1
|
Vakili S, Behrooz AB, Whichelo R, Fernandes A, Emwas AH, Jaremko M, Markowski J, Los MJ, Ghavami S, Vitorino R. Progress in Precision Medicine for Head and Neck Cancer. Cancers (Basel) 2024; 16:3716. [PMID: 39518152 PMCID: PMC11544984 DOI: 10.3390/cancers16213716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This paper presents a comprehensive comparative analysis of biomarkers for head and neck cancer (HNC), a prevalent but molecularly diverse malignancy. We detail the roles of key proteins and genes in tumourigenesis and progression, emphasizing their diagnostic, prognostic, and therapeutic relevance. Our bioinformatic validation reveals crucial genes such as AURKA, HMGA2, MMP1, PLAU, and SERPINE1, along with microRNAs (miRNA), linked to HNC progression. OncomiRs, including hsa-miR-21-5p, hsa-miR-31-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-196a-5p, and hsa-miR-200c-3p, drive tumourigenesis, while tumour-suppressive miRNAs like hsa-miR-375 and hsa-miR-145-5p inhibit it. Notably, hsa-miR-155-3p correlates with survival outcomes in addition to the genes RAI14, S1PR5, OSBPL10, and METTL6, highlighting its prognostic potential. Future directions should focus on leveraging precision medicine, novel therapeutics, and AI integration to advance personalized treatment strategies to optimize patient outcomes in HNC care.
Collapse
Affiliation(s)
- Sanaz Vakili
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Rachel Whichelo
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexandra Fernandes
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Abdul-Hamid Emwas
- Core Lab of NMR, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Jarosław Markowski
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland;
| | - Marek J. Los
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Rui Vitorino
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
2
|
Sun Q, Lei X, Yang X. CircRNAs as upstream regulators of miRNA//HMGA2 axis in human cancer. Pharmacol Ther 2024; 263:108711. [PMID: 39222752 DOI: 10.1016/j.pharmthera.2024.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
High mobility group protein A2 (HMGA2) is widely recognized as a chromatin-binding protein, whose overexpression is observed in nearly all human cancers. It exerts its oncogenic effects by influencing various cellular processes such as the epithelial-mesenchymal transition, cell differentiation, and DNA damage repair. MicroRNA (miRNA) serves as a pivotal gene expression regulator, concurrently modulating multiple genes implicated in cancer progression, including HMGA2. It also serves as a significant biomarker for cancer. Circular RNA (circRNA) plays a crucial role in gene regulation primarily by sequestering miRNAs and impeding their ability to enhance the expression of other genes, including HMGA2. Increasingly, studies have underscored the vital role of miRNA/HMGA2 interactions in cancer. Given the significance of circRNA as an upstream regulatory mediator and the complexity of regulatory mechanisms, we hereby present a comprehensive overview of the pivotal role of circRNAs as upstream regulators of the miRNA//HMGA2 axis in human cancers. This insight may herald a novel direction for future cancer research.
Collapse
Affiliation(s)
- Qiqi Sun
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Lukyanov SA, Titov SE, Kozorezova ES, Demenkov PS, Veryaskina YA, Korotovskii DV, Ilyina TE, Vorobyev SL, Zhivotov VA, Bondarev NS, Sleptsov IV, Sergiyko SV. Prediction of the Aggressive Clinical Course of Papillary Thyroid Carcinoma Based on Fine Needle Aspiration Biopsy Molecular Testing. Int J Mol Sci 2024; 25:7090. [PMID: 39000197 PMCID: PMC11241318 DOI: 10.3390/ijms25137090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Molecular genetic events are among the numerous factors affecting the clinical course of papillary thyroid carcinoma (PTC). Recent studies have demonstrated that aberrant expression of miRNA, as well as different thyroid-related genes, correlate with the aggressive clinical course of PTC and unfavorable treatment outcomes, which opens up new avenues for using them in the personalization of the treatment strategy for patients with PTC. In the present work, our goal was to assess the applicability of molecular markers in the preoperative diagnosis of aggressive variants of papillary thyroid cancer. The molecular genetic profile (expression levels of 34 different markers and BRAF mutations) was studied for 108 cytology specimens collected by fine-needle aspiration biopsy in patients with PTC having different clinical manifestations. Statistically significant differences with adjustment for multiple comparisons (p < 0.0015) for clinically aggressive variants of PTC were obtained for four markers: miRNA-146b, miRNA-221, fibronectin 1 (FN1), and cyclin-dependent kinase inhibitor 2A (CDKN2A) genes. A weak statistical correlation (0.0015 < p < 0.05) was observed for miRNA-31, -375, -551b, -148b, -125b, mtDNA, CITED1, TPO, HMGA2, CLU, NIS, SERPINA1, TFF3, and TMPRSS4. The recurrence risk of papillary thyroid carcinoma can be preoperatively predicted using miRNA-221, FN1, and CDKN2A genes.
