzed using miRNA microarrays. miR-381 expression in the bladder and paired tumor tissues, and in BCa and normal cell lines was determined. The target relationship between miR-381 and BMI1 was predicted online and validated through a luciferase assay. Gain-of-functions of miR-381 and BMI1 were performed to identify their functions on BCa cell behaviors as well as tumor growth in vivo. The involvement of the Rho/ROCK signaling was identified. Results miR-381 was poor regulated in BCa tissues and cells (all p < 0.05). A higher miR-381 level indicated a better prognosis of patients with BCa. Artificial up-regulation of miR-381 inhibited proliferation, invasion, migration, resistance to apoptosis, and tumor formation ability of BCa T24 and RT4 cells (all p < 0.05). miR-381 was found to directly bind to BMI1 and was negatively correlated with BMI1 expression. Overexpression of BMI1 partially blocked the tumor suppressing roles of miR-381 in cell malignancy and tumor growth (all p < 0.05). In addition, miR-381 led to decreased RhoA phosphorylation and ROCK2 activation, which were also reversed by BMI1 (all p < 0.05). Artificial inhibition of the Rho/ROCK signaling blocked the functions of BMI1 in cell growth and metastasis (all p < 0.05). Conclusion The study evidenced that miR-381 may act as a beneficiary biomarker in BCa patients. Up-regulation of miR-381 suppresses BCa development both in vivo and in vitro through BMI1 down-regulation and the Rho/ROCK inactivation.
Collapse
Affiliation(s)
- Dayin Chen
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No. 348, Dexiang Street, Jiamusi, 154002, Heilongjiang, People's Republic of China
| | - Liang Cheng
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No. 348, Dexiang Street, Jiamusi, 154002, Heilongjiang, People's Republic of China
| | - Huifeng Cao
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No. 348, Dexiang Street, Jiamusi, 154002, Heilongjiang, People's Republic of China.
| | - Wensi Liu
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No. 348, Dexiang Street, Jiamusi, 154002, Heilongjiang, People's Republic of China
| |
Collapse
|
11
|
Parizi PK, Yarahmadi F, Tabar HM, Hosseini Z, Sarli A, Kia N, Tafazoli A, Esmaeili SA. MicroRNAs and target molecules in bladder cancer. Med Oncol 2020; 37:118. [PMID: 33216248 DOI: 10.1007/s12032-020-01435-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Bladder cancer (BC) is considered as one of the most common malignant tumors in humans with complex pathogenesis including gene expression variation, protein degradation, and changes in signaling pathways. Many studies on involved miRNAs in BC have demonstrated that they could be used as potential biomarkers in the prognosis, response to treatment, and screening before the cancerous phenotype onset. MicroRNAs (miRNAs) regulate many cellular processes through their different effects on special targets along with modifying signaling pathways, apoptosis, cell growth, and differentiation. The diverse expression of miRNAs in cancerous tissues could mediate procedures leading to the oncogenic or suppressor behavior of certain genes in cancer cells. Since a specific miRNA may have multiple targets, an mRNA could also be regulated by multiple miRNAs which further demonstrates the actual role of miRNAs in cancer. In addition, miRNAs can be utilized as biomarkers in some cancers that cannot be screened in the early stages. Hence, finding blood, urine, or tissue miRNA biomarkers by novel or routine gene expression method could be an essential step in the prognosis and control of cancer. In the present review, we have thoroughly evaluated the recent findings on different miRNAs in BC which can provide comprehensive information on better understanding the role of diverse miRNAs and better decision making regarding the new approaches in the diagnosis, prognosis, prevention, and treatment of BC.