Collapse
Affiliation(s)
- Sergei A Lukyanov
- Department of General and Pediatric Surgery, South Ural State Medical University, Chelyabinsk 454092, Russia
| | - Sergei E Titov
- Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia
- PCR Laboratory, AO Vector-Best, Novosibirsk 630117, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Evgeniya S Kozorezova
- National Center of Clinical Morphological Diagnostics, Saint Petersburg 192283, Russia
| | - Pavel S Demenkov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
- Institute of Cytology and Genetics, SB RAS, Novosibirsk 630090, Russia
| | - Yulia A Veryaskina
- Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia
- Institute of Cytology and Genetics, SB RAS, Novosibirsk 630090, Russia
| | - Denis V Korotovskii
- Department of General and Pediatric Surgery, South Ural State Medical University, Chelyabinsk 454092, Russia
| | - Tatyana E Ilyina
- Department of General and Pediatric Surgery, South Ural State Medical University, Chelyabinsk 454092, Russia
| | - Sergey L Vorobyev
- National Center of Clinical Morphological Diagnostics, Saint Petersburg 192283, Russia
| | - Vladimir A Zhivotov
- Department of Surgery, National Medical and Surgical Center Named after N.I. Pirogov, Moscow 105203, Russia
| | - Nikita S Bondarev
- Department of Surgery, National Medical and Surgical Center Named after N.I. Pirogov, Moscow 105203, Russia
| | - Ilya V Sleptsov
- Department of Faculty Surgery, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Sergei V Sergiyko
- Department of General and Pediatric Surgery, South Ural State Medical University, Chelyabinsk 454092, Russia
| |
Collapse
|
4
|
Cao Y, Li J, Du Y, Sun Y, Liu L, Fang H, Liang Y, Mao S. LINC02454 promotes thyroid carcinoma progression via upregulating HMGA2 through CREB1. FASEB J 2023; 37:e23288. [PMID: 37997502 DOI: 10.1096/fj.202301070rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Thyroid carcinoma (THCA) is the most common malignancy in the endocrine system. Long intergenic non-coding RNA 2454 (LINC02454) exhibits an HMGA2-like expression pattern, but their relationship and roles in THCA are largely unknown. The present purpose was to delineate the roles of LINC02454 in THCA progression and its molecular mechanisms. We collected THCA tissues from patients and monitored patient survival. THCA cell colony formation, migration, and invasion were evaluated. Metastasis was evaluated by examining EMT markers through Western blotting. Gene interaction was determined with ChIP, RIP, RNA pull-down, and luciferase activity assays. A mouse model of a subcutaneous tumor was used to determine the activity of LINC02454 knockdown in vivo. We found that LINC02454 was highly expressed in THCA, and its upregulation was associated with poor survival. The knockdown of LINC02454 repressed colony formation, migration, and invasion. Moreover, loss of LINC02454 inhibited tumor growth and metastasis in mice. HMGA2 promoted LINC02454 transcription via binding to the LINC02454 promoter, and silencing of HMGA2 suppressed malignant behaviors through downregulation of LINC02454. HMGA2 was a novel functional target of LINC02454 in THCA cells, and knockdown of LINC02454-mediated anti-tumor effects was reversed by HMGA2 overexpression. Mechanically, LINC02454 promoted CREB1 phosphorylation and nuclear translocation, and CREB1 was subsequently bound to the HMGA2 promoter to facilitate its expression. LINC02454 cis-regulates HMGA2 transcription via facilitating CREB1 phosphorylation and nuclear translocation, and, in turn, HMGA2 promotes LINC02454 expression, thus accelerating thyroid carcinoma progression. Our results support therapeutic targets of LINC02454 and HMGA2 for THCA.
Collapse
Affiliation(s)
- Yan Cao
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jian Li
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongliang Du
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuxuan Sun
- Department of clinical medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Le Liu
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Fang
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Liang
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Mao
- Department of Tumor Chemotherapy, Haikou People's Hospital, Haikou, China
| |
Collapse
|
5
|
Xue F, Feng H, Wang T, Feng G, Ni N, Wang R, Yuan H. hsa_circ_0000264 promotes tumor progression via the hsa-let-7b-5p/HMGA2 axis in head and neck squamous cell carcinoma. Oral Dis 2023; 29:2677-2688. [PMID: 36214613 DOI: 10.1111/odi.14399] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Circular RNAs (CircRNAs) are involved in various tumors. However, their role in head and neck squamous cell carcinoma (HNSCC) is unknown. CircRNA sequencing data showed that hsa_circ_0000264 is significantly upregulated in HNSCC tissues. In this study, we aimed to investigate the role of hsa_circ_0000264 in HNSCC and elucidate its underlying regulation mechanism. MATERIALS AND METHODS RNase R treatment was performed to confirm the loop structure of hsa_circ_0000264. Fluorescence in situ hybridization was performed to show the subcellular localization of hsa_circ_0000264. We then performed wound healing assay, Transwell assay, Western blot, and in vivo experiments to determine the effect of alterations in hsa_circ_0000264 expression. We performed RNA pull-down and dual luciferase reporter assay to identify and confirm the binding sites in RNAs. RESULTS hsa_circ_0000264 was upregulated in HNSCC tissues and cells, and its loop structure was confirmed. Knockdown of hsa_circ_0000264 inhibited the migration, invasion, and epithelial-to-mesenchymal transition of HNSCC cells in vivo and in vitro. Mechanistically, hsa_circ_000026 upregulation can upregulate the expression of high mobility group AT-hook 2 (HMGA2) by sponging hsa-let-7b-5p, which in turn promotes HNSCC progression. CONCLUSION Our results showed that hsa_circ_0000264 promotes HNSCC progression via the hsa-let-7b-5p/HMGA2 axis, and hsa_circ_0000264 can serve as a potential target for HNSCC treatment.
Collapse
Affiliation(s)
- Feifei Xue
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjie Feng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Tianxiao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Guanying Feng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Nan Ni
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
6
|
Okano LM, Fonseca LMMD, Erthal ID, Malta TM. Epigenomic integrative analysis pinpoint master regulator transcription factors associated with tumorigenesis in squamous cell carcinoma of oral tongue. Genet Mol Biol 2023; 46:e20220358. [PMID: 37338302 DOI: 10.1590/1678-4685-gmb-2022-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/04/2023] [Indexed: 06/21/2023] Open
Abstract
Head and Neck Cancer (HNC) is a heterogeneous group of cancers, which includes cancers arising in the oral cavity, nasopharynx, oropharynx, hypopharynx, and larynx. Epidemiological studies have revealed that several factors such as tobacco and alcohol use, exposure to environmental pollutants, viral infection, and genetic factors are risk factors for developing HNC. The squamous cell carcinoma of oral tongue (SCCOT), which is significantly more aggressive than the other forms of oral squamous cell carcinoma, presents a propensity for rapid local invasion and spread, and a high recurrence rate. Dysregulation in the epigenetic machinery of cancer cells might help uncover the mechanisms of SCOOT tumorigenesis. Here, we used DNA methylation changes to identify cancer-specific enhancers that were enriched for specific transcription factor binding sites (TFBS), and potential master regulator transcription factors (MRTF) associated with SCCOT. We identified the activation of MRTFs associated with increased invasiveness, metastasis, epithelial-to-mesenchymal transition, poor prognosis, and stemness. On the other hand, we found the downregulation of MRTFs associated with tumor suppression. The identified MRTFs should be further investigated to clarify their role in oral cancer tumorigenesis and for their potential use as biological markers.