Collapse
Affiliation(s)
- Payam Kheirmand Parizi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Genome Medical Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Zohreh Hosseini
- Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, Iran
| | - Abdolazim Sarli
- Department of Medical Genetic, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Nadia Kia
- Agostino Gemelli University Hospital, Torvergata University of Medical Sciences, Rome, Italy
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy With the Division of Laboratory Medicine, Medical University of Bialystok, Bialystok, Poland.,Clinical Research Center, Medical University of Bialystok, Bialystok, Poland
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Chang S, Sun G, Zhang D, Li Q, Qian H. MiR-3622a-3p acts as a tumor suppressor in colorectal cancer by reducing stemness features and EMT through targeting spalt-like transcription factor 4. Cell Death Dis 2020; 11:592. [PMID: 32719361 PMCID: PMC7385142 DOI: 10.1038/s41419-020-02789-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs are a class of small non-coding RNAs which act as oncogenes or tumor suppressors through targeting specific mRNAs. Colorectal cancer (CRC) is one of the most common malignancies worldwide. MiR-3622a-3p is found to be decreased in colorectal cancer (CRC) by analyzing data from TCGA database and there are few reports about the role of miR-3622a-3p in cancers. Our research aimed to explore the effects of miR-3622a-3p on CRC. MiR-3622a-3p was found to be down-regulated in CRC tissues and cells by qRT-PCR. The effect of miR-3622a-3p on proliferation, apoptosis, cell cycle, migration and invasion of CRC cells were investigated by a serious of biological function assays and the results revealed that miR-3622a-3p could inhibit the malignant biological properties of CRC. We performed dual luciferase assay, RNA immunoprecipitation (RIP) assay and pull-down assay to confirm the interaction between miR-3622a-3p and spalt-like transcription factor 4 (SALL4). Western blot was carried out to determine the effects of miR-3622a-3p and SALL4 on stemness features and EMT. We found that miR-3622a-3p suppressed stemness features and EMT of CRC cells by SALL4 mRNA degradation. MiR-3622a-3p could inhibit CRC cell proliferation and metastasis in vivo with tumor xenograft model and in vivo metastasis model. The CRC organoid model was constructed with fresh CRC tissues and the growth of organoids was suppressed by miR-3622a-3p. Taken together, the results of our study indicate miR-3622a-3p exerts antioncogenic role in CRC by downregulation of SALL4. The research on miR-3622a-3p might provide a new insight into treatment of CRC.
Collapse
Affiliation(s)
- Shuchen Chang
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu province, China
| | - Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Dan Zhang
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu province, China
| | - Qing Li
- Medical College of Southeast University, Nanjing, 210009, Jiangsu province, China
| | - Haihua Qian
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu province, China.
| |
Collapse
|
13
|
Wu D, Zhang T, Wang J, Zhou J, Pan H, Qu P. Long noncoding RNA NNT-AS1 enhances the malignant phenotype of bladder cancer by acting as a competing endogenous RNA on microRNA-496 thereby increasing HMGB1 expression. Aging (Albany NY) 2019; 11:12624-12640. [PMID: 31848324 PMCID: PMC6949093 DOI: 10.18632/aging.102591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
The long noncoding RNA nicotinamide nucleotide transhydrogenase antisense RNA 1 (NNT-AS1) is a key malignancy regulator in a variety of human cancers. In this study, we first measured the expression of NNT-AS1 in bladder cancer and examined its role in cancer progression. The mechanisms behind the oncogenic functions of NNT-AS1 in bladder cancer were explored. We found that NNT-AS1 was upregulated in bladder cancer tissues and cell lines. This increased expression demonstrated a significant correlation with advanced clinical stage, lymph node metastasis, and shorter overall survival. NNT-AS1 knockdown suppressed bladder cancer cell proliferation, migration, and invasion and facilitated apoptosis in vitro and hindered tumor growth in vivo. NNT-AS1 functioned as a competing endogenous RNA for microRNA-496 (miR-496), and the suppressive effects of NNT-AS1 knockdown on malignant characteristics were abrogated by miR-496 silencing. HMGB1 was identified as a direct target gene of miR-496 in bladder cancer, and HMGB1 expression was enhanced by NNT-AS1 via sponging of miR-496. In conclusion, the NNT-AS1–miR-496–HMGB1 pathway plays a significant role in the aggressive behavior of bladder cancer and may lead to new NNT-AS1–based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Deyao Wu
- Department of Urology, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng People's Hospital, Yancheng 224001, China
| | - Tielong Zhang
- Department of Urology, Jianhu Hospital Affiliated to Nantong University, Yancheng 224700, China
| | - Jie Wang
- Department of Urology, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng People's Hospital, Yancheng 224001, China
| | - Jian Zhou
- Department of Urology, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng People's Hospital, Yancheng 224001, China
| | - Huixing Pan
- Department of Urology, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng People's Hospital, Yancheng 224001, China
| | - Ping Qu
- Department of Urology, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng People's Hospital, Yancheng 224001, China
| |
Collapse
|