Collapse
Affiliation(s)
- Larissa Miyuki Okano
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Isabela Dias Erthal
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Tathiane Maistro Malta
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Identification of exosomal circRNA CD226 as a potent driver of nonsmall cell lung cancer through miR-1224-3p/high mobility group AT-hook 2 axis. Anticancer Drugs 2022; 33:1126-1138. [PMID: 35946568 DOI: 10.1097/cad.0000000000001357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) are crucial for the pathogenesis of nonsmall lung cancer (NSCLC). Here, we set out to unravel the precise function of circRNA CD226 (circCD226) in NSCLC pathogenesis. The exosomes from serum specimens were observed by transmission electron microscopy. CircCD226, miR-1224-3p and high mobility group AT-hook 2 (HMGA2) were quantified by qRT-PCR, western blot and immunohistochemistry. Actinomycin D and Ribonuclease (RNase) R treatments and subcellular localization assay were used for circCD226 characterization. Cell viability, proliferation, migration, invasion and sphere formation abilities were gauged by CCK-8, EDU, wound-healing, transwell and sphere formation assays, respectively. Directed relationships among circCD226, miR-1224-3p and HMGA2 were examined by RNA pull-down, dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The abundance of circCD226 was elevated in serum exosomes, tissues and cells of NSCLC. NSCLC serum exosomes enhanced NSCLC cell proliferation, migration, invasion and stemness. Loss of circCD226 impeded cell proliferation, migration, invasion and stemness in vitro, as well as tumor growth in vivo. Mechanistically, circCD226 sponged miR-1224-3p, and miR-1224-3p targeted HMGA2. CircCD226 involved the posttranscriptional regulation of HMGA2 through miR-1224-3p. Moreover, the miR-1224-3p/HMGA2 axis was identified as a functionally downstream effector of circCD226 in regulating NSCLC cell behaviors. Our study identifies circCD226 as a potential driver in NSCLC development depending on the regulation of miR-1224-3p/HMGA2 axis.
Collapse
|
8
|
Dexmedetomidine disrupts esophagus cancer tumorigenesis by modulating circ_0003340/miR-198/HMGA2 axis. Anticancer Drugs 2022; 33:448-458. [PMID: 35324528 DOI: 10.1097/cad.0000000000001284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
More and more studies have focused on the regulatory role of circular RNAs (circRNAs) in various cancers. However, it is not clear how dexmedetomidine (DEX) affects esophagus cancer progression by affecting the expression of circRNAs. This study aimed to investigate the role of DEX in esophagus cancer and its underlying mechanism. Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine assays were conducted to evaluate cell proliferation. Flow cytometry analysis and transwell assay were performed for cell apoptosis and invasion. The protein levels of cleaved caspase-3, matrix metallopeptidase 9, and high mobility group AT-hook 2 (HMGA2) were assessed by western blot assay. The expression levels of circ_0003340 and microRNA-198 (miR-198) were determined by quantitative real-time PCR. Dual-luciferase reporter assay was performed to verify the interaction between miR-198 and circ_0003340 or HMGA2. Murine xenograft model was established to investigate the role of circ_0003340 and DEX in vivo. DEX exerted antitumor effects in esophagus cancer cells. DEX hindered proliferation and invasion while inducing apoptosis of esophagus cancer cells, which was abolished by circ_0003340 elevation, HMGA2 overexpression, or miR-198 silencing. miR-198 directly interacted with circ_0003340 and HMGA2 in esophagus cancer cells. Moreover, knockdown of circ_0003340 could improve the anticancer role of DEX in vivo. DEX constrained cell carcinogenesis by regulating circ_0003340/miR-198/HMGA2 axis in esophagus cancer, providing an effective clinical implication for preventing the development of the esophagus cancer by the DEX.
Collapse
|
9
|
Bahrami A, Jafari A, Ferns GA. The dual role of microRNA-9 in gastrointestinal cancers: oncomiR or tumor suppressor? Biomed Pharmacother 2021; 145:112394. [PMID: 34781141 DOI: 10.1016/j.biopha.2021.112394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
microRNA are noncoding endogenous RNAs of ∼ 25-nucleotide, involved in RNA silencing and controlling of cell function. Recent evidence has highlighted the important role of various in the biology of human cancers. miR-9 is a highly conserved microRNA and abnormal regulation of miR-9 expression has various impacts on disease pathology. miR-9 may play a dual tumor-suppressive or oncomiR activity in several cancers. There have been conflicting reports concerning the role of miR-9 in gastrointestinal cancers. Several signaling pathways including PDK/AKT, Hippo, Wnt/β-catenin and PDGFRB axes are affected by miR-9 in suppressing proliferation, invasion and metastasis of tumor cells. Oncogenic miR-9 triggers migration, metastasis and clinic-pathological characteristics of patients with gastrointestinal malignancy by targeting various enzymes and transcription factors such as E-cadherin, HK2, LMX1A, and CDX2. On the other hand, long non-coding RNAs and circular RNAs can modulate miR-9 expression in human cancers. In this review, we aimed to summarize recent findings about the potential value of miR-9 in gastrointestinal tumors, that include: screening, prognostic and treatment.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| |
Collapse
|
10
|
Li D, Cao Y, Wang J, Yang H, Liu W, Cui J, Wu W. Regulatory effect between HMGA2 and the Wnt/β-catenin signaling pathway in the carcinogenesis of sporadic colorectal tubular adenoma. Oncol Lett 2021; 22:849. [PMID: 34733367 PMCID: PMC8561620 DOI: 10.3892/ol.2021.13110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the high incidence of colorectal cancer worldwide, the underlying molecular mechanisms have been extensively investigated. The Wnt/β-catenin signaling pathway plays a key role in the carcinogenesis of colorectal adenoma. In addition, the high mobility group AT-hook 2 (HMGA2) protein, which is involved in several biological processes, such as proliferation, differentiation, transformation and metastasis, is expressed at significantly high levels in colorectal cancer tissues compared with adjacent normal tissues. Currently, the role of HMGA2 in the carcinogenesis of sporadic colorectal tubular adenoma remains unclear. The downstream Wnt/β-catenin signaling molecule, T-cell factor/lymphoid enhancing factor (TCF/LEF), shares a similar domain with HMGA2, which enhances β-catenin transcriptional activity and TCF/LEF binding. Thus, the present study investigated the association between HMGA2 and the Wnt/β-catenin signaling pathway, and their role in the carcinogenesis of sporadic colorectal tubular adenoma via immunohistochemistry, siRNA, quantitative PCR and western blot analyses. The results demonstrated that the positive rate of HMGA2 expression gradually increased during tumor progression. Furthermore, HMGA2 expression was positively correlated with Wnt/β-catenin signaling protein expression [Wnt, β-catenin, cyclin-dependent kinase 4 (CDK4) and cyclin D1], suggesting its involvement in the carcinogenesis of sporadic colorectal tubular adenoma and its potential to synergistically interact with the Wnt/β-catenin signaling pathway. HMGA2 knockdown in the human colorectal cancer cell line, HCT 116 decreased β-catenin expression and its downstream targets, CDK4 and cyclin D1. Furthermore, silencing of Wnt or β-catenin decreased HMGA2 expression. Taken together, the results of the present study suggest the coordinated regulation of HMGA2 and the Wnt/β-catenin signaling pathway in the carcinogenesis of sporadic colorectal tubular adenoma.
Collapse
Affiliation(s)
- Dan Li
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yanan Cao
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Juan Wang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Haiyan Yang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Weina Liu
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wenxin Wu
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
11
|
Chen H, Guo Y, Cheng X. Long non-cording RNA XIST promoted cell proliferation and suppressed apoptosis by miR-423-5p/HMGA2 axis in diabetic nephropathy. Mol Cell Biochem 2021; 476:4517-4528. [PMID: 34532814 DOI: 10.1007/s11010-021-04250-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/20/2021] [Indexed: 12/26/2022]
Abstract
This research studied the effect of long non-coding RNA X-inactive-specific transcript (XIST) on DN. The effect of high glucose (HG) on the expression of XIST and miR-423-5p was detected by quantitative real-time PCR (qRT-PCR) in human kidney (HK) cells (human glomerular mesangial cells (HMCs) and human kidney-2 (HK-2) cells). The effect of XIST depletion and miR-423-5p inhibition or overexpression on high mobility group protein A2 (HMGA2) protein level was examined by western blot in HG-induced HK cells. The impacts of XIST depletion on viability and apoptosis were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) and flow cytometry assays in HG-induced HK cells. We found the expression of XIST and HMGA2 protein was significantly upregulated in DN tissues and cells. Moreover, HG treatment induced the upregulation of XIST and HMGA2 protein level in HK cells. Besides, both XIST depletion and HMGA2 depletion decreased cell proliferation but increased apoptosis in HG-treated HK cells. Furthermore, HMGA2 upregulation or miR-423-5p inhibition partly eliminated the effects of XIST depletion on cell proliferation, apoptosis of HG-treated HK cells. Interestingly, HMGA2 upregulation partly reversed miR-423-5p overexpression-mediated suppression on viability and promotion on apoptosis in HG-treated HK cells. Mechanistically, XIST sponged miR-423-5p to regulate HMGA2 expression in DN cells. Taken together, XIST depletion suppressed proliferation and promoted apoptosis via miR-423-5p/HMGA2 axis in HG-treated HK cells, which may provide a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Hui Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China.,Department of Endocrinology and Metabolism, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Guo
- Clinical Laboratory Center, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Xingbo Cheng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
12
|
Yuan Y, Chen L, Zhao T, Yu M. Pathogenesis, diagnosis and treatment of uterine lipoleiomyoma: A review. Biomed Pharmacother 2021; 142:112013. [PMID: 34388526 DOI: 10.1016/j.biopha.2021.112013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Uterine lipoleiomyomas are variants of uterine leiomyomas and are characterized by progressive enlargement that can occur even after menopause. These tumors can produce serious clinical symptoms and are difficult to diagnosis preoperatively. The growth rate of uterine lipoleiomyomas after menopause is comparatively higher than that of conventional uterine leiomyomas, and lipoleiomyosarcomas as well as tumor-to-tumor metastasis associated with lipoleiomyomas have been reported. However, detailed histogenic mechanisms of the tumor remain unclear. Surgical treatments are the current choice for the management of lipoleiomyomas. The purpose of this review is to promote greater awareness of lipoleiomyoma characteristics with a focus on histogenesis, diagnosis, and treatment. We performed an exhaustive literature review and have summarized the available data. We assessed the interpretation of auxiliary examinations to help physicians in making an early accurate diagnosis of the disease and to help with treatment decision-making, particularly regarding whether surgery should be performed or avoided.
Collapse
Affiliation(s)
- Yue Yuan
- General gynecology department, First Hospital, Jilin University, Chaoyang District, Changchun, Jilin 130021, China
| | - Linjiao Chen
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Chaoyang District, Changchun, Jilin 130021, China
| | - Ting Zhao
- General gynecology department, First Hospital, Jilin University, Chaoyang District, Changchun, Jilin 130021, China
| | - Meiling Yu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Chaoyang District, Changchun, Jilin 130021, China.
| |
Collapse
|
13
|
Gundlach JP, Hauser C, Schlegel FM, Willms A, Halske C, Röder C, Krüger S, Röcken C, Becker T, Kalthoff H, Trauzold A. Prognostic significance of high mobility group A2 (HMGA2) in pancreatic ductal adenocarcinoma: malignant functions of cytoplasmic HMGA2 expression. J Cancer Res Clin Oncol 2021; 147:3313-3324. [PMID: 34302528 PMCID: PMC8484217 DOI: 10.1007/s00432-021-03745-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/16/2021] [Indexed: 01/26/2023]
Abstract
PURPOSE HMGA2 has frequently been found in benign as well as malignant tumors and a significant association between HMGA2 overexpression and poor survival in different malignancies was described. In pancreatic ductal adenocarcinoma (PDAC), nuclear HMGA2 expression is associated with tumor dedifferentiation and presence of lymph node metastasis. Nevertheless, the impact of HMGA2 occurrence in other cell compartments is unknown. METHODS Intracellular distribution of HMGA2 was analyzed in PDAC (n = 106) and peritumoral, non-malignant ducts (n = 28) by immunohistochemistry. Findings were correlated with clinico-pathological data. Additionally, intracellular HMGA2 presence was studied by Western blotting of cytoplasmic and nuclear fractions of cultured cells. RESULTS HMGA2 was found in the cytoplasm and in the nucleus of cultured cells. In human tumor tissue, HMGA2 was also frequently found in the cytoplasm and the nucleus of tumor cells, however, nuclear staining was generally stronger. Direct comparison from tumor tissue with corresponding non-neoplastic peritumoral tissue revealed significantly stronger expression in tumors (p = 0.003). Of note, the nuclear staining was significantly stronger in lymph node metastatic cell nuclei compared to primary tumor cell nuclei (p = 0.049). Interestingly, cytoplasmic staining positively correlated with lymph vessel (p = 0.004) and venous invasion (p = 0.046). CONCLUSION HMGA2 is a prognostic marker in PDAC. Firstly, we found a positive correlation for cytoplasmic HMGA2 expression with lympho-vascular invasion and, secondly, we found a significantly stronger nuclear expression of HMGA2 in cancer-positive lymph node nuclei compared to primary tumor cell nuclei. So far, the role of cytoplasmic HMGA2 is nearly unknown, however, our data lend support to the hypothesis that cytoplasmic HMGA2 expression is involved in nodal spread.
Collapse
Affiliation(s)
- Jan-Paul Gundlach
- Department of General Surgery, Visceral-, Thoracic-, Transplantation- and Pediatric-Surgery, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105, Kiel, Germany.,Institute for Experimental Cancer Research, University of Kiel, Arnold-Heller-Str. 3, Building U30, 24105, Kiel, Germany
| | - Charlotte Hauser
- Department of General Surgery, Visceral-, Thoracic-, Transplantation- and Pediatric-Surgery, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105, Kiel, Germany.,Institute for Experimental Cancer Research, University of Kiel, Arnold-Heller-Str. 3, Building U30, 24105, Kiel, Germany
| | - Franka Maria Schlegel
- Institute for Experimental Cancer Research, University of Kiel, Arnold-Heller-Str. 3, Building U30, 24105, Kiel, Germany
| | - Anna Willms
- Institute for Experimental Cancer Research, University of Kiel, Arnold-Heller-Str. 3, Building U30, 24105, Kiel, Germany
| | - Christine Halske
- Department of Pathology, UKSH, Campus Kiel, Arnold-Heller-Str. 3, Building U33, 24105, Kiel, Germany
| | - Christian Röder
- Institute for Experimental Cancer Research, University of Kiel, Arnold-Heller-Str. 3, Building U30, 24105, Kiel, Germany
| | - Sandra Krüger
- Department of Pathology, UKSH, Campus Kiel, Arnold-Heller-Str. 3, Building U33, 24105, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, UKSH, Campus Kiel, Arnold-Heller-Str. 3, Building U33, 24105, Kiel, Germany
| | - Thomas Becker
- Department of General Surgery, Visceral-, Thoracic-, Transplantation- and Pediatric-Surgery, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105, Kiel, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, University of Kiel, Arnold-Heller-Str. 3, Building U30, 24105, Kiel, Germany
| | - Anna Trauzold
- Department of General Surgery, Visceral-, Thoracic-, Transplantation- and Pediatric-Surgery, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105, Kiel, Germany. .,Institute for Experimental Cancer Research, University of Kiel, Arnold-Heller-Str. 3, Building U30, 24105, Kiel, Germany.
| |
Collapse
|
14
|
The AST/ALT (De Ritis) Ratio Predicts Survival in Patients with Oral and Oropharyngeal Cancer. Diagnostics (Basel) 2020; 10:diagnostics10110973. [PMID: 33228184 PMCID: PMC7699507 DOI: 10.3390/diagnostics10110973] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023] Open
Abstract
Aminotransaminases, including aspartate aminotransaminase (AST) and alanine aminotransaminase (ALT), are strongly involved in cancer cell metabolism and have been associated with prognosis in different types of cancer. The purpose of the present study was to evaluate the prognostic significance of the pre-treatment AST/ALT ratio in a large European cohort of patients with oral and oropharyngeal squamous cell cancer (OOSCC). Data from 515 patients treated for OOSCC at a tertiary academic center from 2000–2017 were retrospectively analyzed. Levels of AST and ALT were measured prior to the start of treatment. Uni- and multivariate Cox regression analyses were applied to evaluate the prognostic value of the AST/ALT ratio for cancer-specific survival (CSS) and overall survival (OS), survival rates were calculated. Univariate analyses showed a significant association of the AST/ALT ratio with CSS (hazard ratio (HR) 1.71, 95% confidence interval (CI) 1.38–2.12; p < 0.001) and OS (HR 1.69, 95% CI 1.41–2.02; p < 0.001). In multivariate analysis, the AST/ALT ratio remained an independent prognostic factor for CSS and OS (HR 1.45, 95% CI 1.12–1.88, p = 0.005 and HR 1.42, 95% CI 1.14–1.77, p = 0.002). Applying receiver operating characteristics (ROC) curve analysis, the optimal cut-off level for the AST/ALT ratio was 1.44, respectively. In multivariate analysis, an AST/ALT ratio > 1.44 was an independent prognostic factor for poor CSS and OS (HR 1.64, 95% CI 1.10–2.43, p = 0.014 and HR 1.55, 95% CI 1.12–2.15; p = 0.008). We conclude that the AST/ALT ratio is a prognostic marker for survival in OOSCC patients and could contribute to a better risk stratification and improved oncological therapy decisions.
Collapse
|
15
|
Pham YTH, Utuama O, Thomas CE, Park JA, Vecchia CL, Risch HA, Tran CTD, Le TV, Boffetta P, Raskin L, Luu HN. High mobility group A protein-2 as a tumor cancer diagnostic and prognostic marker: a systematic review and meta-analysis. Eur J Cancer Prev 2020; 29:565-581. [PMID: 32898013 PMCID: PMC11537243 DOI: 10.1097/cej.0000000000000602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High mobility group A protein-2 (HMGA2) is an architectural transcription factor that binds to the A/T-rich DNA minor groove and is responsible for regulating transcriptional activity of multiple genes indirectly through chromatin change and assembling enhanceosome. HMGA2 is overexpressed in multiple tumor types, suggesting its involvement in cancer initiation and progression, thus, making it an ideal candidate for cancer diagnostic and prognostic. We performed a systematic review to examine the role of HMGA2 as a universal tumor cancer diagnostic and prognostic marker. We used Reporting Recommendations for Tumor Marker Prognostic Studies to systematically search OvidMedline, PubMed, and the Cochrane Library for English language studies, published between 1995 and June 2019. Meta-analysis provided pooled risk estimates and their 95% confidence intervals (CIs) for an association between overall survival and recurrence of cancers for studies with available estimates. We identified 42 eligible studies with a total of 5123 tumor samples in 15 types of cancer. The pooled percentage of HMGA2 gene expression in tumor samples was 65.14%. Meta-analysis showed that cancer patients with HMGA2 positive have significantly reduced survival, compared to patients without HMGA2 gene [pooled-hazard ratio (HR) = 1.85, 95% CI 1.48-2.22]. There was a positive association between cancer patients with HMGA2 overexpression and cancer recurrence though this association did not reach significance (pooled-HR = 1.44, 95% CI 0.80-2.07). Overexpression of HMGA2 was found in 15 types of cancer. There was an association between HMGA2 overexpression with reduced survival of cancer patients. HMGA2 is thus considered a promising universal tumor marker for prognostics.
Collapse
Affiliation(s)
- Yen Thi-Hai Pham
- Department of Rehabilitation, Vinmec Healthcare System, Hanoi, Vietnam
| | - Ovie Utuama
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, Florida
| | - Claire E. Thomas
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health
- Division of Cancer Control and Population Sciences, University of Pittsburgh Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jong A. Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Harvey A. Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University
- Yale Cancer Center, New Haven, Connecticut, USA
| | - Chi Thi-Du Tran
- Vietnam Colorectal Cancer and Polyps Research, Vinmec Healthcare System
| | - Thanh V. Le
- Department of Hepatobiliary and Pancreatic Surgery, 108 Hospital, Hanoi, Vietnam
| | - Paolo Boffetta
- Tisch Cancer Institute, Icahn School of Medicine, Mount Sinai School of Medicine, New York, New York and
| | - Leon Raskin
- Center for Observational Research, Amgen Inc., Thousand Oaks, California, USA
| | - Hung N. Luu
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health
- Division of Cancer Control and Population Sciences, University of Pittsburgh Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Bahrami A, A Ferns G. Effect of Curcumin and Its Derivates on Gastric Cancer: Molecular Mechanisms. Nutr Cancer 2020; 73:1553-1569. [PMID: 32814463 DOI: 10.1080/01635581.2020.1808232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gastric carcinoma is one of the most prevalent malignancies and is associated with a high mortality. Chemotherapy is the principal therapeutic option in the treatment of gastric cancer, but its success rate is restricted by severe side effects and the prevalence of chemo-resistance. Curcumin is a polyphenolic compound derived from turmeric that has potent antioxidant, anti-inflammatory and anti-tumor effects. There is accumulating evidence that curcumin may prevent gastric cancer through regulation of oncogenic pathways. Furthermore some curcumin analogues and novel formulation of curcumin appear to have anti-tumor activity. The aim of this review was to give an overview of the therapeutic potential of curcumin and its derivatives against gastric cancer in preclinical and clinical studies.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| |
Collapse
|
17
|
The Prominent Role of HMGA Proteins in the Early Management of Gastrointestinal Cancers. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2059516. [PMID: 31737655 PMCID: PMC6815579 DOI: 10.1155/2019/2059516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022]
Abstract
GI tumors represent a heterogeneous group of neoplasms concerning their natural history and molecular alterations harbored. Nevertheless, these tumors share very high incidence and mortality rates worldwide and patients' poor prognosis. Therefore, the identification of specific biomarkers could increase the development of personalized medicine, in order to improve GI cancer management. In this sense, HMGA family members (HMGA1 and HMGA2) comprise an important group of genes involved in the genesis and progression of malignant tumors. Additionally, it has also been reported that HMGA1 and HMGA2 display an important role in the detection and progression of GI tumors. In this way, HMGA family members could be used as reliable biomarkers able to efficiently track not only the tumor per se but also the main risk conditions related with their development of GI cancers in the future. Finally, it shall be a promising option to revert the current scenario, once HMGA genes and proteins could represent a convergence point in the complex landscape of GI tumors.
Collapse
|